메뉴 건너뛰기




Volumn 52, Issue 2, 2014, Pages 1356-1368

Semantic annotation of satellite images using author-genre-topic model

Author keywords

Descriptor; generative model; image annotation; satellite image

Indexed keywords

CLASSIFICATION ACCURACY; DESCRIPTORS; GENERATIVE MODEL; IMAGE ANNOTATION; MULTINOMIAL DISTRIBUTIONS; SATELLITE IMAGES; SEMANTIC ANNOTATIONS; TRAINING IMAGE;

EID: 84891025342     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2013.2250978     Document Type: Article
Times cited : (35)

References (32)
  • 1
    • 84861198977 scopus 로고    scopus 로고
    • Automatic annotation of multispectral satellite images using autho-topic model
    • May
    • W. Luo, H. L. Li, and G. H. Liu, Automatic annotation of multispectral satellite images using autho-topic model, IEEE Geosci. Remote Sens. Lett., vol. 9, no. 4, pp. 634-638, May 2012.
    • (2012) IEEE Geosci. Remote Sens. Lett. , vol.9 , Issue.4 , pp. 634-638
    • Luo, W.1    Li, H.L.2    Liu, G.H.3
  • 2
    • 14644406807 scopus 로고    scopus 로고
    • Results and implications of a study of fifteen years of satellite image classification experiments
    • DOI 10.1109/TGRS.2004.837325
    • G. Wilkinson, Results and implications of a study of fifteen years of satellite image classification experiments, IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 433-440, Mar. 2005. (Pubitemid 40320266)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.3 , pp. 433-440
    • Wilkinson, G.G.1
  • 4
    • 0035509996 scopus 로고    scopus 로고
    • The effect of classifier agreement on the accuracy of the combined classifier in decision level fusion
    • DOI 10.1109/36.964992, PII S0196289201104092
    • M. Petrakos, J. A. Benediktsson, and I. Kanellopoulos, The effect of classifier agreement on the accuracy of the combined classifier in decision level fusion, IEEE Trans. Geosci. Remote Sens., vol. 39, no. 11, pp. 2539-2546, Nov. 2001. (Pubitemid 33137991)
    • (2001) IEEE Transactions on Geoscience and Remote Sensing , vol.39 , Issue.11 , pp. 2539-2546
    • Petrakos, M.1    Benediktsson, J.A.2    Kanellopoulos, I.3
  • 5
    • 0032638011 scopus 로고    scopus 로고
    • A neural-statistical approach to multitemporal and multisource remote-sensing image classification
    • Nov
    • L. Bruzzone, D. F. Prieto, and S. B. Serpico, A neural-statistical approach to multitemporal and multisource remote-sensing image classification, IEEE Trans. Geosci. Remote Sens., vol. 37, no. 11, pp. 1350-1359, Nov. 1999.
    • (1999) IEEE Trans. Geosci. Remote Sens. , vol.37 , Issue.11 , pp. 1350-1359
    • Bruzzone, L.1    Prieto, D.F.2    Serpico, S.B.3
  • 6
    • 75449091209 scopus 로고    scopus 로고
    • Semantic annotation of satellite images using latent dirichlet allocation
    • Jan
    • M. Lienou, H. Maitre, and M. Datcu, Semantic annotation of satellite images using latent dirichlet allocation, IEEE Geosci. Remote Sens. Lett., vol. 7, no. 1, pp. 28-32, Jan. 2010.
    • (2010) IEEE Geosci. Remote Sens. Lett. , vol.7 , Issue.1 , pp. 28-32
    • Lienou, M.1    Maitre, H.2    Datcu, M.3
  • 7
    • 84937572644 scopus 로고    scopus 로고
    • Object recognition as machine translation: Learning a lexicon for a fixed image vocabulary
    • P. Duygulu, K. Barnard, N. De Fretias, and D. Forsyth, Object recognition as machine translation: Learning a lexicon for a fixed image vocabulary, in Proc. Eur. Conf. Comput. Vis., 2002, pp. 97-112.
    • (2002) Proc. Eur. Conf. Comput. Vis. , pp. 97-112
    • Duygulu, P.1    Barnard, K.2    De Fretias, N.3    Forsyth, D.4
  • 8
    • 0034818212 scopus 로고    scopus 로고
    • Unsupervised learning by probabilistic Latent Semantic Analysis
    • DOI 10.1023/A:1007617005950
    • T. Hofmann, Unsupervised learning by probabilistic latent semantic analysis, J. Mach. Learn. Res., vol. 42, nos. 1-2, pp. 177-196, Jan.-Feb. 2001. (Pubitemid 32872403)
    • (2001) Machine Learning , vol.42 , Issue.1-2 , pp. 177-196
    • Hofmann, T.1
  • 9
    • 0141607824 scopus 로고    scopus 로고
    • Latent Dirichlet allocation
    • Mar
    • D. M. Blei, A. Y. Ng, and M. I. Jordan, Latent Dirichlet allocation, J. Mach. Learn. Res., vol. 3, no. 5, pp. 993-1022, Mar. 2003.
    • (2003) J. Mach. Learn. Res. , vol.3 , Issue.5 , pp. 993-1022
    • Blei, D.M.1    Ng, A.Y.2    Jordan, M.I.3
  • 16
    • 79959357297 scopus 로고    scopus 로고
    • The grouped author-topic model for unsupervised entity resolution
    • A. M. Dai and A. J. Storkey, The grouped author-topic model for unsupervised entity resolution, in Proc. 21th Int. Conf. Artif. Neural Netw., 2011, pp. 241-249.
    • (2011) Proc. 21th Int. Conf. Artif. Neural Netw. , pp. 241-249
    • Dai, A.M.1    Storkey, A.J.2
  • 19
    • 33845572523 scopus 로고    scopus 로고
    • Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories
    • S. Lazebnik, C. Schmid, and J. Ponce, Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories, in Proc. Comput. Vis. Pattern Recognit., 2006, pp. 1-8.
    • (2006) Proc. Comput. Vis. Pattern Recognit. , pp. 1-8
    • Lazebnik, S.1    Schmid, C.2    Ponce, J.3
  • 20
    • 33745155436 scopus 로고    scopus 로고
    • A Bayesian hierarchical model for learning natural scene categories
    • F.-F. Li and P. Perona, A Bayesian hierarchical model for learning natural scene categories, in Proc. Comput. Vis. Pattern Recognit., 2005, pp. 524-531.
    • (2005) Proc. Comput. Vis. Pattern Recognit. , pp. 524-531
    • Li, F.-F.1    Perona, P.2
  • 21
    • 0033225865 scopus 로고    scopus 로고
    • Introduction to variational methods for graphical models
    • DOI 10.1023/A:1007665907178
    • M. Jordan, Z. Ghahramani, T. Jaakkola, and L. Saul, Introduction to variational methods for graphical models, Mach. Learn., vol. 37, no. 2, pp. 183-233, Nov. 1999. (Pubitemid 30544678)
    • (1999) Machine Learning , vol.37 , Issue.2 , pp. 183-233
    • Jordan, M.I.1    Ghahramani, Z.2    Jaakkola, T.S.3    Saul, L.K.4
  • 22
    • 4043152487 scopus 로고    scopus 로고
    • Graphical models, exponential families, and variational inference
    • Univ. California, Berkeley, CA, USA, Tech. Rep. Sep.
    • M. Wainwright and M. Jordan, Graphical models, exponential families, and variational inference, Dept. Stat., Univ. California, Berkeley, CA, USA, Tech. Rep. 649, Sep. 2003.
    • (2003) Dept. Stat. , vol.649
    • Wainwright, M.1    Jordan, M.2
  • 23
    • 84899003086 scopus 로고    scopus 로고
    • Propagation algorithms for variational Bayesian learning
    • Z. Ghahramani and M. Beal, Propagation algorithms for variational Bayesian learning, in Proc. Neural Inf. Process. Syst., 2001, pp. 507-513.
    • (2001) Proc. Neural Inf. Process. Syst. , pp. 507-513
    • Ghahramani, Z.1    Beal, M.2
  • 24
    • 0345978970 scopus 로고    scopus 로고
    • Expectation propagation for approximate bayesian inference
    • Aug.
    • T. Minka, Expectation propagation for approximate bayesian inference, in Proc. 17th Conf. Uncertainty Artif. Intell., Aug. 2001, pp. 362-269.
    • (2001) Proc. 17th Conf. Uncertainty Artif. Intell. , pp. 362-269
    • Minka, T.1
  • 27
    • 79955702502 scopus 로고    scopus 로고
    • Libsvm: A library for support vector machines
    • C. C. Chang and C. J. Lin, LIBSVM: A library for support vector machines, ACM Trans. Intell. Syst. Technol., vol. 2, no. 27, pp. 1-27, 2011.
    • (2011) ACM Trans. Intell. Syst. Technol. , vol.2 , Issue.27 , pp. 1-27
    • Chang, C.C.1    Lin, C.J.2
  • 28
    • 29144499905 scopus 로고    scopus 로고
    • Working set selection using the second order information for training SVM
    • Dec.
    • R. E. Fan, P. H. Chen, and C. J. Lin, Working set selection using the second order information for training SVM, J. Mach. Learn. Res., vol. 6, pp. 1889-1918, Dec. 2005.
    • (2005) J. Mach. Learn. Res. , vol.6 , pp. 1889-1918
    • Fan, R.E.1    Chen, P.H.2    Lin, C.J.3
  • 29
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • DOI 10.1023/A:1010933404324
    • L. Breiman, Random forests, Mach. Learn., vol. 45, no. 1, pp. 5-32, 2001. (Pubitemid 32933532)
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 31
    • 0029669420 scopus 로고    scopus 로고
    • A comparative study of texture measures with classification based on feature distributions
    • Jan
    • T. Ojala, M. Pietikainen, and D. Harwood, A comparative study of texture measures with classification based on feature distributions, Pattern Recognit., vol. 29, no. 1, pp. 51-59, Jan. 1996.
    • (1996) Pattern Recognit. , vol.29 , Issue.1 , pp. 51-59
    • Ojala, T.1    Pietikainen, M.2    Harwood, D.3
  • 32
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale invariant keypoints
    • Nov
    • D. G. Lowe, Distinctive image features from scale invariant keypoints, Int. J. Comput. Vis., vol. 60, no. 2, pp. 91-110, Nov. 2004.
    • (2004) Int. J. Comput. Vis. , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.