-
1
-
-
84861198977
-
Automatic annotation of multispectral satellite images using autho-topic model
-
May
-
W. Luo, H. L. Li, and G. H. Liu, Automatic annotation of multispectral satellite images using autho-topic model, IEEE Geosci. Remote Sens. Lett., vol. 9, no. 4, pp. 634-638, May 2012.
-
(2012)
IEEE Geosci. Remote Sens. Lett.
, vol.9
, Issue.4
, pp. 634-638
-
-
Luo, W.1
Li, H.L.2
Liu, G.H.3
-
2
-
-
14644406807
-
Results and implications of a study of fifteen years of satellite image classification experiments
-
DOI 10.1109/TGRS.2004.837325
-
G. Wilkinson, Results and implications of a study of fifteen years of satellite image classification experiments, IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 433-440, Mar. 2005. (Pubitemid 40320266)
-
(2005)
IEEE Transactions on Geoscience and Remote Sensing
, vol.43
, Issue.3
, pp. 433-440
-
-
Wilkinson, G.G.1
-
3
-
-
26444568201
-
Image-to-word transformation based on dividing and vector quantizing images with words
-
Y. Mori, H. Takahashi, and R. Oka, Image-to-word transformation based on dividing and vector quantizing images with words, in Proc. Int. Workshop Multimedia Intell. Storage Retr. Manage., 1999, pp. 1-9.
-
(1999)
Proc. Int. Workshop Multimedia Intell. Storage Retr. Manage.
, pp. 1-9
-
-
Mori, Y.1
Takahashi, H.2
Oka, R.3
-
4
-
-
0035509996
-
The effect of classifier agreement on the accuracy of the combined classifier in decision level fusion
-
DOI 10.1109/36.964992, PII S0196289201104092
-
M. Petrakos, J. A. Benediktsson, and I. Kanellopoulos, The effect of classifier agreement on the accuracy of the combined classifier in decision level fusion, IEEE Trans. Geosci. Remote Sens., vol. 39, no. 11, pp. 2539-2546, Nov. 2001. (Pubitemid 33137991)
-
(2001)
IEEE Transactions on Geoscience and Remote Sensing
, vol.39
, Issue.11
, pp. 2539-2546
-
-
Petrakos, M.1
Benediktsson, J.A.2
Kanellopoulos, I.3
-
5
-
-
0032638011
-
A neural-statistical approach to multitemporal and multisource remote-sensing image classification
-
Nov
-
L. Bruzzone, D. F. Prieto, and S. B. Serpico, A neural-statistical approach to multitemporal and multisource remote-sensing image classification, IEEE Trans. Geosci. Remote Sens., vol. 37, no. 11, pp. 1350-1359, Nov. 1999.
-
(1999)
IEEE Trans. Geosci. Remote Sens.
, vol.37
, Issue.11
, pp. 1350-1359
-
-
Bruzzone, L.1
Prieto, D.F.2
Serpico, S.B.3
-
6
-
-
75449091209
-
Semantic annotation of satellite images using latent dirichlet allocation
-
Jan
-
M. Lienou, H. Maitre, and M. Datcu, Semantic annotation of satellite images using latent dirichlet allocation, IEEE Geosci. Remote Sens. Lett., vol. 7, no. 1, pp. 28-32, Jan. 2010.
-
(2010)
IEEE Geosci. Remote Sens. Lett.
, vol.7
, Issue.1
, pp. 28-32
-
-
Lienou, M.1
Maitre, H.2
Datcu, M.3
-
7
-
-
84937572644
-
Object recognition as machine translation: Learning a lexicon for a fixed image vocabulary
-
P. Duygulu, K. Barnard, N. De Fretias, and D. Forsyth, Object recognition as machine translation: Learning a lexicon for a fixed image vocabulary, in Proc. Eur. Conf. Comput. Vis., 2002, pp. 97-112.
-
(2002)
Proc. Eur. Conf. Comput. Vis.
, pp. 97-112
-
-
Duygulu, P.1
Barnard, K.2
De Fretias, N.3
Forsyth, D.4
-
8
-
-
0034818212
-
Unsupervised learning by probabilistic Latent Semantic Analysis
-
DOI 10.1023/A:1007617005950
-
T. Hofmann, Unsupervised learning by probabilistic latent semantic analysis, J. Mach. Learn. Res., vol. 42, nos. 1-2, pp. 177-196, Jan.-Feb. 2001. (Pubitemid 32872403)
-
(2001)
Machine Learning
, vol.42
, Issue.1-2
, pp. 177-196
-
-
Hofmann, T.1
-
9
-
-
0141607824
-
Latent Dirichlet allocation
-
Mar
-
D. M. Blei, A. Y. Ng, and M. I. Jordan, Latent Dirichlet allocation, J. Mach. Learn. Res., vol. 3, no. 5, pp. 993-1022, Mar. 2003.
-
(2003)
J. Mach. Learn. Res.
, vol.3
, Issue.5
, pp. 993-1022
-
-
Blei, D.M.1
Ng, A.Y.2
Jordan, M.I.3
-
10
-
-
33749249312
-
Hierarchical Dirichlet processes
-
Y. W. Teh, M. I. Jordan, M. J. Beal, and D. M. Blei, Hierarchical Dirichlet processes, J. Amer. Stat. Assoc., vol. 101, no. 476, pp. 1566-1581, 2006.
-
(2006)
J. Amer. Stat. Assoc.
, vol.101
, Issue.476
, pp. 1566-1581
-
-
Teh, Y.W.1
Jordan, M.I.2
Beal, M.J.3
Blei, D.M.4
-
13
-
-
12244288622
-
Probabilistic author-topic models for information discovery
-
KDD-2004 - Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
-
M. Steyvers, P. Smyth, M. Rosen-Zvi, and T. Griffiths, Probabilistic author-topic models for information discovery, in Proc. 10th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2004, pp. 306-315. (Pubitemid 40114940)
-
(2004)
KDD-2004 - Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 306-315
-
-
Steyvers, M.1
Smyth, P.2
Rosen-Zvi, M.3
Griffiths, T.4
-
14
-
-
80053397960
-
Citation author topic model in expert search
-
Y. C. Tu, N. Johri, D. Roth, and J. Hockenmaier, Citation author topic model in expert search, in Proc. 23rd Int. Conf. Comput. Linguist., 2010, pp. 1-9.
-
(2010)
Proc. 23rd Int. Conf. Comput. Linguist.
, pp. 1-9
-
-
Tu, Y.C.1
Johri, N.2
Roth, D.3
Hockenmaier, J.4
-
15
-
-
84871102871
-
Context sensitive topic models for author influence in document networks
-
Jul.
-
S. Kataria, P. Mitra, C. Caragea, and C. Lee Giles, Context sensitive topic models for author influence in document networks, in Proc. 22nd Int. Joint Conf. Artif. Intell., Jul. 2010, pp. 2274-228.
-
(2010)
Proc. 22nd Int. Joint Conf. Artif. Intell.
, pp. 2274-2228
-
-
Kataria, S.1
Mitra, P.2
Caragea, C.3
Lee Giles, C.4
-
16
-
-
79959357297
-
The grouped author-topic model for unsupervised entity resolution
-
A. M. Dai and A. J. Storkey, The grouped author-topic model for unsupervised entity resolution, in Proc. 21th Int. Conf. Artif. Neural Netw., 2011, pp. 241-249.
-
(2011)
Proc. 21th Int. Conf. Artif. Neural Netw.
, pp. 241-249
-
-
Dai, A.M.1
Storkey, A.J.2
-
17
-
-
33645146449
-
Histograms of oriented gradients for human detection
-
DOI 10.1109/CVPR.2005.177, 1467360, Proceedings - 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005
-
N. Dalal and B. Triggs, Histogram of oriented gradients for human detection, in Proc. Comput. Vis. Pattern Recognit., Jun. 2005, pp. 886-893. (Pubitemid 43897286)
-
(2005)
Proceedings - 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005
, vol.I
, pp. 886-893
-
-
Dalal, N.1
Triggs, B.2
-
18
-
-
36849014901
-
Representing shape with a spatial pyramid kernel
-
DOI 10.1145/1282280.1282340, Proceedings of the 6th ACM International Conference on Image and Video Retrieval, CIVR 2007
-
A. Bosch, A. Zisserman, and X. Munoz, Representing shape with a spatial pyramid kernel, in Proc. ACM Int. Conf. Image Video Retr., 2007, pp. 401-408. (Pubitemid 350229652)
-
(2007)
Proceedings of the 6th ACM International Conference on Image and Video Retrieval, CIVR 2007
, pp. 401-408
-
-
Bosch, A.1
Zisserman, A.2
Munoz, X.3
-
19
-
-
33845572523
-
Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories
-
S. Lazebnik, C. Schmid, and J. Ponce, Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories, in Proc. Comput. Vis. Pattern Recognit., 2006, pp. 1-8.
-
(2006)
Proc. Comput. Vis. Pattern Recognit.
, pp. 1-8
-
-
Lazebnik, S.1
Schmid, C.2
Ponce, J.3
-
20
-
-
33745155436
-
A Bayesian hierarchical model for learning natural scene categories
-
F.-F. Li and P. Perona, A Bayesian hierarchical model for learning natural scene categories, in Proc. Comput. Vis. Pattern Recognit., 2005, pp. 524-531.
-
(2005)
Proc. Comput. Vis. Pattern Recognit.
, pp. 524-531
-
-
Li, F.-F.1
Perona, P.2
-
21
-
-
0033225865
-
Introduction to variational methods for graphical models
-
DOI 10.1023/A:1007665907178
-
M. Jordan, Z. Ghahramani, T. Jaakkola, and L. Saul, Introduction to variational methods for graphical models, Mach. Learn., vol. 37, no. 2, pp. 183-233, Nov. 1999. (Pubitemid 30544678)
-
(1999)
Machine Learning
, vol.37
, Issue.2
, pp. 183-233
-
-
Jordan, M.I.1
Ghahramani, Z.2
Jaakkola, T.S.3
Saul, L.K.4
-
22
-
-
4043152487
-
Graphical models, exponential families, and variational inference
-
Univ. California, Berkeley, CA, USA, Tech. Rep. Sep.
-
M. Wainwright and M. Jordan, Graphical models, exponential families, and variational inference, Dept. Stat., Univ. California, Berkeley, CA, USA, Tech. Rep. 649, Sep. 2003.
-
(2003)
Dept. Stat.
, vol.649
-
-
Wainwright, M.1
Jordan, M.2
-
23
-
-
84899003086
-
Propagation algorithms for variational Bayesian learning
-
Z. Ghahramani and M. Beal, Propagation algorithms for variational Bayesian learning, in Proc. Neural Inf. Process. Syst., 2001, pp. 507-513.
-
(2001)
Proc. Neural Inf. Process. Syst.
, pp. 507-513
-
-
Ghahramani, Z.1
Beal, M.2
-
24
-
-
0345978970
-
Expectation propagation for approximate bayesian inference
-
Aug.
-
T. Minka, Expectation propagation for approximate bayesian inference, in Proc. 17th Conf. Uncertainty Artif. Intell., Aug. 2001, pp. 362-269.
-
(2001)
Proc. 17th Conf. Uncertainty Artif. Intell.
, pp. 362-269
-
-
Minka, T.1
-
27
-
-
79955702502
-
Libsvm: A library for support vector machines
-
C. C. Chang and C. J. Lin, LIBSVM: A library for support vector machines, ACM Trans. Intell. Syst. Technol., vol. 2, no. 27, pp. 1-27, 2011.
-
(2011)
ACM Trans. Intell. Syst. Technol.
, vol.2
, Issue.27
, pp. 1-27
-
-
Chang, C.C.1
Lin, C.J.2
-
28
-
-
29144499905
-
Working set selection using the second order information for training SVM
-
Dec.
-
R. E. Fan, P. H. Chen, and C. J. Lin, Working set selection using the second order information for training SVM, J. Mach. Learn. Res., vol. 6, pp. 1889-1918, Dec. 2005.
-
(2005)
J. Mach. Learn. Res.
, vol.6
, pp. 1889-1918
-
-
Fan, R.E.1
Chen, P.H.2
Lin, C.J.3
-
29
-
-
0035478854
-
Random forests
-
DOI 10.1023/A:1010933404324
-
L. Breiman, Random forests, Mach. Learn., vol. 45, no. 1, pp. 5-32, 2001. (Pubitemid 32933532)
-
(2001)
Machine Learning
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
31
-
-
0029669420
-
A comparative study of texture measures with classification based on feature distributions
-
Jan
-
T. Ojala, M. Pietikainen, and D. Harwood, A comparative study of texture measures with classification based on feature distributions, Pattern Recognit., vol. 29, no. 1, pp. 51-59, Jan. 1996.
-
(1996)
Pattern Recognit.
, vol.29
, Issue.1
, pp. 51-59
-
-
Ojala, T.1
Pietikainen, M.2
Harwood, D.3
-
32
-
-
3042535216
-
Distinctive image features from scale invariant keypoints
-
Nov
-
D. G. Lowe, Distinctive image features from scale invariant keypoints, Int. J. Comput. Vis., vol. 60, no. 2, pp. 91-110, Nov. 2004.
-
(2004)
Int. J. Comput. Vis.
, vol.60
, Issue.2
, pp. 91-110
-
-
Lowe, D.G.1
|