메뉴 건너뛰기




Volumn 39, Issue 12, 2017, Pages 2409-2422

Learning Supervised Topic Models for Classification and Regression from Crowds

Author keywords

crowdsoucing; multiple annotators; supervised learning; Topic models

Indexed keywords

INFERENCE ENGINES; STOCHASTIC SYSTEMS; SUPERVISED LEARNING;

EID: 85030708259     PISSN: 01628828     EISSN: None     Source Type: Journal    
DOI: 10.1109/TPAMI.2017.2648786     Document Type: Article
Times cited : (94)

References (36)
  • 1
    • 0141607824 scopus 로고    scopus 로고
    • Latent Dirichlet allocation
    • D. Blei, A. Ng, and M. I. Jordan, "Latent Dirichlet allocation, " J. Mach. Learn. Res., vol. 3, pp. 993-1022, 2003.
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 993-1022
    • Blei, D.1    Ng, A.2    Jordan, M.I.3
  • 2
    • 33745155436 scopus 로고    scopus 로고
    • A Bayesian hierarchical model for learning natural scene categories
    • L. Fei-Fei and P. Perona, "A Bayesian hierarchical model for learning natural scene categories, " in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2005, vol. 2, pp. 524-531.
    • (2005) Proc. IEEE Conf. Comput. Vis. Pattern Recognit. , vol.2 , pp. 524-531
    • Fei-Fei, L.1    Perona, P.2
  • 4
    • 45049084813 scopus 로고    scopus 로고
    • Unsupervised learning of human action categories using spatial-temporal words
    • J. Niebles, H. Wang, and L. Fei-Fei, "Unsupervised learning of human action categories using spatial-temporal words, " Int. J. Comput. Vis., vol. 79, no. 3, pp. 299-318, 2008.
    • (2008) Int. J. Comput. Vis. , vol.79 , Issue.3 , pp. 299-318
    • Niebles, J.1    Wang, H.2    Fei-Fei, L.3
  • 5
    • 52949126188 scopus 로고    scopus 로고
    • Describing disability through individual-level mixture models for multivariate binary data
    • E. Erosheva, S. Fienberg, and C. Joutard, "Describing disability through individual-level mixture models for multivariate binary data, " Ann. Appl. Statist., vol. 1, no. 2, 2007, Art. no. 346.
    • (2007) Ann. Appl. Statist. , vol.1 , Issue.2
    • Erosheva, E.1    Fienberg, S.2    Joutard, C.3
  • 6
    • 38049110881 scopus 로고    scopus 로고
    • Combining stochastic block models and mixed membership for statistical network analysis
    • Berlin, Germany: Springer
    • E. Airoldi, D. Blei, S. Fienberg, and E. Xing, "Combining stochastic block models and mixed membership for statistical network analysis, " in Statistical Network Analysis. Berlin, Germany: Springer, 2007, pp. 57-74.
    • (2007) Statistical Network Analysis , pp. 57-74
    • Airoldi, E.1    Blei, D.2    Fienberg, S.3    Xing, E.4
  • 8
    • 84869186087 scopus 로고    scopus 로고
    • MedLDA: Maximum margin supervised topic models
    • J. Zhu, A. Ahmed, and E. Xing, "MedLDA: Maximum margin supervised topic models, " J. Mach. Learn. Res., vol. 13, no. 1, pp. 2237-2278, 2012.
    • (2012) J. Mach. Learn. Res. , vol.13 , Issue.1 , pp. 2237-2278
    • Zhu, J.1    Ahmed, A.2    Xing, E.3
  • 10
    • 84878784643 scopus 로고    scopus 로고
    • Learning from multiple annotators: Distinguishing good from random labelers
    • F. Rodrigues, F. Pereira, and B. Ribeiro, "Learning from multiple annotators: distinguishing good from random labelers, " Pattern Recognit. Lett., vol. 34, pp. 1428-1436, 2013.
    • (2013) Pattern Recognit. Lett. , vol.34 , pp. 1428-1436
    • Rodrigues, F.1    Pereira, F.2    Ribeiro, B.3
  • 12
    • 84901497847 scopus 로고    scopus 로고
    • Learning from multiple annotators with varying expertise
    • Y. Yan, R. Rosales, G. Fung, R. Subramanian, and J. Dy, "Learning from multiple annotators with varying expertise, " Mach. Learn., vol. 95, no. 3, pp. 291-327, 2014.
    • (2014) Mach. Learn. , vol.95 , Issue.3 , pp. 291-327
    • Yan, Y.1    Rosales, R.2    Fung, G.3    Subramanian, R.4    Dy, J.5
  • 15
    • 79957489009 scopus 로고    scopus 로고
    • DiscLDA: Discriminative learning for dimensionality reduction and classification
    • S. Lacoste-Julien, F. Sha, and M. Jordan, "DiscLDA: Discriminative learning for dimensionality reduction and classification, " in Proc. Advances Neural Inf. Process. Syst., 2009, pp. 897-904.
    • (2009) Proc. Advances Neural Inf. Process. Syst. , pp. 897-904
    • Lacoste-Julien, S.1    Sha, F.2    Jordan, M.3
  • 17
    • 77951202623 scopus 로고    scopus 로고
    • Topic models conditioned on arbitrary features with Dirichlet-multinomial regression
    • D. Mimno and A. McCallum, "Topic models conditioned on arbitrary features with Dirichlet-multinomial regression, " in Proc. 24th Conf. Uncertainty Artif. Intell., 2008, pp. 411-418.
    • (2008) Proc. 24th Conf. Uncertainty Artif. Intell. , pp. 411-418
    • Mimno, D.1    McCallum, A.2
  • 19
    • 84888128053 scopus 로고    scopus 로고
    • Multinomial inverse regression for text analysis
    • M. Taddy, "Multinomial inverse regression for text analysis, " J. Amer. Statist. Assoc., vol. 108, no. 503, pp. 755-770, 2013.
    • (2013) J. Amer. Statist. Assoc. , vol.108 , Issue.503 , pp. 755-770
    • Taddy, M.1
  • 20
    • 0003102944 scopus 로고
    • Maximum likelihood estimation of observer error-rates using the em algorithm
    • A. P. Dawid and A. M. Skene, "Maximum likelihood estimation of observer error-rates using the EM algorithm, " J. Roy. Statist. Soc. Series C, vol. 28, no. 1, pp. 20-28, 1979.
    • (1979) J. Roy. Statist. Soc. Series C , vol.28 , Issue.1 , pp. 20-28
    • Dawid, A.P.1    Skene, A.M.2
  • 22
    • 77951954464 scopus 로고    scopus 로고
    • Learning from crowds
    • V. Raykar, et al., "Learning from crowds, " J. Mach. Learn. Res., vol. 11, pp. 1297-1322, 2010.
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 1297-1322
    • Raykar, V.1
  • 23
    • 84919930803 scopus 로고    scopus 로고
    • Gaussian process classification and active learning with multiple annotators
    • F. Rodrigues, F. Pereira, and B. Ribeiro, "Gaussian process classification and active learning with multiple annotators, " in Proc. 31st Int. Conf. Mach. Learn., 2014, pp. 433-441.
    • (2014) Proc. 31st Int. Conf. Mach. Learn. , pp. 433-441
    • Rodrigues, F.1    Pereira, F.2    Ribeiro, B.3
  • 24
    • 79959360995 scopus 로고    scopus 로고
    • Learning from multiple annotators with Gaussian processes
    • P. Groot, A. Birlutiu, and T. Heskes, "Learning from multiple annotators with Gaussian processes, " in Proc. Int. Conf. Artif. Neural Netw., 2011, vol. 6792, pp. 159-164.
    • (2011) Proc. Int. Conf. Artif. Neural Netw , vol.6792 , pp. 159-164
    • Groot, P.1    Birlutiu, A.2    Heskes, T.3
  • 25
    • 80052400610 scopus 로고    scopus 로고
    • Modeling annotator expertise: Learning when everybody knows a bit of something
    • Y. Yan, et al., "Modeling annotator expertise: Learning when everybody knows a bit of something, " J. Mach. Learn. Res., vol. 9, pp. 932-939, 2010.
    • (2010) J. Mach. Learn. Res. , vol.9 , pp. 932-939
    • Yan, Y.1
  • 26
    • 0033225865 scopus 로고    scopus 로고
    • An introduction to variational methods for graphical models
    • M. I. Jordan, Z. Ghahramani, T. Jaakkola, and L. Saul, "An introduction to variational methods for graphical models, " Mach. Learn., vol. 37, no. 2, pp. 183-233, 1999.
    • (1999) Mach. Learn. , vol.37 , Issue.2 , pp. 183-233
    • Jordan, M.I.1    Ghahramani, Z.2    Jaakkola, T.3    Saul, L.4
  • 27
    • 84897492517 scopus 로고    scopus 로고
    • Topic model diagnostics: Assessing domain relevance via topical alignment
    • J. Chuang, S. Gupta, C. Manning, and J. Heer, "Topic model diagnostics: Assessing domain relevance via topical alignment, " in Proc. 30th Int. Conf. Mach. Learn., 2013, pp. 612-620.
    • (2013) Proc. 30th Int. Conf. Mach. Learn. , pp. 612-620
    • Chuang, J.1    Gupta, S.2    Manning, C.3    Heer, J.4
  • 29
    • 0000016172 scopus 로고
    • A stochastic approximation method
    • Sep.
    • H. Robbins and S. Monro, "A stochastic approximation method, " Ann. Math. Statist., vol. 22, no. 3, pp. 400-407, Sep. 1951.
    • (1951) Ann. Math. Statist. , vol.22 , Issue.3 , pp. 400-407
    • Robbins, H.1    Monro, S.2
  • 30
    • 85142688646 scopus 로고
    • NewsWeeder: Learning to filter netnews
    • K. Lang, "NewsWeeder: Learning to filter netnews, " in Proc. Int. Conf. Mach. Learn., 1995, pp. 331-339.
    • (1995) Proc. Int. Conf. Mach. Learn. , pp. 331-339
    • Lang, K.1
  • 32
    • 39749186006 scopus 로고    scopus 로고
    • LabelMe: A database and web-based tool for image annotation
    • B. Russell, A. Torralba, K. Murphy, and W. Freeman, "LabelMe: A database and web-based tool for image annotation, " Int. J. Comput. Vis., vol. 77, no. 1-3, pp. 157-173, 2008.
    • (2008) Int. J. Comput. Vis. , vol.77 , Issue.1-3 , pp. 157-173
    • Russell, B.1    Torralba, A.2    Murphy, K.3    Freeman, W.4
  • 33
    • 0033284915 scopus 로고    scopus 로고
    • Object recognition from local scale-invariant features
    • D. Lowe, "Object recognition from local scale-invariant features, " in Proc. Int. Conf. Comput. Vis., 1999, vol. 2, pp. 1150-1157.
    • (1999) Proc. Int. Conf. Comput. Vis. , vol.2 , pp. 1150-1157
    • Lowe, D.1
  • 36
    • 84859895244 scopus 로고    scopus 로고
    • Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales
    • B. Pang and L. Lee, "Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales, " in Proc. 43rd Annu. Meeting Assoc. Comput. Linguistics, 2005, pp. 115-124.
    • (2005) Proc. 43rd Annu. Meeting Assoc. Comput. Linguistics , pp. 115-124
    • Pang, B.1    Lee, L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.