메뉴 건너뛰기




Volumn 55, Issue 7, 2017, Pages 3909-3921

Total variation regularized reweighted sparse nonnegative matrix factorization for hyperspectral unmixing

Author keywords

Blind unmixing; Hyperspectral image; Nonnegative matrix factorization (NMF); Reweighted sparsity; Total variation (TV)

Indexed keywords

FACTORIZATION; ITERATIVE METHODS;

EID: 85017164196     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2017.2683719     Document Type: Article
Times cited : (226)

References (45)
  • 1
    • 84861772901 scopus 로고    scopus 로고
    • Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches
    • Apr
    • J. M. Bioucas-Dias et al., "Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches," IEEE J. Sel. Topics Appl. Earth Observat. Remote Sens., vol. 5, no. 2, pp. 354-379, Apr. 2012.
    • (2012) IEEE J. Sel. Topics Appl. Earth Observat. Remote Sens. , vol.5 , Issue.2 , pp. 354-379
    • Bioucas-Dias, J.M.1
  • 2
    • 84896388891 scopus 로고    scopus 로고
    • Hyperspectral image restoration using low-rank matrix recovery
    • Aug
    • H. Zhang, W. He, L. Zhang, H. Shen, and Q. Yuan, "Hyperspectral image restoration using low-rank matrix recovery," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 8, pp. 4729-4743, Aug. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.8 , pp. 4729-4743
    • Zhang, H.1    He, W.2    Zhang, L.3    Shen, H.4    Yuan, Q.5
  • 3
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote sensing images with support vector machines
    • Aug
    • F. Melgani and L. Bruzzone, "Classification of hyperspectral remote sensing images with support vector machines," IEEE Trans. Geosci. Remote Sens., vol. 42, no. 8, pp. 1778-1790, Aug. 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , Issue.8 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 6
    • 84905922593 scopus 로고    scopus 로고
    • A nonlocal weighted joint sparse representation classification method for hyperspectral imagery
    • Jun.
    • H. Zhang, J. Li, Y. Huang, and L. Zhang, "A nonlocal weighted joint sparse representation classification method for hyperspectral imagery," IEEE J. Sel. Topics Appl. Earth Observat. Remote Sens., vol. 7, no. 6, pp. 2056-2065, Jun. 2014.
    • (2014) IEEE J. Sel. Topics Appl. Earth Observat. Remote Sens. , vol.7 , Issue.6 , pp. 2056-2065
    • Zhang, H.1    Li, J.2    Huang, Y.3    Zhang, L.4
  • 7
    • 84959892702 scopus 로고    scopus 로고
    • Spectral-spatial sparse subspace clustering for hyperspectral remote sensing images
    • Jun.
    • H. Zhang, H. Zhai, L. Zhang, and P. Li, "Spectral-spatial sparse subspace clustering for hyperspectral remote sensing images," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 6, pp. 3672-3684, Jun. 2016.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.6 , pp. 3672-3684
    • Zhang, H.1    Zhai, H.2    Zhang, L.3    Li, P.4
  • 8
    • 85032751209 scopus 로고    scopus 로고
    • A signal processing perspective on hyperspectral unmixing: Insights from remote sensing
    • Jan
    • W.-K. Ma et al., "A signal processing perspective on hyperspectral unmixing: Insights from remote sensing," IEEE Signal Process. Mag., vol. 31, no. 1, pp. 67-81, Jan. 2014.
    • (2014) IEEE Signal Process. Mag. , vol.31 , Issue.1 , pp. 67-81
    • Ma, W.-K.1
  • 9
    • 84906782665 scopus 로고    scopus 로고
    • An abundance characteristicbased independent component analysis for hyperspectral unmixing
    • Jan
    • N. Wang, B. Du, L. Zhang, and L. Zhang, "An abundance characteristicbased independent component analysis for hyperspectral unmixing," IEEE Trans. Geosci. Remote Sens., vol. 53, no. 1, pp. 416-428, Jan. 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.1 , pp. 416-428
    • Wang, N.1    Du, B.2    Zhang, L.3    Zhang, L.4
  • 12
    • 16444373735 scopus 로고    scopus 로고
    • Vertex component analysis: A fast algorithm to unmix hyperspectral data
    • Apr
    • J. M. P. Nascimento and J. M. Bioucas-Dias, "Vertex component analysis: A fast algorithm to unmix hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 4, pp. 898-910, Apr. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , Issue.4 , pp. 898-910
    • Nascimento, J.M.P.1    Bioucas-Dias, J.M.2
  • 13
    • 70350488509 scopus 로고    scopus 로고
    • A convex analysisbased minimum-volume enclosing simplex algorithm for hyperspectral unmixing
    • Nov
    • T.-H. Chan, C.-Y. Chi, Y.-M. Huang, and W.-K. Ma, "A convex analysisbased minimum-volume enclosing simplex algorithm for hyperspectral unmixing," IEEE Trans. Signal Process., vol. 57, no. 11, pp. 4418-4432, Nov. 2009.
    • (2009) IEEE Trans. Signal Process. , vol.57 , Issue.11 , pp. 4418-4432
    • Chan, T.-H.1    Chi, C.-Y.2    Huang, Y.-M.3    Ma, W.-K.4
  • 14
    • 80455174042 scopus 로고    scopus 로고
    • A simplex volume maximization framework for hyperspectral endmember extraction
    • Nov
    • T.-H. Chan, W.-K. Ma, A. Ambikapathi, and C.-Y. Chi, "A simplex volume maximization framework for hyperspectral endmember extraction," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 11, pp. 4177-4193, Nov. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.11 , pp. 4177-4193
    • Chan, T.-H.1    Ma, W.-K.2    Ambikapathi, A.3    Chi, C.-Y.4
  • 15
    • 0035273728 scopus 로고    scopus 로고
    • Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery
    • Mar.
    • D. C. Heinz and C.-I. Chang, "Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 39, no. 3, pp. 529-545, Mar. 2001.
    • (2001) IEEE Trans. Geosci. Remote Sens. , vol.39 , Issue.3 , pp. 529-545
    • Heinz, D.C.1    Chang, C.-I.2
  • 17
    • 84869498082 scopus 로고    scopus 로고
    • Total variation spatial regularization for sparse hyperspectral unmixing
    • Nov
    • M.-D. Iordache, J. Bioucas-Dias, and A. Plaza, "Total variation spatial regularization for sparse hyperspectral unmixing," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 11, pp. 4484-4502, Nov. 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.11 , pp. 4484-4502
    • Iordache, M.-D.1    Saavedra-Rosas, J.2    Plaza, A.3
  • 19
    • 84896313926 scopus 로고    scopus 로고
    • Linear spectral mixing model for identifying potential missing endmembers in spectral mixture analysis
    • May
    • D. C. Zanotta, V. Haertel, Y. E. Shimabukuro, and C. D. Renno, "Linear spectral mixing model for identifying potential missing endmembers in spectral mixture analysis," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 5, pp. 3005-3012, May 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.5 , pp. 3005-3012
    • Zanotta, D.C.1    Haertel, V.2    Shimabukuro, Y.E.3    Renno, C.D.4
  • 20
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by nonnegative matrix factorization
    • Oct
    • D. D. Lee and H. S. Seung, "Learning the parts of objects by nonnegative matrix factorization," Nature, vol. 401, no. 6755, pp. 788-791, Oct. 1999.
    • (1999) Nature , vol.401 , Issue.6755 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 21
    • 23744456750 scopus 로고    scopus 로고
    • When does non-negative matrix factorization give a correct decomposition into parts?
    • D. Donoho and V. Stodden, "When does non-negative matrix factorization give a correct decomposition into parts?" in Proc. Adv. Neural Inf. Process. Syst., 2003, pp. 1141-1148.
    • (2003) Proc. Adv. Neural Inf. Process. Syst , pp. 1141-1148
    • Donoho, D.1    Stodden, V.2
  • 22
    • 33646682646 scopus 로고    scopus 로고
    • Nonnegative matrix factorization for spectral data analysis
    • V. P. Pauca, J. Piper, and R. J. Plemmons, "Nonnegative matrix factorization for spectral data analysis," Linear Algebra Appl., vol. 416, no. 1, pp. 29-47, 2006.
    • (2006) Linear Algebra Appl. , vol.416 , Issue.1 , pp. 29-47
    • Pauca, V.P.1    Piper, J.2    Plemmons, R.J.3
  • 23
    • 33847733865 scopus 로고    scopus 로고
    • Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization
    • Mar.
    • L. Miao and H. Qi, "Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 3, pp. 765-777, Mar. 2007.
    • (2007) IEEE Trans. Geosci. Remote Sens. , vol.45 , Issue.3 , pp. 765-777
    • Miao, L.1    Qi, H.2
  • 24
    • 77952582975 scopus 로고    scopus 로고
    • Minimum dispersion constrained nonnegative matrix factorization to unmix hyperspectral data
    • Jun.
    • A. Huck, M. Guillaume, and J. Blanc-Talon, "Minimum dispersion constrained nonnegative matrix factorization to unmix hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 6, pp. 2590-2602, Jun. 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.6 , pp. 2590-2602
    • Huck, A.1    Guillaume, M.2    Blanc-Talon, J.3
  • 25
    • 84877927996 scopus 로고    scopus 로고
    • An endmember dissimilarity constrained non-negative matrix factorization method for hyperspectral unmixing
    • Apr
    • N. Wang, B. Du, and L. Zhang, "An endmember dissimilarity constrained non-negative matrix factorization method for hyperspectral unmixing," IEEE J. Sel. Topics Appl. Earth Observat. Remote Sens., vol. 6, no. 2, pp. 554-569, Apr. 2013.
    • (2013) IEEE J. Sel. Topics Appl. Earth Observat. Remote Sens. , vol.6 , Issue.2 , pp. 554-569
    • Wang, N.1    Du, B.2    Zhang, L.3
  • 26
    • 58149131252 scopus 로고    scopus 로고
    • Constrained nonnegative matrix factorization for hyperspectral unmixing
    • Jan
    • S. Jia and Y. Qian, "Constrained nonnegative matrix factorization for hyperspectral unmixing," IEEE Trans. Geosci. Remote Sens., vol. 47, no. 1, pp. 161-173, Jan. 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.1 , pp. 161-173
    • Jia, S.1    Qian, Y.2
  • 27
    • 79952957026 scopus 로고    scopus 로고
    • Blind spectral unmixing based on sparse nonnegative matrix factorization
    • Apr
    • Z. Yang, G. Zhou, S. Xie, S. Ding, J.-M. Yang, and J. Zhang, "Blind spectral unmixing based on sparse nonnegative matrix factorization," IEEE Trans. Image Process., vol. 20, no. 4, pp. 1112-1125, Apr. 2011.
    • (2011) IEEE Trans. Image Process. , vol.20 , Issue.4 , pp. 1112-1125
    • Yang, Z.1    Zhou, G.2    Xie, S.3    Ding, S.4    Yang, J.-M.5    Zhang, J.6
  • 28
    • 80455174031 scopus 로고    scopus 로고
    • Hyperspectral unmixing via L1/2 sparsity-constrained nonnegative matrix factorization
    • Nov
    • Y. Qian, S. Jia, J. Zhou, and A. Robles-Kelly, "Hyperspectral unmixing via L1/2 sparsity-constrained nonnegative matrix factorization," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 11, pp. 4282-4297, Nov. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.11 , pp. 4282-4297
    • Qian, Y.1    Jia, S.2    Zhou, J.3    Robles-Kelly, A.4
  • 30
    • 85027952549 scopus 로고    scopus 로고
    • An approach based on constrained nonnegative matrix factorization to unmix hyperspectral data
    • Feb
    • X. Liu, W. Xia, B. Wang, and L. Zhang, "An approach based on constrained nonnegative matrix factorization to unmix hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 2, pp. 757-772, Feb. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.2 , pp. 757-772
    • Liu, X.1    Xia, W.2    Wang, B.3    Zhang, L.4
  • 33
    • 84885021995 scopus 로고    scopus 로고
    • Manifold regularized sparse NMF for hyperspectral unmixing
    • May
    • X. Lu, H. Wu, Y. Yuan, P. Yan, and X. Li, "Manifold regularized sparse NMF for hyperspectral unmixing," IEEE Trans. Geosci. Remote Sens., vol. 51, no. 5, pp. 2815-2826, May 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , Issue.5 , pp. 2815-2826
    • Lu, X.1    Wu, H.2    Yuan, Y.3    Yan, P.4    Li, X.5
  • 34
    • 57349174008 scopus 로고    scopus 로고
    • Enhancing sparsity by reweighted l1 minimization
    • Dec
    • E. J. Candes, M. B. Wakin, and S. P. Boyd, "Enhancing sparsity by reweighted l1 minimization," J. Fourier Anal. Appl., vol. 14, no. 5, pp. 877-905, Dec. 2008.
    • (2008) J. Fourier Anal. Appl. , vol.14 , Issue.5 , pp. 877-905
    • Candes, E.J.1    Wakin, M.B.2    Boyd, S.P.3
  • 35
    • 84977998307 scopus 로고    scopus 로고
    • Weighted sparse graph based dimensionality reduction for hyperspectral images
    • May
    • W. He, H. Zhang, L. Zhang, W. Philips, and W. Liao, "Weighted sparse graph based dimensionality reduction for hyperspectral images," IEEE Geosci. Remote Sens. Lett., vol. 13, no. 5, pp. 686-690, May 2016.
    • (2016) IEEE Geosci. Remote Sens. Lett. , vol.13 , Issue.5 , pp. 686-690
    • He, W.1    Zhang, H.2    Zhang, L.3    Philips, W.4    Liao, W.5
  • 36
    • 84947035634 scopus 로고    scopus 로고
    • Reweighted sparse regression for hyperspectral unmixing
    • Jan
    • C. Y. Zheng, H. Li, Q. Wang, and C. L. P. Chen, "Reweighted sparse regression for hyperspectral unmixing," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 1, pp. 479-488, Jan. 2016.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.1 , pp. 479-488
    • Zheng, C.Y.1    Li, H.2    Wang, Q.3    Chen, C.L.P.4
  • 37
    • 85027932384 scopus 로고    scopus 로고
    • Hyperspectral image denoising via noise-Adjusted iterative low-rank matrix approximation
    • Jun.
    • W. He, H. Zhang, L. Zhang, and H. Shen, "Hyperspectral image denoising via noise-Adjusted iterative low-rank matrix approximation," IEEE J. Sel. Topics Appl. Earth Observat. Remote Sens., vol. 8, no. 6, pp. 3050-3061, Jun. 2015.
    • (2015) IEEE J. Sel. Topics Appl. Earth Observat. Remote Sens. , vol.8 , Issue.6 , pp. 3050-3061
    • He, W.1    Zhang, H.2    Zhang, L.3    Shen, H.4
  • 38
    • 84861723546 scopus 로고    scopus 로고
    • Spatial-spectral preprocessing prior to endmember identification and unmixing of remotely sensed hyperspectral data
    • Apr
    • G. Martín and A. Plaza, "Spatial-spectral preprocessing prior to endmember identification and unmixing of remotely sensed hyperspectral data," IEEE J. Sel. Topics Appl. Earth Observat. Remote Sens., vol. 5, no. 2, pp. 380-395, Apr. 2012.
    • (2012) IEEE J. Sel. Topics Appl. Earth Observat. Remote Sens. , vol.5 , Issue.2 , pp. 380-395
    • Martín, G.1    Plaza, A.2
  • 39
    • 44049111982 scopus 로고
    • Nonlinear total variation based noise removal algorithms
    • L. I. Rudin, S. Osher, and E. Fatemi, "Nonlinear total variation based noise removal algorithms," Phys. D, Nonlinear Phenomena, vol. 60, nos. 1-4, pp. 259-268, 1992.
    • (1992) Phys. D, Nonlinear Phenomena , vol.60 , Issue.1-4 , pp. 259-268
    • Rudin, L.I.1    Osher, S.2    Fatemi, E.3
  • 40
    • 70350593691 scopus 로고    scopus 로고
    • Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems
    • Nov
    • A. Beck and M. Teboulle, "Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems," IEEE Trans. Image Process., vol. 18, no. 11, pp. 2419-2434, Nov. 2009.
    • (2009) IEEE Trans. Image Process. , vol.18 , Issue.11 , pp. 2419-2434
    • Beck, A.1    Teboulle, M.2
  • 41
    • 84947485589 scopus 로고    scopus 로고
    • Total-variation-regularized low-rank matrix factorization for hyperspectral image restoration
    • Jan
    • W. He, H. Zhang, L. Zhang, and H. Shen, "Total-variation-regularized low-rank matrix factorization for hyperspectral image restoration," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 1, pp. 178-188, Jan. 2016.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.1 , pp. 178-188
    • He, W.1    Zhang, H.2    Zhang, L.3    Shen, H.4
  • 44
    • 84958678017 scopus 로고    scopus 로고
    • Sparsity-regularized robust nonnegative matrix factorization for hyperspectral unmixing
    • Sep
    • W. He, H. Zhang, and L. Zhang, "Sparsity-regularized robust nonnegative matrix factorization for hyperspectral unmixing," IEEE J. Sel. Topics Appl. Earth Observat. Remote Sens., vol. 9, no. 9, pp. 4267-4279, Sep. 2016.
    • (2016) IEEE J. Sel. Topics Appl. Earth Observat. Remote Sens. , vol.9 , Issue.9 , pp. 4267-4279
    • He, W.1    Zhang, H.2    Zhang, L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.