메뉴 건너뛰기




Volumn 19, Issue 1, 2018, Pages

UMI-count modeling and differential expression analysis for single-cell RNA sequencing

Author keywords

Differential expression analysis; Negative binomial; Unique molecular identifier

Indexed keywords

ARTICLE; GENE EXPRESSION; HUMAN; RNA SEQUENCE; ALGORITHM; GENE EXPRESSION PROFILING; IMMUNOLOGICAL MEMORY; IMMUNOLOGY; METABOLISM; PROCEDURES; SEQUENCE ANALYSIS; SINGLE CELL ANALYSIS; STATISTICAL MODEL; T LYMPHOCYTE; TUMOR CELL LINE;

EID: 85047931125     PISSN: 14747596     EISSN: 1474760X     Source Type: Journal    
DOI: 10.1186/s13059-018-1438-9     Document Type: Article
Times cited : (77)

References (50)
  • 1
    • 84964545059 scopus 로고    scopus 로고
    • Single-cell transcriptome sequencing: recent advances and remaining challenges
    • 5(F1000 Faculty Rev)
    • Liu S, Trapnell C. Single-cell transcriptome sequencing: recent advances and remaining challenges. 2016;5(F1000 Faculty Rev):182. https://doi.org/10.12688/f1000research.7223.1.
    • (2016) , pp. 182
    • Liu, S.1    Trapnell, C.2
  • 3
    • 84901831004 scopus 로고    scopus 로고
    • Validation of noise models for single-cell transcriptomics
    • Grun D, Kester L, van Oudenaarden A. Validation of noise models for single-cell transcriptomics. Nat Methods. 2014;11:637-40.
    • (2014) Nat Methods , vol.11 , pp. 637-640
    • Grun, D.1    Kester, L.2    van Oudenaarden, A.3
  • 4
    • 84895562012 scopus 로고    scopus 로고
    • From single-cell to cell-pool transcriptomes: stochasticity in gene expression and RNA splicing
    • Marinov GK, Williams BA, McCue K, Schroth GP, Gertz J, Myers RM, et al. From single-cell to cell-pool transcriptomes: stochasticity in gene expression and RNA splicing. Genome Res. 2014;24:496-510.
    • (2014) Genome Res , vol.24 , pp. 496-510
    • Marinov, G.K.1    Williams, B.A.2    McCue, K.3    Schroth, G.P.4    Gertz, J.5    Myers, R.M.6
  • 5
    • 84903574951 scopus 로고    scopus 로고
    • Bayesian approach to single-cell differential expression analysis
    • Kharchenko PV, Silberstein L, Scadden DT. Bayesian approach to single-cell differential expression analysis. Nat Methods. 2014;11:740-2.
    • (2014) Nat Methods , vol.11 , pp. 740-742
    • Kharchenko, P.V.1    Silberstein, L.2    Scadden, D.T.3
  • 6
    • 84929661801 scopus 로고    scopus 로고
    • Advances and applications of single-cell sequencing technologies
    • Wang Y, Navin NE. Advances and applications of single-cell sequencing technologies. Mol Cell. 2015;58:598-609.
    • (2015) Mol Cell , vol.58 , pp. 598-609
    • Wang, Y.1    Navin, N.E.2
  • 7
    • 84929684998 scopus 로고    scopus 로고
    • Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells
    • Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V, et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell. 2015;161:1187-201.
    • (2015) Cell , vol.161 , pp. 1187-1201
    • Klein, A.M.1    Mazutis, L.2    Akartuna, I.3    Tallapragada, N.4    Veres, A.5    Li, V.6
  • 9
    • 84951574149 scopus 로고    scopus 로고
    • MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data
    • Finak G, McDavid A, Yajima M, Deng J, Gersuk V, Shalek AK, et al. MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol. 2015;16:278.
    • (2015) Genome Biol , vol.16 , pp. 278
    • Finak, G.1    McDavid, A.2    Yajima, M.3    Deng, J.4    Gersuk, V.5    Shalek, A.K.6
  • 10
    • 84962658087 scopus 로고    scopus 로고
    • Design and computational analysis of single-cell RNA-sequencing experiments
    • Bacher R, Kendziorski C. Design and computational analysis of single-cell RNA-sequencing experiments. Genome Biol. 2016;17:63.
    • (2016) Genome Biol , vol.17 , pp. 63
    • Bacher, R.1    Kendziorski, C.2
  • 11
    • 85010878111 scopus 로고    scopus 로고
    • Single-cell mRNA quantification and differential analysis with Census
    • Qiu X, Hill A, Packer J, Lin D, Ma YA, Trapnell C. Single-cell mRNA quantification and differential analysis with Census. Nat Methods. 2017;14:309-15.
    • (2017) Nat Methods , vol.14 , pp. 309-315
    • Qiu, X.1    Hill, A.2    Packer, J.3    Lin, D.4    Ma, Y.A.5    Trapnell, C.6
  • 13
    • 85043451987 scopus 로고    scopus 로고
    • powsimR: power analysis for bulk and single cell RNA-seq experiments
    • Vieth B, Ziegenhain C, Parekh S, Enard W, Hellmann I. powsimR: power analysis for bulk and single cell RNA-seq experiments. Bioinformatics. 2017;33:3486-8.
    • (2017) Bioinformatics , vol.33 , pp. 3486-3488
    • Vieth, B.1    Ziegenhain, C.2    Parekh, S.3    Enard, W.4    Hellmann, I.5
  • 14
    • 84994860357 scopus 로고    scopus 로고
    • Revealing the vectors of cellular identity with single-cell genomics
    • Wagner A, Regev A, Yosef N. Revealing the vectors of cellular identity with single-cell genomics. Nat Biotechnol. 2016;34:1145-60.
    • (2016) Nat Biotechnol , vol.34 , pp. 1145-1160
    • Wagner, A.1    Regev, A.2    Yosef, N.3
  • 15
    • 84955706109 scopus 로고    scopus 로고
    • ZIFA: Dimensionality reduction for zero-inflated single-cell gene expression analysis
    • Pierson E, Yau C. ZIFA: Dimensionality reduction for zero-inflated single-cell gene expression analysis. Genome Biol. 2015;16:241.
    • (2015) Genome Biol , vol.16 , pp. 241
    • Pierson, E.1    Yau, C.2
  • 16
    • 85021816036 scopus 로고    scopus 로고
    • Normalizing single-cell RNA sequencing data: challenges and opportunities
    • Vallejos CA, Risso D, Scialdone A, Dudoit S, Marioni JC. Normalizing single-cell RNA sequencing data: challenges and opportunities. Nat Methods. 2017;14:565-71.
    • (2017) Nat Methods , vol.14 , pp. 565-571
    • Vallejos, C.A.1    Risso, D.2    Scialdone, A.3    Dudoit, S.4    Marioni, J.C.5
  • 17
    • 85054726691 scopus 로고    scopus 로고
    • Missing data and technical variability in single-cell RNA-sequencing experiments
    • Hicks SC, Townes FW, Teng M, Irizarry RA. Missing data and technical variability in single-cell RNA-sequencing experiments. Biostatistics. 2017. https://doi.org/10.1093/biostatistics/kxx053.
    • (2017) Biostatistics
    • Hicks, S.C.1    Townes, F.W.2    Teng, M.3    Irizarry, R.A.4
  • 18
    • 85037359221 scopus 로고    scopus 로고
    • Comparison of methods to detect differentially expressed genes between single-cell populations
    • Jaakkola MK, Seyednasrollah F, Mehmood A, Elo LL. Comparison of methods to detect differentially expressed genes between single-cell populations. Brief Bioinform. 2017;18(5):735-43.
    • (2017) Brief Bioinform , vol.18 , Issue.5 , pp. 735-743
    • Jaakkola, M.K.1    Seyednasrollah, F.2    Mehmood, A.3    Elo, L.L.4
  • 20
    • 84941201582 scopus 로고    scopus 로고
    • Single-cell messenger RNA sequencing reveals rare intestinal cell types
    • Grun D, Lyubimova A, Kester L, Wiebrands K, Basak O, Sasaki N, et al. Single-cell messenger RNA sequencing reveals rare intestinal cell types. Nature. 2015;525:251-5.
    • (2015) Nature , vol.525 , pp. 251-255
    • Grun, D.1    Lyubimova, A.2    Kester, L.3    Wiebrands, K.4    Basak, O.5    Sasaki, N.6
  • 21
    • 84893905629 scopus 로고    scopus 로고
    • Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types
    • Jaitin DA, Kenigsberg E, Keren-Shaul H, Elefant N, Paul F, Zaretsky I, et al. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science. 2014;343:776-9.
    • (2014) Science , vol.343 , pp. 776-779
    • Jaitin, D.A.1    Kenigsberg, E.2    Keren-Shaul, H.3    Elefant, N.4    Paul, F.5    Zaretsky, I.6
  • 22
    • 79959403670 scopus 로고    scopus 로고
    • Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq
    • Islam S, Kjallquist U, Moliner A, Zajac P, Fan JB, Lonnerberg P, et al. Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. Genome Res. 2011;21:1160-7.
    • (2011) Genome Res , vol.21 , pp. 1160-1167
    • Islam, S.1    Kjallquist, U.2    Moliner, A.3    Zajac, P.4    Fan, J.B.5    Lonnerberg, P.6
  • 25
    • 84964556059 scopus 로고    scopus 로고
    • Pooling across cells to normalize single-cell RNA sequencing data with many zero counts
    • Lun AT, Bach K, Marioni JC. Pooling across cells to normalize single-cell RNA sequencing data with many zero counts. Genome Biol. 2016;17:75.
    • (2016) Genome Biol , vol.17 , pp. 75
    • Lun, A.T.1    Bach, K.2    Marioni, J.C.3
  • 27
    • 85037359221 scopus 로고    scopus 로고
    • Comparison of methods to detect differentially expressed genes between single-cell populations
    • Jaakkola MK, Seyednasrollah F, Mehmood A, Elo LL. Comparison of methods to detect differentially expressed genes between single-cell populations. Brief Bioinform. 2017;18:735-43.
    • (2017) Brief Bioinform , vol.18 , pp. 735-743
    • Jaakkola, M.K.1    Seyednasrollah, F.2    Mehmood, A.3    Elo, L.L.4
  • 29
    • 84858797295 scopus 로고    scopus 로고
    • The molecular basis of the memory T cell response: differential gene expression and its epigenetic regulation
    • Weng NP, Araki Y, Subedi K. The molecular basis of the memory T cell response: differential gene expression and its epigenetic regulation. Nat Rev Immunol. 2012;12:306-15.
    • (2012) Nat Rev Immunol , vol.12 , pp. 306-315
    • Weng, N.P.1    Araki, Y.2    Subedi, K.3
  • 30
    • 84890310834 scopus 로고    scopus 로고
    • A model based criterion for gene expression calls using RNA-seq data
    • Wagner GP, Kin K, Lynch VJ. A model based criterion for gene expression calls using RNA-seq data. Theory Biosci. 2013;132:159-64.
    • (2013) Theory Biosci , vol.132 , pp. 159-164
    • Wagner, G.P.1    Kin, K.2    Lynch, V.J.3
  • 31
    • 33846239456 scopus 로고    scopus 로고
    • Beyond tumorigenesis: cancer stem cells in metastasis
    • Li F, Tiede B, Massague J, Kang Y. Beyond tumorigenesis: cancer stem cells in metastasis. Cell Res. 2007;17:3-14.
    • (2007) Cell Res , vol.17 , pp. 3-14
    • Li, F.1    Tiede, B.2    Massague, J.3    Kang, Y.4
  • 32
    • 84940054659 scopus 로고    scopus 로고
    • Concise review: emerging role of CD44 in cancer stem cells: a promising biomarker and therapeutic target
    • Yan Y, Zuo X, Wei D. Concise review: emerging role of CD44 in cancer stem cells: a promising biomarker and therapeutic target. Stem Cells Transl Med. 2015;4:1033-43.
    • (2015) Stem Cells Transl Med , vol.4 , pp. 1033-1043
    • Yan, Y.1    Zuo, X.2    Wei, D.3
  • 33
    • 84899491962 scopus 로고    scopus 로고
    • Myogenin, AP2beta, NOS-1, and HMGA2 are surrogate markers of fusion status in rhabdomyosarcoma: a report from the Soft Tissue Sarcoma Committee of the Children's Oncology Group
    • Rudzinski ER, Anderson JR, Lyden ER, Bridge JA, Barr FG, Gastier-Foster JM, et al. Myogenin, AP2beta, NOS-1, and HMGA2 are surrogate markers of fusion status in rhabdomyosarcoma: a report from the Soft Tissue Sarcoma Committee of the Children's Oncology Group. Am J Surg Pathol. 2014;38:654-9.
    • (2014) Am J Surg Pathol , vol.38 , pp. 654-659
    • Rudzinski, E.R.1    Anderson, J.R.2    Lyden, E.R.3    Bridge, J.A.4    Barr, F.G.5    Gastier-Foster, J.M.6
  • 36
    • 75249087100 scopus 로고    scopus 로고
    • edgeR: a Bioconductor package for differential expression analysis of digital gene expression data
    • Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139-40.
    • (2010) Bioinformatics , vol.26 , pp. 139-140
    • Robinson, M.D.1    McCarthy, D.J.2    Smyth, G.K.3
  • 37
    • 77958471357 scopus 로고    scopus 로고
    • Differential expression analysis for sequence count data
    • Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11:R106.
    • (2010) Genome Biol , vol.11 , pp. R106
    • Anders, S.1    Huber, W.2
  • 38
    • 33745595610 scopus 로고    scopus 로고
    • The unequal variance t-test is an underused alternative to Student's t-test and the Mann-Whitney U test
    • Ruxton GD. The unequal variance t-test is an underused alternative to Student's t-test and the Mann-Whitney U test. Behav Ecol. 2006;17:688-90.
    • (2006) Behav Ecol , vol.17 , pp. 688-690
    • Ruxton, G.D.1
  • 39
    • 79951770646 scopus 로고    scopus 로고
    • The two-sample t test: pre-testing its assumptions does not pay off
    • Rasch D, Kubinger KD, Moder K. The two-sample t test: pre-testing its assumptions does not pay off. Stat Pap. 2011;52:219-31.
    • (2011) Stat Pap , vol.52 , pp. 219-231
    • Rasch, D.1    Kubinger, K.D.2    Moder, K.3
  • 40
    • 55449083966 scopus 로고    scopus 로고
    • Score tests for extra-zero models in zero-inflated negative binomial models
    • Jansakul N, Hinde J. Score tests for extra-zero models in zero-inflated negative binomial models. Commun Stat Simul Comput. 2009;38:92-108.
    • (2009) Commun Stat Simul Comput , vol.38 , pp. 92-108
    • Jansakul, N.1    Hinde, J.2
  • 42
    • 0001677717 scopus 로고
    • Controlling the false discovery rate - a practical and powerful approach to multiple testing
    • Benjamini Y, Hochberg Y. Controlling the false discovery rate - a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol. 1995;57:289-300.
    • (1995) J R Stat Soc Ser B Methodol , vol.57 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2
  • 45
    • 84925685098 scopus 로고    scopus 로고
    • fitdistrplus: An R Package for fitting distributions
    • Delignette-Muller ML, Dutang C. fitdistrplus: An R Package for fitting distributions. J Stat Softw. 2015;64:1-34.
    • (2015) J Stat Softw , vol.64 , pp. 1-34
    • Delignette-Muller, M.L.1    Dutang, C.2
  • 46
    • 84928987900 scopus 로고    scopus 로고
    • HTSeq--a Python framework to work with high-throughput sequencing data
    • Anders S, Pyl PT, Huber W. HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31:166-9.
    • (2015) Bioinformatics , vol.31 , pp. 166-169
    • Anders, S.1    Pyl, P.T.2    Huber, W.3
  • 47
    • 85047961831 scopus 로고    scopus 로고
    • UMI-count modeling and differential expression analysis for single cell RNA sequencing
    • Datasets. Gene Expression Omnibus
    • Chen W, Li Y, Easton J, Finkelstein D, Wu G, Chen X. UMI-count modeling and differential expression analysis for single cell RNA sequencing. Datasets. Gene Expression Omnibus. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE113660.
    • Chen, W.1    Li, Y.2    Easton, J.3    Finkelstein, D.4    Wu, G.5    Chen, X.6
  • 48
    • 85047961831 scopus 로고    scopus 로고
    • UMI-count modeling and differential expression analysis for single cell RNA sequencing
    • Bitbucket
    • Chen W, Li Y, Easton J, Finkelstein D, Wu G, Chen X. UMI-count modeling and differential expression analysis for single cell RNA sequencing. Bitbucket. https://bitbucket.org/Wenan/nbid.
    • Chen, W.1    Li, Y.2    Easton, J.3    Finkelstein, D.4    Wu, G.5    Chen, X.6
  • 49
    • 85047961831 scopus 로고    scopus 로고
    • UMI-count modeling and differential expression analysis for single cell RNA sequencing
    • zenodo
    • Chen W, Li Y, Easton J, Finkelstein D, Wu G, Chen X. UMI-count modeling and differential expression analysis for single cell RNA sequencing. zenodo. https://doi.org/10.5281/zenodo.1225670.
    • Chen, W.1    Li, Y.2    Easton, J.3    Finkelstein, D.4    Wu, G.5    Chen, X.6
  • 50
    • 85047961831 scopus 로고    scopus 로고
    • UMI-count modeling and differential expression analysis for single cell RNA sequencing
    • Bitbucket
    • Chen W, Li Y, Easton J, Finkelstein D, Wu G, Chen X. UMI-count modeling and differential expression analysis for single cell RNA sequencing. Bitbucket. https://bitbucket.org/Wenan/scrna_qc_de.
    • Chen, W.1    Li, Y.2    Easton, J.3    Finkelstein, D.4    Wu, G.5    Chen, X.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.