-
1
-
-
84964545059
-
Single-cell transcriptome sequencing: recent advances and remaining challenges
-
5(F1000 Faculty Rev)
-
Liu S, Trapnell C. Single-cell transcriptome sequencing: recent advances and remaining challenges. 2016;5(F1000 Faculty Rev):182. https://doi.org/10.12688/f1000research.7223.1.
-
(2016)
, pp. 182
-
-
Liu, S.1
Trapnell, C.2
-
2
-
-
85014524493
-
Power analysis of single-cell RNA-sequencing experiments
-
Svensson V, Natarajan KN, Ly LH, Miragaia RJ, Labalette C, Macaulay IC, et al. Power analysis of single-cell RNA-sequencing experiments. Nat Methods. 2017;14:381-7.
-
(2017)
Nat Methods
, vol.14
, pp. 381-387
-
-
Svensson, V.1
Natarajan, K.N.2
Ly, L.H.3
Miragaia, R.J.4
Labalette, C.5
Macaulay, I.C.6
-
3
-
-
84901831004
-
Validation of noise models for single-cell transcriptomics
-
Grun D, Kester L, van Oudenaarden A. Validation of noise models for single-cell transcriptomics. Nat Methods. 2014;11:637-40.
-
(2014)
Nat Methods
, vol.11
, pp. 637-640
-
-
Grun, D.1
Kester, L.2
van Oudenaarden, A.3
-
4
-
-
84895562012
-
From single-cell to cell-pool transcriptomes: stochasticity in gene expression and RNA splicing
-
Marinov GK, Williams BA, McCue K, Schroth GP, Gertz J, Myers RM, et al. From single-cell to cell-pool transcriptomes: stochasticity in gene expression and RNA splicing. Genome Res. 2014;24:496-510.
-
(2014)
Genome Res
, vol.24
, pp. 496-510
-
-
Marinov, G.K.1
Williams, B.A.2
McCue, K.3
Schroth, G.P.4
Gertz, J.5
Myers, R.M.6
-
5
-
-
84903574951
-
Bayesian approach to single-cell differential expression analysis
-
Kharchenko PV, Silberstein L, Scadden DT. Bayesian approach to single-cell differential expression analysis. Nat Methods. 2014;11:740-2.
-
(2014)
Nat Methods
, vol.11
, pp. 740-742
-
-
Kharchenko, P.V.1
Silberstein, L.2
Scadden, D.T.3
-
6
-
-
84929661801
-
Advances and applications of single-cell sequencing technologies
-
Wang Y, Navin NE. Advances and applications of single-cell sequencing technologies. Mol Cell. 2015;58:598-609.
-
(2015)
Mol Cell
, vol.58
, pp. 598-609
-
-
Wang, Y.1
Navin, N.E.2
-
7
-
-
84929684998
-
Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells
-
Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V, et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell. 2015;161:1187-201.
-
(2015)
Cell
, vol.161
, pp. 1187-1201
-
-
Klein, A.M.1
Mazutis, L.2
Akartuna, I.3
Tallapragada, N.4
Veres, A.5
Li, V.6
-
8
-
-
85009446777
-
Massively parallel digital transcriptional profiling of single cells
-
Zheng GX, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, et al. Massively parallel digital transcriptional profiling of single cells. Nat Commun. 2017;8:14049.
-
(2017)
Nat Commun
, vol.8
, pp. 14049
-
-
Zheng, G.X.1
Terry, J.M.2
Belgrader, P.3
Ryvkin, P.4
Bent, Z.W.5
Wilson, R.6
-
9
-
-
84951574149
-
MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data
-
Finak G, McDavid A, Yajima M, Deng J, Gersuk V, Shalek AK, et al. MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol. 2015;16:278.
-
(2015)
Genome Biol
, vol.16
, pp. 278
-
-
Finak, G.1
McDavid, A.2
Yajima, M.3
Deng, J.4
Gersuk, V.5
Shalek, A.K.6
-
10
-
-
84962658087
-
Design and computational analysis of single-cell RNA-sequencing experiments
-
Bacher R, Kendziorski C. Design and computational analysis of single-cell RNA-sequencing experiments. Genome Biol. 2016;17:63.
-
(2016)
Genome Biol
, vol.17
, pp. 63
-
-
Bacher, R.1
Kendziorski, C.2
-
11
-
-
85010878111
-
Single-cell mRNA quantification and differential analysis with Census
-
Qiu X, Hill A, Packer J, Lin D, Ma YA, Trapnell C. Single-cell mRNA quantification and differential analysis with Census. Nat Methods. 2017;14:309-15.
-
(2017)
Nat Methods
, vol.14
, pp. 309-315
-
-
Qiu, X.1
Hill, A.2
Packer, J.3
Lin, D.4
Ma, Y.A.5
Trapnell, C.6
-
12
-
-
85013200683
-
Comparative analysis of single-cell RNA sequencing methods
-
Ziegenhain C, Vieth B, Parekh S, Reinius B, Guillaumet-Adkins A, Smets M, et al. Comparative analysis of single-cell RNA sequencing methods. Mol Cell. 2017;65:631-43. e634
-
(2017)
Mol Cell
, vol.65
, pp. 631-643
-
-
Ziegenhain, C.1
Vieth, B.2
Parekh, S.3
Reinius, B.4
Guillaumet-Adkins, A.5
Smets, M.6
-
13
-
-
85043451987
-
powsimR: power analysis for bulk and single cell RNA-seq experiments
-
Vieth B, Ziegenhain C, Parekh S, Enard W, Hellmann I. powsimR: power analysis for bulk and single cell RNA-seq experiments. Bioinformatics. 2017;33:3486-8.
-
(2017)
Bioinformatics
, vol.33
, pp. 3486-3488
-
-
Vieth, B.1
Ziegenhain, C.2
Parekh, S.3
Enard, W.4
Hellmann, I.5
-
14
-
-
84994860357
-
Revealing the vectors of cellular identity with single-cell genomics
-
Wagner A, Regev A, Yosef N. Revealing the vectors of cellular identity with single-cell genomics. Nat Biotechnol. 2016;34:1145-60.
-
(2016)
Nat Biotechnol
, vol.34
, pp. 1145-1160
-
-
Wagner, A.1
Regev, A.2
Yosef, N.3
-
15
-
-
84955706109
-
ZIFA: Dimensionality reduction for zero-inflated single-cell gene expression analysis
-
Pierson E, Yau C. ZIFA: Dimensionality reduction for zero-inflated single-cell gene expression analysis. Genome Biol. 2015;16:241.
-
(2015)
Genome Biol
, vol.16
, pp. 241
-
-
Pierson, E.1
Yau, C.2
-
16
-
-
85021816036
-
Normalizing single-cell RNA sequencing data: challenges and opportunities
-
Vallejos CA, Risso D, Scialdone A, Dudoit S, Marioni JC. Normalizing single-cell RNA sequencing data: challenges and opportunities. Nat Methods. 2017;14:565-71.
-
(2017)
Nat Methods
, vol.14
, pp. 565-571
-
-
Vallejos, C.A.1
Risso, D.2
Scialdone, A.3
Dudoit, S.4
Marioni, J.C.5
-
17
-
-
85054726691
-
Missing data and technical variability in single-cell RNA-sequencing experiments
-
Hicks SC, Townes FW, Teng M, Irizarry RA. Missing data and technical variability in single-cell RNA-sequencing experiments. Biostatistics. 2017. https://doi.org/10.1093/biostatistics/kxx053.
-
(2017)
Biostatistics
-
-
Hicks, S.C.1
Townes, F.W.2
Teng, M.3
Irizarry, R.A.4
-
18
-
-
85037359221
-
Comparison of methods to detect differentially expressed genes between single-cell populations
-
Jaakkola MK, Seyednasrollah F, Mehmood A, Elo LL. Comparison of methods to detect differentially expressed genes between single-cell populations. Brief Bioinform. 2017;18(5):735-43.
-
(2017)
Brief Bioinform
, vol.18
, Issue.5
, pp. 735-743
-
-
Jaakkola, M.K.1
Seyednasrollah, F.2
Mehmood, A.3
Elo, L.L.4
-
19
-
-
84929151009
-
Spatial reconstruction of single-cell gene expression data
-
Satija R, Farrell JA, Gennert D, Schier AF, Regev A. Spatial reconstruction of single-cell gene expression data. Nat Biotechnol. 2015;33:495-502.
-
(2015)
Nat Biotechnol
, vol.33
, pp. 495-502
-
-
Satija, R.1
Farrell, J.A.2
Gennert, D.3
Schier, A.F.4
Regev, A.5
-
20
-
-
84941201582
-
Single-cell messenger RNA sequencing reveals rare intestinal cell types
-
Grun D, Lyubimova A, Kester L, Wiebrands K, Basak O, Sasaki N, et al. Single-cell messenger RNA sequencing reveals rare intestinal cell types. Nature. 2015;525:251-5.
-
(2015)
Nature
, vol.525
, pp. 251-255
-
-
Grun, D.1
Lyubimova, A.2
Kester, L.3
Wiebrands, K.4
Basak, O.5
Sasaki, N.6
-
21
-
-
84893905629
-
Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types
-
Jaitin DA, Kenigsberg E, Keren-Shaul H, Elefant N, Paul F, Zaretsky I, et al. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science. 2014;343:776-9.
-
(2014)
Science
, vol.343
, pp. 776-779
-
-
Jaitin, D.A.1
Kenigsberg, E.2
Keren-Shaul, H.3
Elefant, N.4
Paul, F.5
Zaretsky, I.6
-
22
-
-
79959403670
-
Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq
-
Islam S, Kjallquist U, Moliner A, Zajac P, Fan JB, Lonnerberg P, et al. Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. Genome Res. 2011;21:1160-7.
-
(2011)
Genome Res
, vol.21
, pp. 1160-1167
-
-
Islam, S.1
Kjallquist, U.2
Moliner, A.3
Zajac, P.4
Fan, J.B.5
Lonnerberg, P.6
-
23
-
-
84939772971
-
Computational assignment of cell-cycle stage from single-cell transcriptome data
-
Scialdone A, Natarajan KN, Saraiva LR, Proserpio V, Teichmann SA, Stegle O, et al. Computational assignment of cell-cycle stage from single-cell transcriptome data. Methods. 2015;85:54-61.
-
(2015)
Methods
, vol.85
, pp. 54-61
-
-
Scialdone, A.1
Natarajan, K.N.2
Saraiva, L.R.3
Proserpio, V.4
Teichmann, S.A.5
Stegle, O.6
-
25
-
-
84964556059
-
Pooling across cells to normalize single-cell RNA sequencing data with many zero counts
-
Lun AT, Bach K, Marioni JC. Pooling across cells to normalize single-cell RNA sequencing data with many zero counts. Genome Biol. 2016;17:75.
-
(2016)
Genome Biol
, vol.17
, pp. 75
-
-
Lun, A.T.1
Bach, K.2
Marioni, J.C.3
-
26
-
-
85008384488
-
Batch effects and the effective design of single-cell gene expression studies
-
Tung PY, Blischak JD, Hsiao CJ, Knowles DA, Burnett JE, Pritchard JK, et al. Batch effects and the effective design of single-cell gene expression studies. Sci Rep. 2017;7:39921.
-
(2017)
Sci Rep
, vol.7
, pp. 39921
-
-
Tung, P.Y.1
Blischak, J.D.2
Hsiao, C.J.3
Knowles, D.A.4
Burnett, J.E.5
Pritchard, J.K.6
-
27
-
-
85037359221
-
Comparison of methods to detect differentially expressed genes between single-cell populations
-
Jaakkola MK, Seyednasrollah F, Mehmood A, Elo LL. Comparison of methods to detect differentially expressed genes between single-cell populations. Brief Bioinform. 2017;18:735-43.
-
(2017)
Brief Bioinform
, vol.18
, pp. 735-743
-
-
Jaakkola, M.K.1
Seyednasrollah, F.2
Mehmood, A.3
Elo, L.L.4
-
28
-
-
84902668801
-
Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma
-
Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM, Wakimoto H, et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science. 2014;344:1396-401.
-
(2014)
Science
, vol.344
, pp. 1396-1401
-
-
Patel, A.P.1
Tirosh, I.2
Trombetta, J.J.3
Shalek, A.K.4
Gillespie, S.M.5
Wakimoto, H.6
-
29
-
-
84858797295
-
The molecular basis of the memory T cell response: differential gene expression and its epigenetic regulation
-
Weng NP, Araki Y, Subedi K. The molecular basis of the memory T cell response: differential gene expression and its epigenetic regulation. Nat Rev Immunol. 2012;12:306-15.
-
(2012)
Nat Rev Immunol
, vol.12
, pp. 306-315
-
-
Weng, N.P.1
Araki, Y.2
Subedi, K.3
-
30
-
-
84890310834
-
A model based criterion for gene expression calls using RNA-seq data
-
Wagner GP, Kin K, Lynch VJ. A model based criterion for gene expression calls using RNA-seq data. Theory Biosci. 2013;132:159-64.
-
(2013)
Theory Biosci
, vol.132
, pp. 159-164
-
-
Wagner, G.P.1
Kin, K.2
Lynch, V.J.3
-
31
-
-
33846239456
-
Beyond tumorigenesis: cancer stem cells in metastasis
-
Li F, Tiede B, Massague J, Kang Y. Beyond tumorigenesis: cancer stem cells in metastasis. Cell Res. 2007;17:3-14.
-
(2007)
Cell Res
, vol.17
, pp. 3-14
-
-
Li, F.1
Tiede, B.2
Massague, J.3
Kang, Y.4
-
32
-
-
84940054659
-
Concise review: emerging role of CD44 in cancer stem cells: a promising biomarker and therapeutic target
-
Yan Y, Zuo X, Wei D. Concise review: emerging role of CD44 in cancer stem cells: a promising biomarker and therapeutic target. Stem Cells Transl Med. 2015;4:1033-43.
-
(2015)
Stem Cells Transl Med
, vol.4
, pp. 1033-1043
-
-
Yan, Y.1
Zuo, X.2
Wei, D.3
-
33
-
-
84899491962
-
Myogenin, AP2beta, NOS-1, and HMGA2 are surrogate markers of fusion status in rhabdomyosarcoma: a report from the Soft Tissue Sarcoma Committee of the Children's Oncology Group
-
Rudzinski ER, Anderson JR, Lyden ER, Bridge JA, Barr FG, Gastier-Foster JM, et al. Myogenin, AP2beta, NOS-1, and HMGA2 are surrogate markers of fusion status in rhabdomyosarcoma: a report from the Soft Tissue Sarcoma Committee of the Children's Oncology Group. Am J Surg Pathol. 2014;38:654-9.
-
(2014)
Am J Surg Pathol
, vol.38
, pp. 654-659
-
-
Rudzinski, E.R.1
Anderson, J.R.2
Lyden, E.R.3
Bridge, J.A.4
Barr, F.G.5
Gastier-Foster, J.M.6
-
34
-
-
77956873627
-
Tackling the widespread and critical impact of batch effects in high-throughput data
-
Leek JT, Scharpf RB, Bravo HC, Simcha D, Langmead B, Johnson WE, et al. Tackling the widespread and critical impact of batch effects in high-throughput data. Nat Rev Genet. 2010;11:733-9.
-
(2010)
Nat Rev Genet
, vol.11
, pp. 733-739
-
-
Leek, J.T.1
Scharpf, R.B.2
Bravo, H.C.3
Simcha, D.4
Langmead, B.5
Johnson, W.E.6
-
35
-
-
84955439663
-
A survey of best practices for RNA-seq data analysis
-
Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, McPherson A, et al. A survey of best practices for RNA-seq data analysis. Genome Biol. 2016;17:13.
-
(2016)
Genome Biol
, vol.17
, pp. 13
-
-
Conesa, A.1
Madrigal, P.2
Tarazona, S.3
Gomez-Cabrero, D.4
Cervera, A.5
McPherson, A.6
-
36
-
-
75249087100
-
edgeR: a Bioconductor package for differential expression analysis of digital gene expression data
-
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139-40.
-
(2010)
Bioinformatics
, vol.26
, pp. 139-140
-
-
Robinson, M.D.1
McCarthy, D.J.2
Smyth, G.K.3
-
37
-
-
77958471357
-
Differential expression analysis for sequence count data
-
Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11:R106.
-
(2010)
Genome Biol
, vol.11
, pp. R106
-
-
Anders, S.1
Huber, W.2
-
38
-
-
33745595610
-
The unequal variance t-test is an underused alternative to Student's t-test and the Mann-Whitney U test
-
Ruxton GD. The unequal variance t-test is an underused alternative to Student's t-test and the Mann-Whitney U test. Behav Ecol. 2006;17:688-90.
-
(2006)
Behav Ecol
, vol.17
, pp. 688-690
-
-
Ruxton, G.D.1
-
39
-
-
79951770646
-
The two-sample t test: pre-testing its assumptions does not pay off
-
Rasch D, Kubinger KD, Moder K. The two-sample t test: pre-testing its assumptions does not pay off. Stat Pap. 2011;52:219-31.
-
(2011)
Stat Pap
, vol.52
, pp. 219-231
-
-
Rasch, D.1
Kubinger, K.D.2
Moder, K.3
-
40
-
-
55449083966
-
Score tests for extra-zero models in zero-inflated negative binomial models
-
Jansakul N, Hinde J. Score tests for extra-zero models in zero-inflated negative binomial models. Commun Stat Simul Comput. 2009;38:92-108.
-
(2009)
Commun Stat Simul Comput
, vol.38
, pp. 92-108
-
-
Jansakul, N.1
Hinde, J.2
-
42
-
-
0001677717
-
Controlling the false discovery rate - a practical and powerful approach to multiple testing
-
Benjamini Y, Hochberg Y. Controlling the false discovery rate - a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol. 1995;57:289-300.
-
(1995)
J R Stat Soc Ser B Methodol
, vol.57
, pp. 289-300
-
-
Benjamini, Y.1
Hochberg, Y.2
-
45
-
-
84925685098
-
fitdistrplus: An R Package for fitting distributions
-
Delignette-Muller ML, Dutang C. fitdistrplus: An R Package for fitting distributions. J Stat Softw. 2015;64:1-34.
-
(2015)
J Stat Softw
, vol.64
, pp. 1-34
-
-
Delignette-Muller, M.L.1
Dutang, C.2
-
46
-
-
84928987900
-
HTSeq--a Python framework to work with high-throughput sequencing data
-
Anders S, Pyl PT, Huber W. HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31:166-9.
-
(2015)
Bioinformatics
, vol.31
, pp. 166-169
-
-
Anders, S.1
Pyl, P.T.2
Huber, W.3
-
47
-
-
85047961831
-
UMI-count modeling and differential expression analysis for single cell RNA sequencing
-
Datasets. Gene Expression Omnibus
-
Chen W, Li Y, Easton J, Finkelstein D, Wu G, Chen X. UMI-count modeling and differential expression analysis for single cell RNA sequencing. Datasets. Gene Expression Omnibus. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE113660.
-
-
-
Chen, W.1
Li, Y.2
Easton, J.3
Finkelstein, D.4
Wu, G.5
Chen, X.6
-
48
-
-
85047961831
-
UMI-count modeling and differential expression analysis for single cell RNA sequencing
-
Bitbucket
-
Chen W, Li Y, Easton J, Finkelstein D, Wu G, Chen X. UMI-count modeling and differential expression analysis for single cell RNA sequencing. Bitbucket. https://bitbucket.org/Wenan/nbid.
-
-
-
Chen, W.1
Li, Y.2
Easton, J.3
Finkelstein, D.4
Wu, G.5
Chen, X.6
-
49
-
-
85047961831
-
UMI-count modeling and differential expression analysis for single cell RNA sequencing
-
zenodo
-
Chen W, Li Y, Easton J, Finkelstein D, Wu G, Chen X. UMI-count modeling and differential expression analysis for single cell RNA sequencing. zenodo. https://doi.org/10.5281/zenodo.1225670.
-
-
-
Chen, W.1
Li, Y.2
Easton, J.3
Finkelstein, D.4
Wu, G.5
Chen, X.6
-
50
-
-
85047961831
-
UMI-count modeling and differential expression analysis for single cell RNA sequencing
-
Bitbucket
-
Chen W, Li Y, Easton J, Finkelstein D, Wu G, Chen X. UMI-count modeling and differential expression analysis for single cell RNA sequencing. Bitbucket. https://bitbucket.org/Wenan/scrna_qc_de.
-
-
-
Chen, W.1
Li, Y.2
Easton, J.3
Finkelstein, D.4
Wu, G.5
Chen, X.6
|