메뉴 건너뛰기




Volumn 33, Issue 2, 2018, Pages 160-183

Multiple imputation for multilevel data with continuous and binary variables

Author keywords

Fully conditional specification; Joint modelling; Missing data; Mixed data; Multilevel data; Multiple imputation; Systematically missing values

Indexed keywords


EID: 85046824732     PISSN: 08834237     EISSN: None     Source Type: Journal    
DOI: 10.1214/18-STS646     Document Type: Article
Times cited : (108)

References (80)
  • 1
    • 0002662712 scopus 로고
    • On the existence of maximum likelihood estimates in logistic regression models
    • MR0738319
    • ALBERT, A. and ANDERSON, J.A. (1984). On the existence of maximum likelihood estimates in logistic regression models. Biometrika 71 1-10. MR0738319
    • (1984) Biometrika , vol.71 , pp. 1-10
    • Albert, A.1    Anderson, J.A.2
  • 2
    • 0004093524 scopus 로고    scopus 로고
    • Sage, Thousand Oaks, CA
    • ALLISON, P. (2002). Missing Data. Sage, Thousand Oaks, CA.
    • (2002) Missing Data
    • Allison, P.1
  • 3
    • 78851470246 scopus 로고    scopus 로고
    • Quantifying the impact of fixed effects modeling of clusters in multiple imputation for cluster randomized trials
    • MR2767378
    • ANDRIDGE, R.R. (2011). Quantifying the impact of fixed effects modeling of clusters in multiple imputation for cluster randomized trials. Biom. J. 53 57-74. MR2767378
    • (2011) Biom. J. , vol.53 , pp. 57-74
    • Andridge, R.R.1
  • 4
    • 84870558623 scopus 로고    scopus 로고
    • Multiple imputation with Mplus
    • ASPAROUHOV, T. and MUTHéN, B. (2010). Multiple imputation with Mplus. Technical report. Available at http://www. statmodel.com/download/Imputations7.pdf.
    • (2010) Technical report
    • Asparouhov, T.1    Muthén, B.2
  • 7
    • 84937894556 scopus 로고    scopus 로고
    • Multiple imputation of covariates by fully conditional specification: Accommodating the substantive model
    • MR3372102
    • BARTLETT, J.W., SEAMAN, S.R., WHITE, I.R. and CARPENTER, J.R. (2015). Multiple imputation of covariates by fully conditional specification: Accommodating the substantive model. Stat. Methods Med. Res. 24 462-487. MR3372102
    • (2015) Stat. Methods Med. Res. , vol.24 , pp. 462-487
    • Bartlett, J.W.1    Seaman, S.R.2    White, I.R.3    Carpenter, J.R.4
  • 12
    • 84938353753 scopus 로고    scopus 로고
    • A nonparametric, multiple imputation-based method for the retrospective integration of data sets
    • CARRIG, M.M., MANRIQUE-VALLIER, D., RANBY, K.W., REITER, J. and HOYLE, R.H. (2015). A nonparametric, multiple imputation-based method for the retrospective integration of data sets. Multivar. Behav. Res. 50 383-397.
    • (2015) Multivar. Behav. Res. , vol.50 , pp. 383-397
    • Carrig, M.M.1    Manrique-Vallier, D.2    Ranby, K.W.3    Reiter, J.4    Hoyle, R.H.5
  • 13
    • 66349089005 scopus 로고    scopus 로고
    • Integrative data analysis: The simultaneous analysis of multiple data sets
    • CURRAN, P.J. and HUSSONG, A.M. (2009). Integrative data analysis: The simultaneous analysis of multiple data sets. Psychol. Methods 14 81-100.
    • (2009) Psychol. Methods , vol.14 , pp. 81-100
    • Curran, P.J.1    Hussong, A.M.2
  • 14
    • 42049120449 scopus 로고    scopus 로고
    • Pooling data from multiple longitudinal studies: The role of item response theory in integrative data analysis
    • CURRAN, P.J., HUSSONG, A.M., CAI, L., HUANG, W., CHASSIN, L., SHER, K.J. and ZUCKER, R.A. (2008). Pooling data from multiple longitudinal studies: The role of item response theory in integrative data analysis. Dev. Psychol. 44 365-380.
    • (2008) Dev. Psychol. , vol.44 , pp. 365-380
    • Curran, P.J.1    Hussong, A.M.2    Cai, L.3    Huang, W.4    Chassin, L.5    Sher, K.J.6    Zucker, R.A.7
  • 15
    • 84946072388 scopus 로고    scopus 로고
    • Individual participant data (IPD) meta-analyses of diagnostic and prognostic modeling studies: Guidance on their use
    • DEBRAY, T., RILEY, R., ROVERS, M., REITSMA, J., MOONS, K. and ON BEHALF OF THE COCHRANE IPD META-ANALYSIS METHODS GROUP (2015b). Individual participant data (IPD) meta-analyses of diagnostic and prognostic modeling studies: Guidance on their use. PLoS Med. 12 e1001886.
    • (2015) PLoS Med. , vol.12
    • Debray, T.1    Riley, R.2    Rovers, M.3    Reitsma, J.4    Moons, K.5
  • 18
    • 84921329943 scopus 로고    scopus 로고
    • Multiple imputation of multilevel missing data-rigor versus simplicity
    • DRECHSLER, J. (2015). Multiple imputation of multilevel missing data-rigor versus simplicity. J. Educ. Behav. Stat. 40 69-95.
    • (2015) J. Educ. Behav. Stat. , vol.40 , pp. 69-95
    • Drechsler, J.1
  • 20
    • 85083141136 scopus 로고    scopus 로고
    • A fully conditional specification approach to multilevel imputation of categorical and continuous variables
    • ENDERS, C.K., KELLER, B.T. and LEVY, R. (2017). A fully conditional specification approach to multilevel imputation of categorical and continuous variables. Psychol. Methods.
    • (2017) Psychol. Methods.
    • Enders, C.K.1    Keller, B.T.2    Levy, R.3
  • 21
    • 84951310155 scopus 로고    scopus 로고
    • Multilevel multiple imputation: A review and evaluation of joint modeling and chained equations imputation
    • ENDERS, C., MISTLER, S. and KELLER, B. (2016). Multilevel multiple imputation: A review and evaluation of joint modeling and chained equations imputation. Psychological Methods 21 222-240.
    • (2016) Psychological Methods , vol.21 , pp. 222-240
    • Enders, C.1    Mistler, S.2    Keller, B.3
  • 22
    • 84977594497 scopus 로고    scopus 로고
    • Dealing with missing covariates in epidemiologic studies: A comparison between multiple imputation and a full Bayesian approach
    • MR3528236
    • ERLER, N.S., RIZOPOULOS, D., VAN ROSMALEN, J., JADDOE, V.W.V., FRANCO, O.H. and LESAFFRE, E.M.E.H. (2016). Dealing with missing covariates in epidemiologic studies: A comparison between multiple imputation and a full Bayesian approach. Stat. Med. 35 2955-2974. MR3528236
    • (2016) Stat. Med. , vol.35 , pp. 2955-2974
    • Erler, N.S.1    Rizopoulos, D.2    Van Rosmalen, J.3    Jaddoe, V.W.V.4    Franco, O.H.5    Lesaffre, E.M.E.H.6
  • 23
    • 0002178053 scopus 로고
    • Bias reduction of maximum likelihood estimates
    • MR1225212
    • FIRTH, D. (1993). Bias reduction of maximum likelihood estimates. Biometrika 80 27-38. MR1225212
    • (1993) Biometrika , vol.80 , pp. 27-38
    • Firth, D.1
  • 24
    • 84867086419 scopus 로고    scopus 로고
    • Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper)
    • MR2221284
    • GELMAN, A. (2006). Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper). Bayesian Anal. 1 515-533. MR2221284
    • (2006) Bayesian Anal. , vol.1 , pp. 515-533
    • Gelman, A.1
  • 25
    • 0021518209 scopus 로고
    • Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images
    • GEMAN, S. and GEMAN, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6 721-741.
    • (1984) IEEE Trans. Pattern Anal. Mach. Intell. , vol.6 , pp. 721-741
    • Geman, S.1    Geman, D.2
  • 27
    • 34948888256 scopus 로고    scopus 로고
    • Multilevel structural equation models for the analysis of comparative data on educational performance
    • GOLDSTEIN, H., BONNET, G. and ROCHER, T. (2007). Multilevel structural equation models for the analysis of comparative data on educational performance. J. Educ. Behav. Stat. 32 252-286.
    • (2007) J. Educ. Behav. Stat. , vol.32 , pp. 252-286
    • Goldstein, H.1    Bonnet, G.2    Rocher, T.3
  • 28
    • 63049094081 scopus 로고    scopus 로고
    • Multilevel models with multivariate mixed response types
    • MR2756416
    • GOLDSTEIN, H., CARPENTER, J., KENWARD, M.G. and LEVIN, K.A. (2009). Multilevel models with multivariate mixed response types. Stat. Model. 9 173-197. MR2756416
    • (2009) Stat. Model. , vol.9 , pp. 173-197
    • Goldstein, H.1    Carpenter, J.2    Kenward, M.G.3    Levin, K.A.4
  • 30
    • 84928744218 scopus 로고    scopus 로고
    • Multiple imputation of missing covariate values in multilevel models with random slopes: A cautionary note
    • GRUND, S., LüDTKE, O. and ROBITZSCH, A. (2016). Multiple imputation of missing covariate values in multilevel models with random slopes: A cautionary note. Behav. Res. Methods 48 640-649.
    • (2016) Behav. Res. Methods , vol.48 , pp. 640-649
    • Grund, S.1    Lüdtke, O.2    Robitzsch, A.3
  • 32
    • 84874970954 scopus 로고    scopus 로고
    • A matrixbased method of moments for fitting the multivariate random effects model for meta-analysis and meta-regression
    • MR3045843
    • JACKSON, D., WHITE, I.R. and RILEY, R.D. (2013). A matrixbased method of moments for fitting the multivariate random effects model for meta-analysis and meta-regression. Biom. J. 55 231-245. MR3045843
    • (2013) Biom. J. , vol.55 , pp. 231-245
    • Jackson, D.1    White, I.R.2    Riley, R.D.3
  • 33
    • 85030710828 scopus 로고    scopus 로고
    • Hierarchical imputation of systematically and sporadically missing data: An approximate Bayesian approach using chained equations
    • JOLANI, S. (2018). Hierarchical imputation of systematically and sporadically missing data: An approximate Bayesian approach using chained equations. Biom. J. 60 333-351.
    • (2018) Biom. J. , vol.60 , pp. 333-351
    • Jolani, S.1
  • 34
    • 84926444242 scopus 로고    scopus 로고
    • Imputation of systematically missing predictors in an individual participant data meta-analysis: A generalized approach using MICE
    • MR3334696
    • JOLANI, S., DEBRAY, T.P.A., KOFFIJBERG, H., VAN BUUREN, S. and MOONS, K.G.M. (2015). Imputation of systematically missing predictors in an individual participant data meta-analysis: A generalized approach using MICE. Stat. Med. 34 1841-1863. MR3334696
    • (2015) Stat. Med. , vol.34 , pp. 1841-1863
    • Jolani, S.1    Debray, T.P.A.2    Koffijberg, H.3    Van Buuren, S.4    Moons, K.G.M.5
  • 35
    • 84942135544 scopus 로고    scopus 로고
    • Multiple imputation for continuous and categorical data: Comparing joint multivariate normal and conditional approaches
    • KROPKO, J., GOODRICH, B., GELMAN, A. and HILL, J. (2014). Multiple imputation for continuous and categorical data: Comparing joint multivariate normal and conditional approaches. Polit. Anal. 22 497-519.
    • (2014) Polit. Anal. , vol.22 , pp. 497-519
    • Kropko, J.1    Goodrich, B.2    Gelman, A.3    Hill, J.4
  • 36
    • 85022323535 scopus 로고    scopus 로고
    • A comparison of existing methods for multiple imputation in individual participant data meta-analysis
    • MR3696506
    • KUNKEL, D. and KAIZAR, E.E. (2017). A comparison of existing methods for multiple imputation in individual participant data meta-analysis. Stat. Med. 36 3507-3532. MR3696506
    • (2017) Stat. Med. , vol.36 , pp. 3507-3532
    • Kunkel, D.1    Kaizar, E.E.2
  • 37
    • 84963649819 scopus 로고    scopus 로고
    • Comparative performance of heterogeneity variance estimators in meta-analysis: A review of simulation studies
    • LANGAN, D., HIGGINS, J.P.T. and SIMMONDS, M. (2017). Comparative performance of heterogeneity variance estimators in meta-analysis: A review of simulation studies. Res. Synth. Methods 8 181-198.
    • (2017) Res. Synth. Methods , vol.8 , pp. 181-198
    • Langan, D.1    Higgins, J.P.T.2    Simmonds, M.3
  • 38
    • 84885623462 scopus 로고    scopus 로고
    • Incremental value of biomarkers to clinical variables for mortality prediction in acutely decompensated heart failure: The multinational observational cohort on acute heart failure (MOCA) study
    • LASSUS, J., GAYAT, E., MUELLER, C., PEACOCK, W., SPINAR, J., HARJOLA, V., VAN KIMMENADE, R., PATHAK, A., MUELLER, T. et al. (2013). Incremental value of biomarkers to clinical variables for mortality prediction in acutely decompensated heart failure: The multinational observational cohort on acute heart failure (MOCA) study. Int. J. Cardiol. 168 2186-2194.
    • (2013) Int. J. Cardiol. , vol.168 , pp. 2186-2194
    • Lassus, J.1    Gayat, E.2    Mueller, C.3    Peacock, W.4    Spinar, J.5    Harjola, V.6    Van Kimmenade, R.7    Pathak, A.8    Mueller, T.9
  • 39
    • 77249147857 scopus 로고    scopus 로고
    • Multiple imputation for missing data: Fully conditional specification versus multivariate normal imputation
    • LEE, K. and CARLIN, J. (2010). Multiple imputation for missing data: Fully conditional specification versus multivariate normal imputation. Am. J. Epidemiol. 171 624-632.
    • (2010) Am. J. Epidemiol. , vol.171 , pp. 624-632
    • Lee, K.1    Carlin, J.2
  • 40
    • 34547831400 scopus 로고    scopus 로고
    • Generalized Linear Models with Random Effects: Unified Analysis via HLikelihood
    • Chapman & Hall/CRC, Boca Raton, FL. With 1 CD-ROM (Windows). MR2259540
    • LEE, Y., NELDER, J.A. and PAWITAN, Y. (2006). Generalized Linear Models with Random Effects: Unified Analysis via HLikelihood. Monographs on Statistics and Applied Probability 106. Chapman & Hall/CRC, Boca Raton, FL. With 1 CD-ROM (Windows). MR2259540
    • (2006) Monographs on Statistics and Applied Probability , pp. 106
    • Lee, Y.1    Nelder, J.A.2    Pawitan, Y.3
  • 41
    • 84952497143 scopus 로고
    • Missing-data adjustments in large surveys
    • LITTLE, R. (1988). Missing-data adjustments in large surveys. J. Bus. Econom. Statist. 6 287-296.
    • (1988) J. Bus. Econom. Statist. , vol.6 , pp. 287-296
    • Little, R.1
  • 43
    • 84897668423 scopus 로고    scopus 로고
    • On the stationary distribution of iterative imputations
    • MR3180663
    • LIU, J., GELMAN, A., HILL, J., SU, Y.-S. and KROPKO, J. (2014). On the stationary distribution of iterative imputations. Biometrika 101 155-173. MR3180663
    • (2014) Biometrika , vol.101 , pp. 155-173
    • Liu, J.1    Gelman, A.2    Hill, J.3    Su, Y.-S.4    Kropko, J.5
  • 44
    • 84864032683 scopus 로고    scopus 로고
    • Missing data
    • Springer, New York. MR2412943
    • LONGFORD, N.T. (2008). Missing data. In Handbook of Multilevel Analysis 377-399. Springer, New York. MR2412943
    • (2008) Handbook of Multilevel Analysis , pp. 377-399
    • Longford, N.T.1
  • 45
    • 77953255195 scopus 로고    scopus 로고
    • Comparison of onestep and two-step meta-analysis models using individual patient data
    • MR2756877
    • MATHEW, T. and NORDSTRöM, K. (2010). Comparison of onestep and two-step meta-analysis models using individual patient data. Biom. J. 52 271-287. MR2756877
    • (2010) Biom. J. , vol.52 , pp. 271-287
    • Mathew, T.1    Nordström, K.2
  • 46
    • 84973596359 scopus 로고    scopus 로고
    • Modeling clustered data with very few clusters
    • MCNEISH, D. and STAPLETON, L.M. (2016). Modeling clustered data with very few clusters. Multivar. Behav. Res. 51 495-518.
    • (2016) Multivar. Behav. Res. , vol.51 , pp. 495-518
    • Mcneish, D.1    Stapleton, L.M.2
  • 47
    • 84874529858 scopus 로고    scopus 로고
    • Association between elevated blood glucose and outcome in acute heart failure: Results from an international observational cohort
    • MEBAZAA, A., GAYAT, E., LASSUS, J., MEAS, T., MUELLER, C. et al. (2013). Association between elevated blood glucose and outcome in acute heart failure: Results from an international observational cohort. J. Am. Coll. Cardiol. 61 820-829.
    • (2013) J. Am. Coll. Cardiol. , vol.61 , pp. 820-829
    • Mebazaa, A.1    Gayat, E.2    Lassus, J.3    Meas, T.4    Mueller, C.5
  • 48
    • 84972537494 scopus 로고
    • Multiple-imputation inferences with uncongenial sources of input (with discussion)
    • MENG, X. (1994). Multiple-imputation inferences with uncongenial sources of input (with discussion). Statist. Sci. 10 538-573.
    • (1994) Statist. Sci. , vol.10 , pp. 538-573
    • Meng, X.1
  • 51
    • 33947127673 scopus 로고    scopus 로고
    • REML estimation for binary data in GLMMs
    • MR2325413
    • NOH, M. and LEE, Y. (2007). REML estimation for binary data in GLMMs. J. Multivariate Anal. 98 896-915. MR2325413
    • (2007) J. Multivariate Anal. , vol.98 , pp. 896-915
    • Noh, M.1    Lee, Y.2
  • 54
    • 84977572868 scopus 로고    scopus 로고
    • Multiple imputation for IPD meta-analysis: Allowing for heterogeneity and studies with missing covariates
    • MR3528235
    • QUARTAGNO, M. and CARPENTER, J.R. (2016a). Multiple imputation for IPD meta-analysis: Allowing for heterogeneity and studies with missing covariates. Stat. Med. 35 2938-2954. MR3528235
    • (2016) Stat. Med. , vol.35 , pp. 2938-2954
    • Quartagno, M.1    Carpenter, J.R.2
  • 56
    • 0002344593 scopus 로고    scopus 로고
    • A multivariate technique for multiply imputing missing values using a sequence of regression models
    • RAGHUNATHAN, T., LEPKOWSKI, J.M., VAN HOEWYK, J. and SOLENBERGER, P. (2001). A multivariate technique for multiply imputing missing values using a sequence of regression models. Surv. Methodol. 27 85-96.
    • (2001) Surv. Methodol. , vol.27 , pp. 85-96
    • Raghunathan, T.1    Lepkowski, J.M.2    Van Hoewyk, J.3    Solenberger, P.4
  • 57
    • 34548704976 scopus 로고    scopus 로고
    • The importance of modeling the sampling design in multiple imputation for missing data
    • REITER, J., RAGHUNATHAN, T.E. and KINNEY, S.K. (2006). The importance of modeling the sampling design in multiple imputation for missing data. Surv. Methodol. 32 143.
    • (2006) Surv. Methodol. , vol.32 , pp. 143
    • Reiter, J.1    Raghunathan, T.E.2    Kinney, S.K.3
  • 58
    • 85046752210 scopus 로고    scopus 로고
    • Multiple imputation by chained equations for systematically and sporadically missing multilevel data
    • RESCHE-RIGON, M. and WHITE, I. (2016). Multiple imputation by chained equations for systematically and sporadically missing multilevel data. Stat. Methods Med. Res. DOI:10.1177/0962280216666564.
    • (2016) Stat. Methods Med. Res.
    • Resche-Rigon, M.1    White, I.2
  • 59
    • 84887138473 scopus 로고    scopus 로고
    • Multiple imputation for handling systematically missing confounders in meta-analysis of individual participant data
    • MR3127183
    • RESCHE-RIGON, M., WHITE, I.R., BARTLETT, J.W., PETERS, S.A.E., THOMPSON, S.G. and GROUP, P.S. (2013). Multiple imputation for handling systematically missing confounders in meta-analysis of individual participant data. Stat. Med. 32 4890-4905. MR3127183
    • (2013) Stat. Med. , vol.32 , pp. 4890-4905
    • Resche-Rigon, M.1    White, I.R.2    Bartlett, J.W.3    Peters, S.A.E.4    Thompson, S.G.5    Group, P.S.6
  • 60
    • 43049159457 scopus 로고    scopus 로고
    • Metaanalysis of continuous outcomes combining individual patient data and aggregate data
    • MR2420350
    • RILEY, R.D., LAMBERT, P.C., STAESSEN, J.A., WANG, J., GUEYFFIER, F., THIJS, L. and BOUTITIE, F. (2008). Metaanalysis of continuous outcomes combining individual patient data and aggregate data. Stat. Med. 27 1870-1893. MR2420350
    • (2008) Stat. Med. , vol.27 , pp. 1870-1893
    • Riley, R.D.1    Lambert, P.C.2    Staessen, J.A.3    Wang, J.4    Gueyffier, F.5    Thijs, L.6    Boutitie, F.7
  • 61
    • 84976645528 scopus 로고    scopus 로고
    • External validation of clinical prediction models using big datasets from e-health records or IPD meta-analysis: Opportunities and challenges
    • RILEY, R.D., ENSOR, J., SNELL, K.I.E., DEBRAY, T.P.A., ALTMAN, D.G., MOONS, K.G.M. and COLLINS, G.S. (2016). External validation of clinical prediction models using big datasets from e-health records or IPD meta-analysis: Opportunities and challenges. BMJ 353 i3140.
    • (2016) BMJ , vol.353
    • Riley, R.D.1    Ensor, J.2    Snell, K.I.E.3    Debray, T.P.A.4    Altman, D.G.5    Moons, K.G.M.6    Collins, G.S.7
  • 63
    • 0017133178 scopus 로고
    • Inference and missing data
    • MR0455196
    • RUBIN, D.B. (1976). Inference and missing data. Biometrika 63 581-592. MR0455196
    • (1976) Biometrika , vol.63 , pp. 581-592
    • Rubin, D.B.1
  • 65
    • 0003398574 scopus 로고    scopus 로고
    • Analysis of Incomplete Multivariate Data
    • Chapman & Hall, London. MR1692799
    • SCHAFER, J.L. (1997). Analysis of Incomplete Multivariate Data. Monographs on Statistics and Applied Probability 72. Chapman & Hall, London. MR1692799
    • (1997) Monographs on Statistics and Applied Probability , pp. 72
    • Schafer, J.L.1
  • 66
    • 0036017469 scopus 로고    scopus 로고
    • Computational strategies for multivariate linear mixed-effects models with missing values
    • MR1938143
    • SCHAFER, J.L. and YUCEL, R.M. (2002). Computational strategies for multivariate linear mixed-effects models with missing values. J. Comput. Graph. Statist. 11 437-457. MR1938143
    • (2002) J. Comput. Graph. Statist. , vol.11 , pp. 437-457
    • Schafer, J.L.1    Yucel, R.M.2
  • 67
    • 21344439360 scopus 로고    scopus 로고
    • Meta-analysis of individual patient data from randomized trials: A review of methods used in practice
    • SIMMONDS, M., HIGGINS, J., STEWART, L., TIERNEY, J., CLARKE, M. and THOMPSON, S. (2005). Meta-analysis of individual patient data from randomized trials: A review of methods used in practice. Clin. Trials 2 209-217.
    • (2005) Clin. Trials , vol.2 , pp. 209-217
    • Simmonds, M.1    Higgins, J.2    Stewart, L.3    Tierney, J.4    Clarke, M.5    Thompson, S.6
  • 68
    • 84950758368 scopus 로고
    • The calculation of posterior distributions by data augmentation
    • MR0898357
    • TANNER, M.A. and WONG, W.H. (1987). The calculation of posterior distributions by data augmentation. J. Amer. Statist. Assoc. 82 528-550. MR0898357
    • (1987) J. Amer. Statist. Assoc. , vol.82 , pp. 528-550
    • Tanner, M.A.1    Wong, W.H.2
  • 69
    • 84863304598 scopus 로고    scopus 로고
    • Version 3.3.0. R Foundation for Statistical Computing, Vienna, Austria
    • R CORE TEAM (2016). R: A Language and Environment for Statistical Computing. Version 3.3.0. R Foundation for Statistical Computing, Vienna, Austria.
    • (2016) R: A Language and Environment for Statistical Computing
  • 70
    • 34347407592 scopus 로고    scopus 로고
    • Multiple imputation of discrete and continuous data by fully conditional specification
    • MR2371007
    • VAN BUUREN, S. (2007). Multiple imputation of discrete and continuous data by fully conditional specification. Stat. Methods Med. Res. 16 219-242. MR2371007
    • (2007) Stat. Methods Med. Res. , vol.16 , pp. 219-242
    • Van Buuren, S.1
  • 71
    • 85130029608 scopus 로고    scopus 로고
    • Multiple imputation of multilevel data
    • (J.J. Hox, ed.), Routledge, New York
    • VAN BUUREN, S. (2011). Multiple imputation of multilevel data. In The Handbook of Advanced Multilevel Analysis (J.J. Hox, ed.) 173-196. Routledge, New York.
    • (2011) The Handbook of Advanced Multilevel Analysis , pp. 173-196
    • Van Buuren, S.1
  • 73
    • 79953732420 scopus 로고    scopus 로고
    • mice: Multivariate imputation by chained equations in R
    • VAN BUUREN, S. and GROOTHUIS-OUDSHOORN, K. (2011). mice: Multivariate imputation by chained equations in R.J. Stat. Softw. 45 1-67.
    • (2011) J. Stat. Softw. , vol.45 , pp. 1-67
    • Van Buuren, S.1    Groothuis-Oudshoorn, K.2
  • 75
    • 85010901622 scopus 로고    scopus 로고
    • Partitioned predictive mean matching as a multilevel imputation technique
    • VINK, G., LAZENDIC, G. and VAN BUUREN, S. (2015). Partitioned predictive mean matching as a multilevel imputation technique. Psychol. Test Assess. Model. 57 577-594.
    • (2015) Psychol. Test Assess. Model. , vol.57 , pp. 577-594
    • Vink, G.1    Lazendic, G.2    Van Buuren, S.3
  • 76
    • 80053977924 scopus 로고    scopus 로고
    • A closer examination of three small-sample approximations to the multiple-imputation degrees of freedom
    • WAGSTAFF, D. and HAREL, O. (2011). A closer examination of three small-sample approximations to the multiple-imputation degrees of freedom. Stata J. 11 403-419.
    • (2011) Stata J. , vol.11 , pp. 403-419
    • Wagstaff, D.1    Harel, O.2
  • 77
    • 80051757583 scopus 로고    scopus 로고
    • Random covariances and mixed-effects models for imputing multivariate multilevel continuous data
    • MR2906705
    • YUCEL, R.M. (2011). Random covariances and mixed-effects models for imputing multivariate multilevel continuous data. Stat. Model. 11 351-370. MR2906705
    • (2011) Stat. Model. , vol.11 , pp. 351-370
    • Yucel, R.M.1
  • 78
    • 84989894386 scopus 로고    scopus 로고
    • Multiple imputation in the presence of high-dimensional data
    • MR3553324
    • ZHAO, Y. and LONG, Q. (2016). Multiple imputation in the presence of high-dimensional data. Stat. Methods Med. Res. 25 2021-2035. MR3553324
    • (2016) Stat. Methods Med. Res. , vol.25 , pp. 2021-2035
    • Zhao, Y.1    Long, Q.2
  • 79
    • 84960437357 scopus 로고    scopus 로고
    • Performance of sequential imputation method in multilevel applications
    • (JSM 2009), Amer. Statist. Assoc., Alexandria, VA
    • ZHAO, E. and YUCEL, R. (2009). Performance of sequential imputation method in multilevel applications. In Proceedings of the Survey Research Methods Section (JSM 2009) 2800-2810. Amer. Statist. Assoc., Alexandria, VA.
    • (2009) Proceedings of the Survey Research Methods Sectio , pp. 2800-2810
    • Zhao, E.1    Yucel, R.2
  • 80
    • 84946962849 scopus 로고    scopus 로고
    • Convergence properties of a sequential regression multiple imputation algorithm
    • MR3420688
    • ZHU, J. and RAGHUNATHAN, T.E. (2015). Convergence properties of a sequential regression multiple imputation algorithm. J. Amer. Statist. Assoc. 110 1112-1124. MR3420688
    • (2015) J. Amer. Statist. Assoc. , vol.110 , pp. 1112-1124
    • Zhu, J.1    Raghunathan, T.E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.