-
1
-
-
0002662712
-
On the existence of maximum likelihood estimates in logistic regression models
-
MR0738319
-
ALBERT, A. and ANDERSON, J.A. (1984). On the existence of maximum likelihood estimates in logistic regression models. Biometrika 71 1-10. MR0738319
-
(1984)
Biometrika
, vol.71
, pp. 1-10
-
-
Albert, A.1
Anderson, J.A.2
-
2
-
-
0004093524
-
-
Sage, Thousand Oaks, CA
-
ALLISON, P. (2002). Missing Data. Sage, Thousand Oaks, CA.
-
(2002)
Missing Data
-
-
Allison, P.1
-
3
-
-
78851470246
-
Quantifying the impact of fixed effects modeling of clusters in multiple imputation for cluster randomized trials
-
MR2767378
-
ANDRIDGE, R.R. (2011). Quantifying the impact of fixed effects modeling of clusters in multiple imputation for cluster randomized trials. Biom. J. 53 57-74. MR2767378
-
(2011)
Biom. J.
, vol.53
, pp. 57-74
-
-
Andridge, R.R.1
-
4
-
-
84870558623
-
Multiple imputation with Mplus
-
ASPAROUHOV, T. and MUTHéN, B. (2010). Multiple imputation with Mplus. Technical report. Available at http://www. statmodel.com/download/Imputations7.pdf.
-
(2010)
Technical report
-
-
Asparouhov, T.1
Muthén, B.2
-
6
-
-
85046824732
-
Supplement to "Multiple imputation for multilevel data with continuous and binary variables."
-
AUDIGIER, V., WHITE, I.R., JOLANI, S., DEBRAY, T.P.A., QUARTAGNO, M., CARPENTER, J., VAN BUUREN, S. and RESCHE-RIGON, M. (2018). Supplement to "Multiple imputation for multilevel data with continuous and binary variables." DOI:10.1214/18-STS646SUPPA, DOI:10.1214/18-STS646SUPPB.
-
(2018)
-
-
Audigier, V.1
White, I.R.2
Jolani, S.3
Debray, T.P.A.4
Quartagno, M.5
Carpenter, J.6
Van Buuren, S.7
Resche-Rigon, M.8
-
7
-
-
84937894556
-
Multiple imputation of covariates by fully conditional specification: Accommodating the substantive model
-
MR3372102
-
BARTLETT, J.W., SEAMAN, S.R., WHITE, I.R. and CARPENTER, J.R. (2015). Multiple imputation of covariates by fully conditional specification: Accommodating the substantive model. Stat. Methods Med. Res. 24 462-487. MR3372102
-
(2015)
Stat. Methods Med. Res.
, vol.24
, pp. 462-487
-
-
Bartlett, J.W.1
Seaman, S.R.2
White, I.R.3
Carpenter, J.R.4
-
8
-
-
84943645306
-
Fitting linear mixed-effectsmodels using lme4
-
BATES, D., MäCHLER, M., BOLKER, B. and WALKER, S. (2015). Fitting linear mixed-effectsmodels using lme4. J. Stat. Softw. 67 1-48.
-
(2015)
J. Stat. Softw.
, vol.67
, pp. 1-48
-
-
Bates, D.1
Mächler, M.2
Bolker, B.3
Walker, S.4
-
9
-
-
84890356309
-
-
VS Verlag für Sozialwissenschaften, Wiesbaden, Germany
-
BLOSSFELD, H.-P., GüNTHER RÖSBACH, H. and VON MAURICE, J., eds. (2011). Education as a Lifelong Process: The German National Educational Panel Study (NEPS). VS Verlag für Sozialwissenschaften, Wiesbaden, Germany.
-
(2011)
Education as a Lifelong Process: The German National Educational Panel Study (NEPS)
-
-
Blossfeld, H.-P.1
Günther RöSbach, H.2
Von Maurice, J.3
-
10
-
-
0842342331
-
-
Waxmann, Münster, Germany.
-
BOS, W., LANKES, E.-M., PRENZEL, M., SCHWIPPERT, K. and VALTIN, R., eds. (2003). Erste Ergebnisse aus IGLU: Schülerleistungen Am Ende der Vierten Jahrgangsstufe Im Internationalen Vergleich [the First]. Waxmann, Münster, Germany.
-
(2003)
Erste Ergebnisse aus IGLU: Schülerleistungen Am Ende der Vierten Jahrgangsstufe Im Internationalen Vergleich [the First]
-
-
Bos, W.1
Lankes, E.-M.2
Prenzel, M.3
Schwippert, K.4
Valtin, R.5
-
12
-
-
84938353753
-
A nonparametric, multiple imputation-based method for the retrospective integration of data sets
-
CARRIG, M.M., MANRIQUE-VALLIER, D., RANBY, K.W., REITER, J. and HOYLE, R.H. (2015). A nonparametric, multiple imputation-based method for the retrospective integration of data sets. Multivar. Behav. Res. 50 383-397.
-
(2015)
Multivar. Behav. Res.
, vol.50
, pp. 383-397
-
-
Carrig, M.M.1
Manrique-Vallier, D.2
Ranby, K.W.3
Reiter, J.4
Hoyle, R.H.5
-
13
-
-
66349089005
-
Integrative data analysis: The simultaneous analysis of multiple data sets
-
CURRAN, P.J. and HUSSONG, A.M. (2009). Integrative data analysis: The simultaneous analysis of multiple data sets. Psychol. Methods 14 81-100.
-
(2009)
Psychol. Methods
, vol.14
, pp. 81-100
-
-
Curran, P.J.1
Hussong, A.M.2
-
14
-
-
42049120449
-
Pooling data from multiple longitudinal studies: The role of item response theory in integrative data analysis
-
CURRAN, P.J., HUSSONG, A.M., CAI, L., HUANG, W., CHASSIN, L., SHER, K.J. and ZUCKER, R.A. (2008). Pooling data from multiple longitudinal studies: The role of item response theory in integrative data analysis. Dev. Psychol. 44 365-380.
-
(2008)
Dev. Psychol.
, vol.44
, pp. 365-380
-
-
Curran, P.J.1
Hussong, A.M.2
Cai, L.3
Huang, W.4
Chassin, L.5
Sher, K.J.6
Zucker, R.A.7
-
15
-
-
84946072388
-
Individual participant data (IPD) meta-analyses of diagnostic and prognostic modeling studies: Guidance on their use
-
DEBRAY, T., RILEY, R., ROVERS, M., REITSMA, J., MOONS, K. and ON BEHALF OF THE COCHRANE IPD META-ANALYSIS METHODS GROUP (2015b). Individual participant data (IPD) meta-analyses of diagnostic and prognostic modeling studies: Guidance on their use. PLoS Med. 12 e1001886.
-
(2015)
PLoS Med.
, vol.12
-
-
Debray, T.1
Riley, R.2
Rovers, M.3
Reitsma, J.4
Moons, K.5
-
16
-
-
84956958671
-
Get real in individual participant data (IPD) meta-analysis: A review of the methodology
-
DEBRAY, T., MOONS, K., VAN VALKENHOEF, G., EFTHIMIOU, O., HUMMEL, N., GROENWOLD, R. and REITSMA, J.O. (2015a). Get real in individual participant data (IPD) meta-analysis: A review of the methodology. Res. Synth. Methods 6 293-309.
-
(2015)
Res. Synth. Methods
, vol.6
, pp. 293-309
-
-
Debray, T.1
Moons, K.2
Van Valkenhoef, G.3
Efthimiou, O.4
Hummel, N.5
Groenwold, R.6
Reitsma, J.O.7
-
18
-
-
84921329943
-
Multiple imputation of multilevel missing data-rigor versus simplicity
-
DRECHSLER, J. (2015). Multiple imputation of multilevel missing data-rigor versus simplicity. J. Educ. Behav. Stat. 40 69-95.
-
(2015)
J. Educ. Behav. Stat.
, vol.40
, pp. 69-95
-
-
Drechsler, J.1
-
20
-
-
85083141136
-
A fully conditional specification approach to multilevel imputation of categorical and continuous variables
-
ENDERS, C.K., KELLER, B.T. and LEVY, R. (2017). A fully conditional specification approach to multilevel imputation of categorical and continuous variables. Psychol. Methods.
-
(2017)
Psychol. Methods.
-
-
Enders, C.K.1
Keller, B.T.2
Levy, R.3
-
21
-
-
84951310155
-
Multilevel multiple imputation: A review and evaluation of joint modeling and chained equations imputation
-
ENDERS, C., MISTLER, S. and KELLER, B. (2016). Multilevel multiple imputation: A review and evaluation of joint modeling and chained equations imputation. Psychological Methods 21 222-240.
-
(2016)
Psychological Methods
, vol.21
, pp. 222-240
-
-
Enders, C.1
Mistler, S.2
Keller, B.3
-
22
-
-
84977594497
-
Dealing with missing covariates in epidemiologic studies: A comparison between multiple imputation and a full Bayesian approach
-
MR3528236
-
ERLER, N.S., RIZOPOULOS, D., VAN ROSMALEN, J., JADDOE, V.W.V., FRANCO, O.H. and LESAFFRE, E.M.E.H. (2016). Dealing with missing covariates in epidemiologic studies: A comparison between multiple imputation and a full Bayesian approach. Stat. Med. 35 2955-2974. MR3528236
-
(2016)
Stat. Med.
, vol.35
, pp. 2955-2974
-
-
Erler, N.S.1
Rizopoulos, D.2
Van Rosmalen, J.3
Jaddoe, V.W.V.4
Franco, O.H.5
Lesaffre, E.M.E.H.6
-
23
-
-
0002178053
-
Bias reduction of maximum likelihood estimates
-
MR1225212
-
FIRTH, D. (1993). Bias reduction of maximum likelihood estimates. Biometrika 80 27-38. MR1225212
-
(1993)
Biometrika
, vol.80
, pp. 27-38
-
-
Firth, D.1
-
24
-
-
84867086419
-
Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper)
-
MR2221284
-
GELMAN, A. (2006). Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper). Bayesian Anal. 1 515-533. MR2221284
-
(2006)
Bayesian Anal.
, vol.1
, pp. 515-533
-
-
Gelman, A.1
-
25
-
-
0021518209
-
Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images
-
GEMAN, S. and GEMAN, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6 721-741.
-
(1984)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.6
, pp. 721-741
-
-
Geman, S.1
Geman, D.2
-
27
-
-
34948888256
-
Multilevel structural equation models for the analysis of comparative data on educational performance
-
GOLDSTEIN, H., BONNET, G. and ROCHER, T. (2007). Multilevel structural equation models for the analysis of comparative data on educational performance. J. Educ. Behav. Stat. 32 252-286.
-
(2007)
J. Educ. Behav. Stat.
, vol.32
, pp. 252-286
-
-
Goldstein, H.1
Bonnet, G.2
Rocher, T.3
-
28
-
-
63049094081
-
Multilevel models with multivariate mixed response types
-
MR2756416
-
GOLDSTEIN, H., CARPENTER, J., KENWARD, M.G. and LEVIN, K.A. (2009). Multilevel models with multivariate mixed response types. Stat. Model. 9 173-197. MR2756416
-
(2009)
Stat. Model.
, vol.9
, pp. 173-197
-
-
Goldstein, H.1
Carpenter, J.2
Kenward, M.G.3
Levin, K.A.4
-
30
-
-
84928744218
-
Multiple imputation of missing covariate values in multilevel models with random slopes: A cautionary note
-
GRUND, S., LüDTKE, O. and ROBITZSCH, A. (2016). Multiple imputation of missing covariate values in multilevel models with random slopes: A cautionary note. Behav. Res. Methods 48 640-649.
-
(2016)
Behav. Res. Methods
, vol.48
, pp. 640-649
-
-
Grund, S.1
Lüdtke, O.2
Robitzsch, A.3
-
31
-
-
84897646212
-
Joint modelling rationale for chained equations
-
HUGHES, R.A., WHITE, I.R., SEAMAN, S., CARPENTER, J., TILLING, K. and STERNE, J. (2014). Joint modelling rationale for chained equations. BMC Med. Res. Methodol. 14 28.
-
(2014)
BMC Med. Res. Methodol.
, vol.14
, pp. 28
-
-
Hughes, R.A.1
White, I.R.2
Seaman, S.3
Carpenter, J.4
Tilling, K.5
Sterne, J.6
-
32
-
-
84874970954
-
A matrixbased method of moments for fitting the multivariate random effects model for meta-analysis and meta-regression
-
MR3045843
-
JACKSON, D., WHITE, I.R. and RILEY, R.D. (2013). A matrixbased method of moments for fitting the multivariate random effects model for meta-analysis and meta-regression. Biom. J. 55 231-245. MR3045843
-
(2013)
Biom. J.
, vol.55
, pp. 231-245
-
-
Jackson, D.1
White, I.R.2
Riley, R.D.3
-
33
-
-
85030710828
-
Hierarchical imputation of systematically and sporadically missing data: An approximate Bayesian approach using chained equations
-
JOLANI, S. (2018). Hierarchical imputation of systematically and sporadically missing data: An approximate Bayesian approach using chained equations. Biom. J. 60 333-351.
-
(2018)
Biom. J.
, vol.60
, pp. 333-351
-
-
Jolani, S.1
-
34
-
-
84926444242
-
Imputation of systematically missing predictors in an individual participant data meta-analysis: A generalized approach using MICE
-
MR3334696
-
JOLANI, S., DEBRAY, T.P.A., KOFFIJBERG, H., VAN BUUREN, S. and MOONS, K.G.M. (2015). Imputation of systematically missing predictors in an individual participant data meta-analysis: A generalized approach using MICE. Stat. Med. 34 1841-1863. MR3334696
-
(2015)
Stat. Med.
, vol.34
, pp. 1841-1863
-
-
Jolani, S.1
Debray, T.P.A.2
Koffijberg, H.3
Van Buuren, S.4
Moons, K.G.M.5
-
35
-
-
84942135544
-
Multiple imputation for continuous and categorical data: Comparing joint multivariate normal and conditional approaches
-
KROPKO, J., GOODRICH, B., GELMAN, A. and HILL, J. (2014). Multiple imputation for continuous and categorical data: Comparing joint multivariate normal and conditional approaches. Polit. Anal. 22 497-519.
-
(2014)
Polit. Anal.
, vol.22
, pp. 497-519
-
-
Kropko, J.1
Goodrich, B.2
Gelman, A.3
Hill, J.4
-
36
-
-
85022323535
-
A comparison of existing methods for multiple imputation in individual participant data meta-analysis
-
MR3696506
-
KUNKEL, D. and KAIZAR, E.E. (2017). A comparison of existing methods for multiple imputation in individual participant data meta-analysis. Stat. Med. 36 3507-3532. MR3696506
-
(2017)
Stat. Med.
, vol.36
, pp. 3507-3532
-
-
Kunkel, D.1
Kaizar, E.E.2
-
37
-
-
84963649819
-
Comparative performance of heterogeneity variance estimators in meta-analysis: A review of simulation studies
-
LANGAN, D., HIGGINS, J.P.T. and SIMMONDS, M. (2017). Comparative performance of heterogeneity variance estimators in meta-analysis: A review of simulation studies. Res. Synth. Methods 8 181-198.
-
(2017)
Res. Synth. Methods
, vol.8
, pp. 181-198
-
-
Langan, D.1
Higgins, J.P.T.2
Simmonds, M.3
-
38
-
-
84885623462
-
Incremental value of biomarkers to clinical variables for mortality prediction in acutely decompensated heart failure: The multinational observational cohort on acute heart failure (MOCA) study
-
LASSUS, J., GAYAT, E., MUELLER, C., PEACOCK, W., SPINAR, J., HARJOLA, V., VAN KIMMENADE, R., PATHAK, A., MUELLER, T. et al. (2013). Incremental value of biomarkers to clinical variables for mortality prediction in acutely decompensated heart failure: The multinational observational cohort on acute heart failure (MOCA) study. Int. J. Cardiol. 168 2186-2194.
-
(2013)
Int. J. Cardiol.
, vol.168
, pp. 2186-2194
-
-
Lassus, J.1
Gayat, E.2
Mueller, C.3
Peacock, W.4
Spinar, J.5
Harjola, V.6
Van Kimmenade, R.7
Pathak, A.8
Mueller, T.9
-
39
-
-
77249147857
-
Multiple imputation for missing data: Fully conditional specification versus multivariate normal imputation
-
LEE, K. and CARLIN, J. (2010). Multiple imputation for missing data: Fully conditional specification versus multivariate normal imputation. Am. J. Epidemiol. 171 624-632.
-
(2010)
Am. J. Epidemiol.
, vol.171
, pp. 624-632
-
-
Lee, K.1
Carlin, J.2
-
40
-
-
34547831400
-
Generalized Linear Models with Random Effects: Unified Analysis via HLikelihood
-
Chapman & Hall/CRC, Boca Raton, FL. With 1 CD-ROM (Windows). MR2259540
-
LEE, Y., NELDER, J.A. and PAWITAN, Y. (2006). Generalized Linear Models with Random Effects: Unified Analysis via HLikelihood. Monographs on Statistics and Applied Probability 106. Chapman & Hall/CRC, Boca Raton, FL. With 1 CD-ROM (Windows). MR2259540
-
(2006)
Monographs on Statistics and Applied Probability
, pp. 106
-
-
Lee, Y.1
Nelder, J.A.2
Pawitan, Y.3
-
41
-
-
84952497143
-
Missing-data adjustments in large surveys
-
LITTLE, R. (1988). Missing-data adjustments in large surveys. J. Bus. Econom. Statist. 6 287-296.
-
(1988)
J. Bus. Econom. Statist.
, vol.6
, pp. 287-296
-
-
Little, R.1
-
43
-
-
84897668423
-
On the stationary distribution of iterative imputations
-
MR3180663
-
LIU, J., GELMAN, A., HILL, J., SU, Y.-S. and KROPKO, J. (2014). On the stationary distribution of iterative imputations. Biometrika 101 155-173. MR3180663
-
(2014)
Biometrika
, vol.101
, pp. 155-173
-
-
Liu, J.1
Gelman, A.2
Hill, J.3
Su, Y.-S.4
Kropko, J.5
-
44
-
-
84864032683
-
Missing data
-
Springer, New York. MR2412943
-
LONGFORD, N.T. (2008). Missing data. In Handbook of Multilevel Analysis 377-399. Springer, New York. MR2412943
-
(2008)
Handbook of Multilevel Analysis
, pp. 377-399
-
-
Longford, N.T.1
-
45
-
-
77953255195
-
Comparison of onestep and two-step meta-analysis models using individual patient data
-
MR2756877
-
MATHEW, T. and NORDSTRöM, K. (2010). Comparison of onestep and two-step meta-analysis models using individual patient data. Biom. J. 52 271-287. MR2756877
-
(2010)
Biom. J.
, vol.52
, pp. 271-287
-
-
Mathew, T.1
Nordström, K.2
-
46
-
-
84973596359
-
Modeling clustered data with very few clusters
-
MCNEISH, D. and STAPLETON, L.M. (2016). Modeling clustered data with very few clusters. Multivar. Behav. Res. 51 495-518.
-
(2016)
Multivar. Behav. Res.
, vol.51
, pp. 495-518
-
-
Mcneish, D.1
Stapleton, L.M.2
-
47
-
-
84874529858
-
Association between elevated blood glucose and outcome in acute heart failure: Results from an international observational cohort
-
MEBAZAA, A., GAYAT, E., LASSUS, J., MEAS, T., MUELLER, C. et al. (2013). Association between elevated blood glucose and outcome in acute heart failure: Results from an international observational cohort. J. Am. Coll. Cardiol. 61 820-829.
-
(2013)
J. Am. Coll. Cardiol.
, vol.61
, pp. 820-829
-
-
Mebazaa, A.1
Gayat, E.2
Lassus, J.3
Meas, T.4
Mueller, C.5
-
48
-
-
84972537494
-
Multiple-imputation inferences with uncongenial sources of input (with discussion)
-
MENG, X. (1994). Multiple-imputation inferences with uncongenial sources of input (with discussion). Statist. Sci. 10 538-573.
-
(1994)
Statist. Sci.
, vol.10
, pp. 538-573
-
-
Meng, X.1
-
50
-
-
5644259859
-
-
MULLIS, I., MARTIN, M., GONZALEZ, E. and KENNEDY, A. (2003). Pirls 2001 international report: Iea's study of reading literacy achievement in primary school in 35 countries. Available at: https://timssandpirls.bc.edu/pirls2001i/pdf/p1_IR_book.pdf.
-
(2003)
Pirls 2001 international report: Iea's study of reading literacy achievement in primary school in 35 countries
-
-
Mullis, I.1
Martin, M.2
Gonzalez, E.3
Kennedy, A.4
-
51
-
-
33947127673
-
REML estimation for binary data in GLMMs
-
MR2325413
-
NOH, M. and LEE, Y. (2007). REML estimation for binary data in GLMMs. J. Multivariate Anal. 98 896-915. MR2325413
-
(2007)
J. Multivariate Anal.
, vol.98
, pp. 896-915
-
-
Noh, M.1
Lee, Y.2
-
53
-
-
83855161149
-
-
R package version 3.1-128
-
PINHEIRO, J., BATES, D., DEBROY, S. and SARKAR, D. (2016). nlme: Linear and nonlinear mixed effects models. R package version 3.1-128.
-
(2016)
nlme: Linear and nonlinear mixed effects models
-
-
Pinheiro, J.1
Bates, D.2
Debroy, S.3
Sarkar, D.4
-
54
-
-
84977572868
-
Multiple imputation for IPD meta-analysis: Allowing for heterogeneity and studies with missing covariates
-
MR3528235
-
QUARTAGNO, M. and CARPENTER, J.R. (2016a). Multiple imputation for IPD meta-analysis: Allowing for heterogeneity and studies with missing covariates. Stat. Med. 35 2938-2954. MR3528235
-
(2016)
Stat. Med.
, vol.35
, pp. 2938-2954
-
-
Quartagno, M.1
Carpenter, J.R.2
-
56
-
-
0002344593
-
A multivariate technique for multiply imputing missing values using a sequence of regression models
-
RAGHUNATHAN, T., LEPKOWSKI, J.M., VAN HOEWYK, J. and SOLENBERGER, P. (2001). A multivariate technique for multiply imputing missing values using a sequence of regression models. Surv. Methodol. 27 85-96.
-
(2001)
Surv. Methodol.
, vol.27
, pp. 85-96
-
-
Raghunathan, T.1
Lepkowski, J.M.2
Van Hoewyk, J.3
Solenberger, P.4
-
57
-
-
34548704976
-
The importance of modeling the sampling design in multiple imputation for missing data
-
REITER, J., RAGHUNATHAN, T.E. and KINNEY, S.K. (2006). The importance of modeling the sampling design in multiple imputation for missing data. Surv. Methodol. 32 143.
-
(2006)
Surv. Methodol.
, vol.32
, pp. 143
-
-
Reiter, J.1
Raghunathan, T.E.2
Kinney, S.K.3
-
58
-
-
85046752210
-
Multiple imputation by chained equations for systematically and sporadically missing multilevel data
-
RESCHE-RIGON, M. and WHITE, I. (2016). Multiple imputation by chained equations for systematically and sporadically missing multilevel data. Stat. Methods Med. Res. DOI:10.1177/0962280216666564.
-
(2016)
Stat. Methods Med. Res.
-
-
Resche-Rigon, M.1
White, I.2
-
59
-
-
84887138473
-
Multiple imputation for handling systematically missing confounders in meta-analysis of individual participant data
-
MR3127183
-
RESCHE-RIGON, M., WHITE, I.R., BARTLETT, J.W., PETERS, S.A.E., THOMPSON, S.G. and GROUP, P.S. (2013). Multiple imputation for handling systematically missing confounders in meta-analysis of individual participant data. Stat. Med. 32 4890-4905. MR3127183
-
(2013)
Stat. Med.
, vol.32
, pp. 4890-4905
-
-
Resche-Rigon, M.1
White, I.R.2
Bartlett, J.W.3
Peters, S.A.E.4
Thompson, S.G.5
Group, P.S.6
-
60
-
-
43049159457
-
Metaanalysis of continuous outcomes combining individual patient data and aggregate data
-
MR2420350
-
RILEY, R.D., LAMBERT, P.C., STAESSEN, J.A., WANG, J., GUEYFFIER, F., THIJS, L. and BOUTITIE, F. (2008). Metaanalysis of continuous outcomes combining individual patient data and aggregate data. Stat. Med. 27 1870-1893. MR2420350
-
(2008)
Stat. Med.
, vol.27
, pp. 1870-1893
-
-
Riley, R.D.1
Lambert, P.C.2
Staessen, J.A.3
Wang, J.4
Gueyffier, F.5
Thijs, L.6
Boutitie, F.7
-
61
-
-
84976645528
-
External validation of clinical prediction models using big datasets from e-health records or IPD meta-analysis: Opportunities and challenges
-
RILEY, R.D., ENSOR, J., SNELL, K.I.E., DEBRAY, T.P.A., ALTMAN, D.G., MOONS, K.G.M. and COLLINS, G.S. (2016). External validation of clinical prediction models using big datasets from e-health records or IPD meta-analysis: Opportunities and challenges. BMJ 353 i3140.
-
(2016)
BMJ
, vol.353
-
-
Riley, R.D.1
Ensor, J.2
Snell, K.I.E.3
Debray, T.P.A.4
Altman, D.G.5
Moons, K.G.M.6
Collins, G.S.7
-
63
-
-
0017133178
-
Inference and missing data
-
MR0455196
-
RUBIN, D.B. (1976). Inference and missing data. Biometrika 63 581-592. MR0455196
-
(1976)
Biometrika
, vol.63
, pp. 581-592
-
-
Rubin, D.B.1
-
65
-
-
0003398574
-
Analysis of Incomplete Multivariate Data
-
Chapman & Hall, London. MR1692799
-
SCHAFER, J.L. (1997). Analysis of Incomplete Multivariate Data. Monographs on Statistics and Applied Probability 72. Chapman & Hall, London. MR1692799
-
(1997)
Monographs on Statistics and Applied Probability
, pp. 72
-
-
Schafer, J.L.1
-
66
-
-
0036017469
-
Computational strategies for multivariate linear mixed-effects models with missing values
-
MR1938143
-
SCHAFER, J.L. and YUCEL, R.M. (2002). Computational strategies for multivariate linear mixed-effects models with missing values. J. Comput. Graph. Statist. 11 437-457. MR1938143
-
(2002)
J. Comput. Graph. Statist.
, vol.11
, pp. 437-457
-
-
Schafer, J.L.1
Yucel, R.M.2
-
67
-
-
21344439360
-
Meta-analysis of individual patient data from randomized trials: A review of methods used in practice
-
SIMMONDS, M., HIGGINS, J., STEWART, L., TIERNEY, J., CLARKE, M. and THOMPSON, S. (2005). Meta-analysis of individual patient data from randomized trials: A review of methods used in practice. Clin. Trials 2 209-217.
-
(2005)
Clin. Trials
, vol.2
, pp. 209-217
-
-
Simmonds, M.1
Higgins, J.2
Stewart, L.3
Tierney, J.4
Clarke, M.5
Thompson, S.6
-
68
-
-
84950758368
-
The calculation of posterior distributions by data augmentation
-
MR0898357
-
TANNER, M.A. and WONG, W.H. (1987). The calculation of posterior distributions by data augmentation. J. Amer. Statist. Assoc. 82 528-550. MR0898357
-
(1987)
J. Amer. Statist. Assoc.
, vol.82
, pp. 528-550
-
-
Tanner, M.A.1
Wong, W.H.2
-
69
-
-
84863304598
-
-
Version 3.3.0. R Foundation for Statistical Computing, Vienna, Austria
-
R CORE TEAM (2016). R: A Language and Environment for Statistical Computing. Version 3.3.0. R Foundation for Statistical Computing, Vienna, Austria.
-
(2016)
R: A Language and Environment for Statistical Computing
-
-
-
70
-
-
34347407592
-
Multiple imputation of discrete and continuous data by fully conditional specification
-
MR2371007
-
VAN BUUREN, S. (2007). Multiple imputation of discrete and continuous data by fully conditional specification. Stat. Methods Med. Res. 16 219-242. MR2371007
-
(2007)
Stat. Methods Med. Res.
, vol.16
, pp. 219-242
-
-
Van Buuren, S.1
-
71
-
-
85130029608
-
Multiple imputation of multilevel data
-
(J.J. Hox, ed.), Routledge, New York
-
VAN BUUREN, S. (2011). Multiple imputation of multilevel data. In The Handbook of Advanced Multilevel Analysis (J.J. Hox, ed.) 173-196. Routledge, New York.
-
(2011)
The Handbook of Advanced Multilevel Analysis
, pp. 173-196
-
-
Van Buuren, S.1
-
73
-
-
79953732420
-
mice: Multivariate imputation by chained equations in R
-
VAN BUUREN, S. and GROOTHUIS-OUDSHOORN, K. (2011). mice: Multivariate imputation by chained equations in R.J. Stat. Softw. 45 1-67.
-
(2011)
J. Stat. Softw.
, vol.45
, pp. 1-67
-
-
Van Buuren, S.1
Groothuis-Oudshoorn, K.2
-
74
-
-
33751583679
-
Fully conditional specification in multivariate imputation
-
MR2307507
-
VAN BUUREN, S., BRAND, J.P.L., GROOTHUISOUDSHOORN, C.G.M. and RUBIN, D.B. (2006). Fully conditional specification in multivariate imputation. J. Stat. Comput. Simul. 76 1049-1064. MR2307507
-
(2006)
J. Stat. Comput. Simul.
, vol.76
, pp. 1049-1064
-
-
Van Buuren, S.1
Brand, J.P.L.2
Groothuisoudshoorn, C.G.M.3
Rubin, D.B.4
-
75
-
-
85010901622
-
Partitioned predictive mean matching as a multilevel imputation technique
-
VINK, G., LAZENDIC, G. and VAN BUUREN, S. (2015). Partitioned predictive mean matching as a multilevel imputation technique. Psychol. Test Assess. Model. 57 577-594.
-
(2015)
Psychol. Test Assess. Model.
, vol.57
, pp. 577-594
-
-
Vink, G.1
Lazendic, G.2
Van Buuren, S.3
-
76
-
-
80053977924
-
A closer examination of three small-sample approximations to the multiple-imputation degrees of freedom
-
WAGSTAFF, D. and HAREL, O. (2011). A closer examination of three small-sample approximations to the multiple-imputation degrees of freedom. Stata J. 11 403-419.
-
(2011)
Stata J.
, vol.11
, pp. 403-419
-
-
Wagstaff, D.1
Harel, O.2
-
77
-
-
80051757583
-
Random covariances and mixed-effects models for imputing multivariate multilevel continuous data
-
MR2906705
-
YUCEL, R.M. (2011). Random covariances and mixed-effects models for imputing multivariate multilevel continuous data. Stat. Model. 11 351-370. MR2906705
-
(2011)
Stat. Model.
, vol.11
, pp. 351-370
-
-
Yucel, R.M.1
-
78
-
-
84989894386
-
Multiple imputation in the presence of high-dimensional data
-
MR3553324
-
ZHAO, Y. and LONG, Q. (2016). Multiple imputation in the presence of high-dimensional data. Stat. Methods Med. Res. 25 2021-2035. MR3553324
-
(2016)
Stat. Methods Med. Res.
, vol.25
, pp. 2021-2035
-
-
Zhao, Y.1
Long, Q.2
-
79
-
-
84960437357
-
Performance of sequential imputation method in multilevel applications
-
(JSM 2009), Amer. Statist. Assoc., Alexandria, VA
-
ZHAO, E. and YUCEL, R. (2009). Performance of sequential imputation method in multilevel applications. In Proceedings of the Survey Research Methods Section (JSM 2009) 2800-2810. Amer. Statist. Assoc., Alexandria, VA.
-
(2009)
Proceedings of the Survey Research Methods Sectio
, pp. 2800-2810
-
-
Zhao, E.1
Yucel, R.2
-
80
-
-
84946962849
-
Convergence properties of a sequential regression multiple imputation algorithm
-
MR3420688
-
ZHU, J. and RAGHUNATHAN, T.E. (2015). Convergence properties of a sequential regression multiple imputation algorithm. J. Amer. Statist. Assoc. 110 1112-1124. MR3420688
-
(2015)
J. Amer. Statist. Assoc.
, vol.110
, pp. 1112-1124
-
-
Zhu, J.1
Raghunathan, T.E.2
|