메뉴 건너뛰기




Volumn 25, Issue 5, 2016, Pages 2021-2035

Multiple imputation in the presence of high-dimensional data

Author keywords

Bayesian lasso regression; high dimensional data; missing data; multiple imputation; regularized regression

Indexed keywords

HUMAN; STATISTICAL MODEL; BAYES THEOREM; GENETICS; METHODOLOGY; MONTE CARLO METHOD; NEOPLASM; REGRESSION ANALYSIS; SOFTWARE; STATISTICAL ANALYSIS; STATISTICAL BIAS;

EID: 84989894386     PISSN: 09622802     EISSN: 14770334     Source Type: Journal    
DOI: 10.1177/0962280213511027     Document Type: Article
Times cited : (73)

References (39)
  • 3
    • 79953732420 scopus 로고    scopus 로고
    • Mice: Multivariate imputation by chained equations in R
    • van Buuren S, Groothuis-Oudshoorn K,. mice: multivariate imputation by chained equations in R. J Stat Softw 2011; 45 (3): 1-67.
    • (2011) J Stat Softw , vol.45 , Issue.3 , pp. 1-67
    • Van Buuren, S.1    Groothuis-Oudshoorn, K.2
  • 4
    • 84863414529 scopus 로고    scopus 로고
    • Multiple imputation with diagnostics (mi) in R: Opening windows into the black box
    • Su Y, Gelman A, Hill J, et al. Multiple imputation with diagnostics (mi) in R: opening windows into the black box. J Stat Softw 2011; 45 (2): 1-31.
    • (2011) J Stat Softw , vol.45 , Issue.2 , pp. 1-31
    • Su, Y.1    Gelman, A.2    Hill, J.3
  • 5
    • 34248333868 scopus 로고    scopus 로고
    • Multiple imputation for the comparison of two screening tests in two-phase Alzheimer studies
    • Harel O, Zhou XH,. Multiple imputation for the comparison of two screening tests in two-phase Alzheimer studies. Stat Med 2007; 26: 2370-2388.
    • (2007) Stat Med , vol.26 , pp. 2370-2388
    • Harel, O.1    Zhou, X.H.2
  • 6
    • 79954626453 scopus 로고    scopus 로고
    • A functional multiple imputation approach to incomplete longitudinal data
    • He Y, Yucel R, Raghunathan TE,. A functional multiple imputation approach to incomplete longitudinal data. Stat Med 2011; 30: 1137-1156.
    • (2011) Stat Med , vol.30 , pp. 1137-1156
    • He, Y.1    Yucel, R.2    Raghunathan, T.E.3
  • 7
    • 8644254410 scopus 로고    scopus 로고
    • Robust likelihood-based analysis of multivariate data with missing values
    • Little R, An H,. Robust likelihood-based analysis of multivariate data with missing values. Stat Sin 2004; 14: 949-968.
    • (2004) Stat Sin , vol.14 , pp. 949-968
    • Little, R.1    An, H.2
  • 8
    • 79959332817 scopus 로고    scopus 로고
    • Robust estimation of area under ROC curve using auxiliary variables in the presence of missing biomarker values
    • Long Q, Zhang X, Johnson BA,. Robust estimation of area under ROC curve using auxiliary variables in the presence of missing biomarker values. Biometrics 2010; 67: 559-567.
    • (2010) Biometrics , vol.67 , pp. 559-567
    • Long, Q.1    Zhang, X.2    Johnson, B.A.3
  • 9
    • 84863381809 scopus 로고    scopus 로고
    • Doubly Robust Nonparametric Multiple Imputation for Ignorable Missing Data
    • Long Q, Hsu CH, Li Y,. Doubly Robust Nonparametric Multiple Imputation for Ignorable Missing Data. Stat Sin 2012; 22: 149-172.
    • (2012) Stat Sin , vol.22 , pp. 149-172
    • Long, Q.1    Hsu, C.H.2    Li, Y.3
  • 10
    • 77958605331 scopus 로고    scopus 로고
    • A comparison of multiple imputation and fully augmented weighted estimators for Cox regression with missing covariates
    • Qi L, Wang YF, He Y,. A comparison of multiple imputation and fully augmented weighted estimators for Cox regression with missing covariates. Stat Med 2010; 29: 2592-2604.
    • (2010) Stat Med , vol.29 , pp. 2592-2604
    • Qi, L.1    Wang, Y.F.2    He, Y.3
  • 11
    • 65249094801 scopus 로고    scopus 로고
    • Multiple imputation with large data sets: A case study of the Children's Mental Health Initiative
    • Stuart EA, Azur M, Frangakis C, et al. Multiple imputation with large data sets: a case study of the Children's Mental Health Initiative. Am J Epidemiol 2009; 169: 1133-1139.
    • (2009) Am J Epidemiol , vol.169 , pp. 1133-1139
    • Stuart, E.A.1    Azur, M.2    Frangakis, C.3
  • 12
    • 63049106411 scopus 로고    scopus 로고
    • Extensions of the penalized spline of propensity prediction method of imputation
    • Zhang G, Little R,. Extensions of the penalized spline of propensity prediction method of imputation. Biometrics 2008; 65: 911-918.
    • (2008) Biometrics , vol.65 , pp. 911-918
    • Zhang, G.1    Little, R.2
  • 13
    • 34250686456 scopus 로고    scopus 로고
    • Multiple imputation: Review of theory, implementation and software
    • Harel O, Zhou X,. Multiple imputation: review of theory, implementation and software. Stat Med 2007; 26: 3055-3057.
    • (2007) Stat Med , vol.26 , pp. 3055-3057
    • Harel, O.1    Zhou, X.2
  • 14
    • 84972537494 scopus 로고
    • Multiple-imputation inferences with uncongenial sources of input
    • Meng XL,. Multiple-imputation inferences with uncongenial sources of input. Stat Sci 1994; 9: 538-558.
    • (1994) Stat Sci , vol.9 , pp. 538-558
    • Meng, X.L.1
  • 15
    • 0030539070 scopus 로고    scopus 로고
    • Multiple imputation after 18+ years
    • Rubin DB,. Multiple imputation after 18+ years. J Am Stat Assoc 1996; 91: 473-489.
    • (1996) J Am Stat Assoc , vol.91 , pp. 473-489
    • Rubin, D.B.1
  • 16
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • Akaike H,. A new look at the statistical model identification. IEEE Trans Automat Control 1974; (19): 716-723.
    • (1974) IEEE Trans Automat Control , vol.19 , pp. 716-723
    • Akaike, H.1
  • 17
    • 84942484786 scopus 로고
    • Ridge regression: Biased estimation for nonorthogonal problems
    • Hoerl AE, Kennard RW,. Ridge regression: biased estimation for nonorthogonal problems. Technometrics 1970; 12: 55-67.
    • (1970) Technometrics , vol.12 , pp. 55-67
    • Hoerl, A.E.1    Kennard, R.W.2
  • 18
    • 84989900670 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani RJ,. Regression shrinkage and selection via the lasso. J R Stat Soc Ser B 1996; 58: 267-288.
    • (1996) J R Stat Soc ser B , vol.58 , pp. 267-288
    • Tibshirani, R.J.1
  • 19
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net
    • Zou H, Hastie T,. Regularization and variable selection via the elastic net. J R Stat Soc SerB 2005; 67: 301-320.
    • (2005) J R Stat Soc SerB , vol.67 , pp. 301-320
    • Zou, H.1    Hastie, T.2
  • 20
    • 33846114377 scopus 로고    scopus 로고
    • The adaptive lasso and its oracle properties
    • Zou H,. The adaptive lasso and its oracle properties. J Am Stat Assoc 2006; 101: 1418-1429.
    • (2006) J Am Stat Assoc , vol.101 , pp. 1418-1429
    • Zou, H.1
  • 21
  • 22
    • 71249130909 scopus 로고    scopus 로고
    • Bayesian lasso regression
    • Hans C,. Bayesian lasso regression. Biometrika 2009; 96: 835-845.
    • (2009) Biometrika , vol.96 , pp. 835-845
    • Hans, C.1
  • 23
    • 77953359190 scopus 로고    scopus 로고
    • Model uncertainty and variable selection in Bayesian lasso regression
    • Hans C,. Model uncertainty and variable selection in Bayesian lasso regression. Stat Comput 2010; 20: 221-229.
    • (2010) Stat Comput , vol.20 , pp. 221-229
    • Hans, C.1
  • 24
    • 0002467683 scopus 로고
    • Multiple imputation for the fatal accident reporting system
    • Heitjan DF, Little RJ,. Multiple imputation for the fatal accident reporting system. Appl Stat 1991; 40: 13-29.
    • (1991) Appl Stat , vol.40 , pp. 13-29
    • Heitjan, D.F.1    Little, R.J.2
  • 25
    • 0025801348 scopus 로고    scopus 로고
    • Multiple imputation in health-care databases: An overview and some applications
    • Rubin DB, Schenker N,. Multiple imputation in health-care databases: an overview and some applications. Stat Med 2006; 10: 585-598.
    • (2006) Stat Med , vol.10 , pp. 585-598
    • Rubin, D.B.1    Schenker, N.2
  • 26
    • 78049484065 scopus 로고    scopus 로고
    • Penalized regression, standard errors, and Bayesian lassos
    • Kyung M, Gill J, Ghosh M, et al. Penalized regression, standard errors, and Bayesian lassos. Bayesian Anal 2010; 5: 369-412.
    • (2010) Bayesian Anal , vol.5 , pp. 369-412
    • Kyung, M.1    Gill, J.2    Ghosh, M.3
  • 27
    • 34347407592 scopus 로고    scopus 로고
    • Multiple imputation of discrete and continuous data by fully conditional specification
    • van Buuren S,. Multiple imputation of discrete and continuous data by fully conditional specification. Stat Methods Med Res 2007; 16: 219-242.
    • (2007) Stat Methods Med Res , vol.16 , pp. 219-242
    • Van Buuren, S.1
  • 29
    • 79960128131 scopus 로고    scopus 로고
    • Bootstrapping lasso estimators
    • Chatterjee A, Lahiri SN,. Bootstrapping lasso estimators. J Am Stat Assoc 2011; 106: 608-625.
    • (2011) J Am Stat Assoc , vol.106 , pp. 608-625
    • Chatterjee, A.1    Lahiri, S.N.2
  • 30
    • 78649892400 scopus 로고    scopus 로고
    • Asymptotic properties of the residual bootstrap for Lasso estimators
    • Chatterjee A, Lahiri S,. Asymptotic properties of the residual bootstrap for Lasso estimators. Proc Am Math Soc 2010; 138: 4497-4509.
    • (2010) Proc Am Math Soc , vol.138 , pp. 4497-4509
    • Chatterjee, A.1    Lahiri, S.2
  • 31
    • 0033616909 scopus 로고    scopus 로고
    • Multiple imputation of missing blood pressure covariates in survival analysis
    • van Buuren S, Boshuizen HC, Knook DL, et al. Multiple imputation of missing blood pressure covariates in survival analysis. Stat Med 1999; 18: 681-694.
    • (1999) Stat Med , vol.18 , pp. 681-694
    • Van Buuren, S.1    Boshuizen, H.C.2    Knook, D.L.3
  • 32
    • 0035755636 scopus 로고    scopus 로고
    • A comparison of inclusive and restrictive strategies in modern missing data procedures
    • Collins L, Schafer J, Kam CM,. A comparison of inclusive and restrictive strategies in modern missing data procedures. Psychol Methods 2001; 6: 330-351.
    • (2001) Psychol Methods , vol.6 , pp. 330-351
    • Collins, L.1    Schafer, J.2    Kam, C.M.3
  • 33
    • 70449834993 scopus 로고    scopus 로고
    • The effect of auxiliary variables and multiple imputation on parameter estimation in confirmatory factor analysis
    • Hoo J,. The effect of auxiliary variables and multiple imputation on parameter estimation in confirmatory factor analysis. Educ Psychol Meas 2009; 69: 929-947.
    • (2009) Educ Psychol Meas , vol.69 , pp. 929-947
    • Hoo, J.1
  • 34
    • 78651256743 scopus 로고    scopus 로고
    • Multiple imputation using chained equations: Issues and guidance for practice
    • White I, Royston P, Wood A,. Multiple imputation using chained equations: issues and guidance for practice. Stat Med 2011; 30: 377-399.
    • (2011) Stat Med , vol.30 , pp. 377-399
    • White, I.1    Royston, P.2    Wood, A.3
  • 35
    • 84870333136 scopus 로고    scopus 로고
    • Auxiliary variables in multiple imputation in regression with missing X: A warning against including too many in small sample research
    • Hardt J, Herke M, Leonhart R,. Auxiliary variables in multiple imputation in regression with missing X: a warning against including too many in small sample research. BMC Med Res Methodol 2012; 12: 184-184. http://www.biomedcentral.com/1471-2288/12/184.
    • (2012) BMC Med Res Methodol , vol.12 , pp. 184
    • Hardt, J.1    Herke, M.2    Leonhart, R.3
  • 36
    • 77955145935 scopus 로고    scopus 로고
    • Variable selection in nonparametric additive models
    • Huang J, Horowitz JL, Wei F,. Variable selection in nonparametric additive models. Annal Stat 2010; 38: 2282-2313.
    • (2010) Annal Stat , vol.38 , pp. 2282-2313
    • Huang, J.1    Horowitz, J.L.2    Wei, F.3
  • 37
    • 41549141939 scopus 로고    scopus 로고
    • Boosting algorithms: Regularization, prediction and model fitting
    • Bühlmann P, Hothorn T,. Boosting algorithms: regularization, prediction and model fitting. Stat Sci 2007; 22: 477-505.
    • (2007) Stat Sci , vol.22 , pp. 477-505
    • Bühlmann, P.1    Hothorn, T.2
  • 38
    • 0009911924 scopus 로고
    • The strong uniform consistency of nearest neighbor density estimates
    • Devroye LP, Wagner T,. The strong uniform consistency of nearest neighbor density estimates. Annal Stat 1977; 5: 536-540.
    • (1977) Annal Stat , vol.5 , pp. 536-540
    • Devroye, L.P.1    Wagner, T.2
  • 39
    • 0000439527 scopus 로고
    • Optimal rates of convergence for nonparametric estimators
    • Stone CJ,. Optimal rates of convergence for nonparametric estimators. Annal Stat 1980; 8: 1348-1360.
    • (1980) Annal Stat , vol.8 , pp. 1348-1360
    • Stone, C.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.