메뉴 건너뛰기




Volumn 22, Issue 4, 2014, Pages 497-519

Multiple imputation for continuous and categorical data: Comparing joint multivariate normal and conditional approaches

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84942135544     PISSN: 10471987     EISSN: 14764989     Source Type: Journal    
DOI: 10.1093/pan/mpu007     Document Type: Article
Times cited : (61)

References (37)
  • 1
    • 84924288258 scopus 로고    scopus 로고
    • Stanford University and the University of Michigan [producers]
    • American National Election Studies (ANES; www.electionstudies.org). The ANES 2008 Time Series Study [data set]. Stanford University and the University of Michigan [producers].
    • The ANES 2008 Time Series Study [data set]
  • 2
    • 33847711413 scopus 로고    scopus 로고
    • Robustness of a multivariate normal approximation for imputation of incomplete binary data
    • Bernaards, Coen A., Thomas R. Belin, and Joseph L. Schafer. 2007. Robustness of a multivariate normal approximation for imputation of incomplete binary data. Statistics in Medicine 26(6):1368-82.
    • (2007) Statistics in Medicine , vol.26 , Issue.6 , pp. 1368-1382
    • Bernaards, C.A.1    Belin, T.R.2    Schafer, J.L.3
  • 3
    • 84875140733 scopus 로고    scopus 로고
    • We have to be discrete about this: A non-parametric imputation technique for missing categorical data
    • Cranmer, Skyler J., and Jeff Gill. 2013. We have to be discrete about this: A non-parametric imputation technique for missing categorical data. British Journal of Political Science 43(2):425-49.
    • (2013) British Journal of Political Science , vol.43 , Issue.2 , pp. 425-449
    • Cranmer, S.J.1    Gill, J.2
  • 5
    • 77649115914 scopus 로고    scopus 로고
    • A distance-based rounding strategy for post-imputation ordinal data
    • Demirtas, Hakan. 2010. A distance-based rounding strategy for post-imputation ordinal data. Journal of Applied Statistics 37(3):489-500.
    • (2010) Journal of Applied Statistics , vol.37 , Issue.3 , pp. 489-500
    • Demirtas, H.1
  • 7
    • 84865371361 scopus 로고    scopus 로고
    • A weakly informative default prior distribution for logistic and other regression models
    • Gelman, Andrew, Aleks Jakulin, Maria Grazia Pittau, and Yu-Sung Su. 2008. A weakly informative default prior distribution for logistic and other regression models. Annals of Applied Statistics 2(4):1360-83.
    • (2008) Annals of Applied Statistics , vol.2 , Issue.4 , pp. 1360-1383
    • Gelman, A.1    Jakulin, A.2    Pittau, M.G.3    Su, Y.-S.4
  • 10
    • 0029584587 scopus 로고
    • A critical look at methods for handling missing covariates in epidemiologic regression analyses
    • Greenland, Sander, and William D. Finkle. 1995. A critical look at methods for handling missing covariates in epidemiologic regression analyses. American Journal of Epidemiology 142(12):1255-64.
    • (1995) American Journal of Epidemiology , vol.142 , Issue.12 , pp. 1255-1264
    • Greenland, S.1    Finkle, W.D.2
  • 11
    • 77954332545 scopus 로고    scopus 로고
    • What to do about missing values in time-series cross-section data
    • Honaker, James, and Gary King. 2010. What to do about missing values in time-series cross-section data. American Journal of Political Science 54(2):561-81.
    • (2010) American Journal of Political Science , vol.54 , Issue.2 , pp. 561-581
    • Honaker, J.1    King, G.2
  • 14
    • 0242710940 scopus 로고    scopus 로고
    • A potential for bias when rounding in multiple imputation
    • Horton, Nicholas J., Stuart R. Lipsitz, and Michael Parzen. 2003. A potential for bias when rounding in multiple imputation. American Statistician 57(4):229-32.
    • (2003) American Statistician , vol.57 , Issue.4 , pp. 229-232
    • Horton, N.J.1    Lipsitz, S.R.2    Parzen, M.3
  • 16
    • 77249147857 scopus 로고    scopus 로고
    • Multiple imputation for missing data: Fully conditional specification versus multivariate normal imputation
    • Lee, Katherine J., and John B. Carlin. 2010. Multiple imputation for missing data: Fully conditional specification versus multivariate normal imputation. American Journal of Epidemiology 171(5):624-32.
    • (2010) American Journal of Epidemiology , vol.171 , Issue.5 , pp. 624-632
    • Lee, K.J.1    Carlin, J.B.2
  • 17
    • 68949200946 scopus 로고    scopus 로고
    • Generating random correlation matrices based on vines and extended onion method
    • Lewandowski, Daniel, Dorota Kurowicka, and Harry Joe. 2010. Generating random correlation matrices based on vines and extended onion method. Journal of Multivariate Analysis 100(9):1989-2001.
    • (2010) Journal of Multivariate Analysis , vol.100 , Issue.9 , pp. 1989-2001
    • Lewandowski, D.1    Kurowicka, D.2    Joe, H.3
  • 19
    • 32444450470 scopus 로고    scopus 로고
    • Multiple imputation of missing values: Update
    • Royston, Patrick. 2005. Multiple imputation of missing values: Update. Stata Journal 5(2):188-201.
    • (2005) Stata Journal , vol.5 , Issue.2 , pp. 188-201
    • Royston, P.1
  • 20
    • 43749105785 scopus 로고    scopus 로고
    • Multiple imputation of missing values: Further update of ice, with an emphasis on interval censoring
    • Royston, Patrick. 2007. Multiple imputation of missing values: Further update of ice, with an emphasis on interval censoring. Stata Journal 7(4):445-74.
    • (2007) Stata Journal , vol.7 , Issue.4 , pp. 445-474
    • Royston, P.1
  • 21
    • 70349590221 scopus 로고    scopus 로고
    • Multiple imputation of missing values: Further update of ice, with an emphasis on categorical variables
    • Royston, Patrick. 2009. Multiple imputation of missing values: Further update of ice, with an emphasis on categorical variables. Stata Journal 9(3):466-77.
    • (2009) Stata Journal , vol.9 , Issue.3 , pp. 466-477
    • Royston, P.1
  • 23
    • 84940952808 scopus 로고    scopus 로고
    • Statistical matching using file concatenation with adjusted weights and multiple imputations
    • Rubin, Donald B. Statistical matching using file concatenation with adjusted weights and multiple imputations. Journal of Business and Economic Statistics 4(1):87-94.
    • Journal of Business and Economic Statistics , vol.4 , Issue.1 , pp. 87-94
    • Rubin, D.B.1
  • 27
    • 0032219074 scopus 로고    scopus 로고
    • Multiple imputation for multivariate missing-data problems: A data analyst's perspective
    • Schafer, Joseph L., and Maren K. Olsen. 1998. Multiple imputation for multivariate missing-data problems: A data analyst's perspective. Multivariate Behavioral Research 33(4):545-71.
    • (1998) Multivariate Behavioral Research , vol.33 , Issue.4 , pp. 545-571
    • Schafer, J.L.1    Olsen, M.K.2
  • 28
    • 84899623960 scopus 로고    scopus 로고
    • College Station, TX: Stata Press
    • StataCorp. 2013. Stata 13 base reference manual. College Station, TX: Stata Press.
    • (2013) Stata 13 base reference manual
  • 29
    • 84863414529 scopus 로고    scopus 로고
    • Multiple imputation with diagnostics (mi) in R: Opening windows into the black box
    • Su, Yu-Sung, Andrew Gelman, Jennifer Hill, and Masanao Yajima. 2011. Multiple imputation with diagnostics (mi) in R: Opening windows into the black box. Journal of Statistical Software 45(2):1-31.
    • (2011) Journal of Statistical Software , vol.45 , Issue.2 , pp. 1-31
    • Su, Y.-S.1    Gelman, A.2    Hill, J.3    Yajima, M.4
  • 31
    • 34347407592 scopus 로고    scopus 로고
    • Multiple imputation of discrete and continuous data by fully conditional specification
    • van Buuren, Stef. 2007. Multiple imputation of discrete and continuous data by fully conditional specification. Statistical Methods in Medical Research 16(3):219-42.
    • (2007) Statistical Methods in Medical Research , vol.16 , Issue.3 , pp. 219-242
    • van Buuren, S.1
  • 33
    • 0033616909 scopus 로고    scopus 로고
    • Multiple imputation of missing blood pressure covariates in survival analysis
    • van Buuren, Stef, Hendriek C. Boshuizen, and D. L. Knook. 1999. Multiple imputation of missing blood pressure covariates in survival analysis. Statistics in Medicine 18(6):681-94.
    • (1999) Statistics in Medicine , vol.18 , Issue.6 , pp. 681-694
    • van Buuren, S.1    Boshuizen, H.C.2    Knook, D.L.3
  • 36
    • 34347370000 scopus 로고    scopus 로고
    • Evaluation of software for multiple imputation of semicontinuous data
    • Yu, L-M, Andrea Burton, and Oliver Rivero-Arias. 2007. Evaluation of software for multiple imputation of semicontinuous data. Statistical Methods in Medical Research 16(3):243-58.
    • (2007) Statistical Methods in Medical Research , vol.16 , Issue.3 , pp. 243-258
    • Yu, L.-M.1    Burton, A.2    Rivero-Arias, O.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.