메뉴 건너뛰기




Volumn 53, Issue 1, 2011, Pages 57-74

Quantifying the impact of fixed effects modeling of clusters in multiple imputation for cluster randomized trials

Author keywords

Cluster randomized; Missing data; Multiple imputation

Indexed keywords

CLUSTER RANDOMIZED; CLUSTER RANDOMIZED TRIALS; CORRELATED OBSERVATIONS; FIXED EFFECT MODELS; MISSING DATA; MULTIPLE IMPUTATION; NUMBER OF CLUSTERS; STUDY GROUPS; TREATMENT GROUP; VARIANCE ESTIMATORS;

EID: 78851470246     PISSN: 03233847     EISSN: 15214036     Source Type: Journal    
DOI: 10.1002/bimj.201000140     Document Type: Article
Times cited : (65)

References (37)
  • 1
    • 2442736478 scopus 로고    scopus 로고
    • Small-sample degrees of freedom with multiple imputation
    • Barnard, J. and Rubin, D. B. (1999). Small-sample degrees of freedom with multiple imputation. Biometrika 86, 949-955.
    • (1999) Biometrika , vol.86 , pp. 949-955
    • Barnard, J.1    Rubin, D.B.2
  • 4
    • 43949159608 scopus 로고
    • Cluster randomization trials in epidemiology: theory and application
    • Donner, A. and Klar, N. (1994). Cluster randomization trials in epidemiology: theory and application. Journal of Statistical Planning and Inference 42, 37-56.
    • (1994) Journal of Statistical Planning and Inference , vol.42 , pp. 37-56
    • Donner, A.1    Klar, N.2
  • 5
    • 0003774549 scopus 로고    scopus 로고
    • Design and Analysis of Cluster Randomization Trials in Health Research
    • Arnold, London.
    • Donner, A. and Klar, N. (2000). Design and Analysis of Cluster Randomization Trials in Health Research. Arnold, London.
    • (2000)
    • Donner, A.1    Klar, N.2
  • 10
    • 27644587921 scopus 로고    scopus 로고
    • Results of a randomized controlled trial to increase colorectal cancer screening in a managed care health plan
    • Ganz, P. A., Farmer, M. M., Belman, M. J., Garcia, C. A., Streja, L., Dietrich, A. J., Winchell, C., Bastani, R. and Kahn, K. L. (2005). Results of a randomized controlled trial to increase colorectal cancer screening in a managed care health plan. Cancer 104, 2072-2083.
    • (2005) Cancer , vol.104 , pp. 2072-2083
    • Ganz, P.A.1    Farmer, M.M.2    Belman, M.J.3    Garcia, C.A.4    Streja, L.5    Dietrich, A.J.6    Winchell, C.7    Bastani, R.8    Kahn, K.L.9
  • 11
    • 44949140562 scopus 로고    scopus 로고
    • Early effects of communities that care on targeted risks and initiation of delinquent behavior and substance use
    • Hawkins, J. D., Brown, E. C., Oesterle, S., Arthur, M. W., Abbott, R. D. and Catalano, R. F. (2008). Early effects of communities that care on targeted risks and initiation of delinquent behavior and substance use. Journal of Adolescent Health 43, 15-22.
    • (2008) Journal of Adolescent Health , vol.43 , pp. 15-22
    • Hawkins, J.D.1    Brown, E.C.2    Oesterle, S.3    Arthur, M.W.4    Abbott, R.D.5    Catalano, R.F.6
  • 13
    • 0242710940 scopus 로고    scopus 로고
    • A potential for bias when rounding in multiple imputation
    • Horton, N. J., Lipsitz, S. R. and Parzen, M. (2003). A potential for bias when rounding in multiple imputation. The American Statistician 57, 229-232.
    • (2003) The American Statistician , vol.57 , pp. 229-232
    • Horton, N.J.1    Lipsitz, S.R.2    Parzen, M.3
  • 15
    • 23244448334 scopus 로고    scopus 로고
    • Finite sample properties of multiple imputation estimators
    • Kim, J. K. (2004). Finite sample properties of multiple imputation estimators. The Annals of Statistics 32, 766-783.
    • (2004) The Annals of Statistics , vol.32 , pp. 766-783
    • Kim, J.K.1
  • 16
    • 85101444608 scopus 로고    scopus 로고
    • Statistical Analysis with Missing Data
    • Wiley, New York.
    • Little, R. J. A. and Rubin, D. B. (2002). Statistical Analysis with Missing Data (2 edn.) Wiley, New York.
    • (2002)
    • Little, R.J.A.1    Rubin, D.B.2
  • 17
    • 84972537494 scopus 로고
    • Multiple-imputation inferences with uncongenial sources of input
    • Meng, X. L. (1994). Multiple-imputation inferences with uncongenial sources of input. Statistical Science 9, 538-557.
    • (1994) Statistical Science , vol.9 , pp. 538-557
    • Meng, X.L.1
  • 18
    • 0004227725 scopus 로고    scopus 로고
    • Design and Analysis of Group-Randomized Trials
    • Oxford University Press, New York.
    • Murray, D. M. (1998). Design and Analysis of Group-Randomized Trials. Oxford University Press, New York.
    • (1998)
    • Murray, D.M.1
  • 19
    • 0037315406 scopus 로고    scopus 로고
    • Methods to reduce the impact of intraclass correlation in group-randomized trials
    • Murray, D. M. and Blitstein, J. L. (2003). Methods to reduce the impact of intraclass correlation in group-randomized trials. Evaluation Review 27, 79-103.
    • (2003) Evaluation Review , vol.27 , pp. 79-103
    • Murray, D.M.1    Blitstein, J.L.2
  • 21
    • 85153302381 scopus 로고    scopus 로고
    • R Development Core Team (). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.
    • R Development Core Team (2009). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.
    • (2009)
  • 22
    • 0002344593 scopus 로고    scopus 로고
    • A multivariate technique for multiply imputing missing values using a sequence of regression models
    • Raghunathan, T. E., Lepkowski, J. M., Van Hoewyk, J. and Solenberger, P. (2001). A multivariate technique for multiply imputing missing values using a sequence of regression models. Survey Methodology 21, 85-95.
    • (2001) Survey Methodology , vol.21 , pp. 85-95
    • Raghunathan, T.E.1    Lepkowski, J.M.2    Van Hoewyk, J.3    Solenberger, P.4
  • 23
    • 34548704976 scopus 로고    scopus 로고
    • The importance of modeling the sampling design in multiple imputation for missing data
    • Reiter, J., Raghunathan, T. and Kinney, S. (2006). The importance of modeling the sampling design in multiple imputation for missing data. Survey Methodology 32, 143-149.
    • (2006) Survey Methodology , vol.32 , pp. 143-149
    • Reiter, J.1    Raghunathan, T.2    Kinney, S.3
  • 24
    • 85153238983 scopus 로고
    • Multiple imputation in sample surveys - a phenomenological Bayesian approach to nonresponse. In: American Statistical Association Proceedings of the Survey Research Methods Section. American Statistical Association, Alexandria, VA
    • Rubin, D. B. (1978). Multiple imputation in sample surveys - a phenomenological Bayesian approach to nonresponse. In: American Statistical Association Proceedings of the Survey Research Methods Section. American Statistical Association, Alexandria, VA, pp. 20-28.
    • (1978) , pp. 20-28
    • Rubin, D.B.1
  • 25
    • 0003738155 scopus 로고
    • Multiple Imputation for Nonresponse in Surveys
    • Wiley, New York.
    • Rubin, D. B. (1987). Multiple Imputation for Nonresponse in Surveys. Wiley, New York.
    • (1987)
    • Rubin, D.B.1
  • 26
    • 84950918760 scopus 로고
    • Multiple imputation for interval estimation from simple random samples with ignorable non-response
    • Rubin, D. B. and Schenker, N. (1986). Multiple imputation for interval estimation from simple random samples with ignorable non-response. Journal of the American Statistical Association 81, 366-374.
    • (1986) Journal of the American Statistical Association , vol.81 , pp. 366-374
    • Rubin, D.B.1    Schenker, N.2
  • 27
    • 8744296509 scopus 로고    scopus 로고
    • SAS/STAT 9.1 User's Guide
    • SAS Institute Inc. (). Cary, NC.
    • SAS Institute Inc. (2004). SAS/STAT 9.1 User's Guide. Cary, NC.
    • (2004)
  • 28
    • 85153311713 scopus 로고    scopus 로고
    • Imputation of missing covariates under a multivariate linear mixed model. Technical report, Department of Statistics, The Pennsylvania State University.
    • Schafer, J. L. (1997). Imputation of missing covariates under a multivariate linear mixed model. Technical report, Department of Statistics, The Pennsylvania State University.
    • (1997)
    • Schafer, J.L.1
  • 29
    • 0003960664 scopus 로고    scopus 로고
    • NORM for Windows 95/98/NT: Multiple Imputation of Incomplete Multivariate Data Under a Normal Model
    • Pennsylvania State University, University Park.
    • Schafer, J. L. (2000). NORM for Windows 95/98/NT: Multiple Imputation of Incomplete Multivariate Data Under a Normal Model. Pennsylvania State University, University Park.
    • (2000)
    • Schafer, J.L.1
  • 30
    • 85153254696 scopus 로고    scopus 로고
    • Pan: multiple imputation for multivariate panel or clustered data. R package version 0.2-6.
    • Schafer, J. L. (2008). Pan: multiple imputation for multivariate panel or clustered data. R package version 0.2-6.
    • (2008)
    • Schafer, J.L.1
  • 31
    • 0000612448 scopus 로고
    • The effect of two-stage sampling on ordinary least squares methods
    • Scott, A. J. and Holt, D. (1982). The effect of two-stage sampling on ordinary least squares methods. Journal of the American Statistical Association 77, 848-854.
    • (1982) Journal of the American Statistical Association , vol.77 , pp. 848-854
    • Scott, A.J.1    Holt, D.2
  • 32
    • 78851468999 scopus 로고    scopus 로고
    • Stata User's Guide
    • College Station, TX.
    • Stata Press (2009). Stata User's Guide. College Station, TX.
    • (2009)
  • 33
    • 49849097915 scopus 로고    scopus 로고
    • Imputation strategies for missing continuous outcomes in cluster randomized trials
    • Taljaard, M., Donner, A. and Klar, N. (2008). Imputation strategies for missing continuous outcomes in cluster randomized trials. Biometrical Journal 50, 329-345.
    • (2008) Biometrical Journal , vol.50 , pp. 329-345
    • Taljaard, M.1    Donner, A.2    Klar, N.3
  • 35
    • 85153259723 scopus 로고    scopus 로고
    • Sequential hierarchical regression imputation (shrimp). In: American Statistical Association Proceedings of the Health Policy Statistics Section. American Statistical Association, Alexandria, VA.
    • Yucel, R. M. and Raghunathan, T. (2006). Sequential hierarchical regression imputation (shrimp). In: American Statistical Association Proceedings of the Health Policy Statistics Section. American Statistical Association, Alexandria, VA.
    • (2006)
    • Yucel, R.M.1    Raghunathan, T.2
  • 36
    • 85153185424 scopus 로고    scopus 로고
    • Performance of sequential imputation method in multilevel applications. In American Statistical Association Proceedings of the Survey Research Methods Section. American Statistical Association, Alexandria, VA
    • Zhao, E. and Yucel, R. M. (2009). Performance of sequential imputation method in multilevel applications. In American Statistical Association Proceedings of the Survey Research Methods Section. American Statistical Association, Alexandria, VA, pp. 2800-2810.
    • (2009) , pp. 2800-2810
    • Zhao, E.1    Yucel, R.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.