-
3
-
-
84879535463
-
Bayesian methods for the analysis of small sample multilevel data with a complex variance structure
-
S.A.Baldwin, & G.W.Fellingham, (2013). Bayesian methods for the analysis of small sample multilevel data with a complex variance structure. Psychological Methods, 18, 151–164. doi:10.1037/a0030642
-
(2013)
Psychological Methods
, vol.18
, pp. 151-164
-
-
Baldwin, S.A.1
Fellingham, G.W.2
-
4
-
-
2342557088
-
Using generalized estimating equations for longitudinal data analysis
-
G.A.Ballinger, (2004). Using generalized estimating equations for longitudinal data analysis. Organizational Research Methods, 7, 127–150. doi:10.1177/1094428104263672
-
(2004)
Organizational Research Methods
, vol.7
, pp. 127-150
-
-
Ballinger, G.A.1
-
5
-
-
83755185645
-
Fitting multilevel models with ordinal outcomes: Performance of alternative specifications and methods of estimation
-
D.J.Bauer, & S.K.Sterba, (2011). Fitting multilevel models with ordinal outcomes:Performance of alternative specifications and methods of estimation. Psychological Methods, 16, 373–390. doi:10.1037/a0025813
-
(2011)
Psychological Methods
, vol.16
, pp. 373-390
-
-
Bauer, D.J.1
Sterba, S.K.2
-
6
-
-
0041565373
-
Separation of individual-level and cluster-level covariate effects in regression analysis of correlated data
-
M.D.Begg, & M.K.Parides, (2003). Separation of individual-level and cluster-level covariate effects in regression analysis of correlated data. Statistics in Medicine, 22, 2591–2602. doi:10.1002/sim.1524
-
(2003)
Statistics in Medicine
, vol.22
, pp. 2591-2602
-
-
Begg, M.D.1
Parides, M.K.2
-
7
-
-
84894161242
-
How low can you go? An investigation of the influence of sample size and model complexity on point and interval estimates in two-level linear models
-
B.A.Bell, G.B.Morgan, J.A.Schoeneberger, J.D.Kromrey, & J.M.Ferron, (2014). How low can you go? An investigation of the influence of sample size and model complexity on point and interval estimates in two-level linear models. Methodology, 10, 1–11. doi:10.1002/sim.1524
-
(2014)
Methodology
, vol.10
, pp. 1-11
-
-
Bell, B.A.1
Morgan, G.B.2
Schoeneberger, J.A.3
Kromrey, J.D.4
Ferron, J.M.5
-
8
-
-
6344243533
-
Asymptotic effect of misspecification in the random part of the multilevel model
-
J.Berkhof, & J.K.Kampen, (2004). Asymptotic effect of misspecification in the random part of the multilevel model. Journal of Educational and Behavioral Statistics, 29, 201–218. doi:10.3102/10769986029002201
-
(2004)
Journal of Educational and Behavioral Statistics
, vol.29
, pp. 201-218
-
-
Berkhof, J.1
Kampen, J.K.2
-
10
-
-
33847083094
-
A comparison of Bayesian and likelihood-based methods for fitting multilevel models
-
W.J.Browne, & D.Draper, (2006). A comparison of Bayesian and likelihood-based methods for fitting multilevel models. Bayesian Analysis, 1, 473–514. doi:10.1214/06-BA117
-
(2006)
Bayesian Analysis
, vol.1
, pp. 473-514
-
-
Browne, W.J.1
Draper, D.2
-
11
-
-
79955027027
-
Robust inference with multiway clustering
-
A.C.Cameron, J.B.Gelbach, & D.L.Miller, (2011). Robust inference with multiway clustering. Journal of Business & Economic Statistics, 29, 238–249. doi:10.1198/jbes.2010.07136
-
(2011)
Journal of Business & Economic Statistics
, vol.29
, pp. 238-249
-
-
Cameron, A.C.1
Gelbach, J.B.2
Miller, D.L.3
-
12
-
-
84873347427
-
Implementing restricted maximum likelihood estimation in structural equation models
-
M.W.L.Cheung, (2013). Implementing restricted maximum likelihood estimation in structural equation models. Structural Equation Modeling, 20, 157–167. doi:10.1080/10705511.2013.742404
-
(2013)
Structural Equation Modeling
, vol.20
, pp. 157-167
-
-
Cheung, M.W.L.1
-
13
-
-
0033266211
-
A prior for the variance in hierarchical models
-
M.J.Daniels, (1999). A prior for the variance in hierarchical models. The Canadian Journal of Statistics, 27, 567–578. doi:10.2307/3316112
-
(1999)
The Canadian Journal of Statistics
, vol.27
, pp. 567-578
-
-
Daniels, M.J.1
-
14
-
-
84951310169
-
Improving transparency and replication in Bayesian statistics: The WAMBS-checklist
-
S.Depaoli, & R.van de Schoot, (2016). Improving transparency and replication in Bayesian statistics:The WAMBS-checklist. Psychological Methods. Advance online publication. doi:10.1037/met0000065
-
(2016)
Psychological Methods
-
-
Depaoli, S.1
van de Schoot, R.2
-
15
-
-
0001968264
-
On some small sample properties of generalized estimating equation estimates for multivariate dichotomous outcomes
-
L.J.Emrich, & M.R.Piedmonte, (1992). On some small sample properties of generalized estimating equation estimates for multivariate dichotomous outcomes. Journal of Statistical Computation and Simulation, 41, 19–29. doi:10.1080/00949659208811388
-
(1992)
Journal of Statistical Computation and Simulation
, vol.41
, pp. 19-29
-
-
Emrich, L.J.1
Piedmonte, M.R.2
-
16
-
-
34548463099
-
Centering predictor variables in cross-sectional multilevel models: a new look at an old issue
-
C.K.Enders, & D.Tofighi, (2007). Centering predictor variables in cross-sectional multilevel models:a new look at an old issue. Psychological Methods, 12, 121–138. doi:10.1037/1082-989X.12.2.121
-
(2007)
Psychological Methods
, vol.12
, pp. 121-138
-
-
Enders, C.K.1
Tofighi, D.2
-
17
-
-
0035184396
-
Small-sample adjustments for Wald-type tests using sandwich estimators
-
M.P.Fay, & B.I.Graubard, (2001). Small-sample adjustments for Wald-type tests using sandwich estimators. Biometrics, 57, 1198–1206. doi:10.1111/j.0006-341X.2001.01198.x
-
(2001)
Biometrics
, vol.57
, pp. 1198-1206
-
-
Fay, M.P.1
Graubard, B.I.2
-
18
-
-
66149144783
-
Making treatment effect inferences from multiple-baseline data: The utility of multilevel modeling approaches
-
J.M.Ferron, B.A.Bell, M.R.Hess, G.Rendina-Gobioff, & S.T.Hibbard, (2009). Making treatment effect inferences from multiple-baseline data:The utility of multilevel modeling approaches. Behavior Research Methods, 41, 372–384. doi:10.3758/BRM.41.2.372
-
(2009)
Behavior Research Methods
, vol.41
, pp. 372-384
-
-
Ferron, J.M.1
Bell, B.A.2
Hess, M.R.3
Rendina-Gobioff, G.4
Hibbard, S.T.5
-
20
-
-
10844245499
-
An empirical evaluation of alternative methods of estimation for confirmatory factor analysis with ordinal data
-
D.B.Flora, & P.J.Curran, (2004). An empirical evaluation of alternative methods of estimation for confirmatory factor analysis with ordinal data. Psychological Methods, 9, 466–491. doi:10.1037/1082-989X.9.4.466
-
(2004)
Psychological Methods
, vol.9
, pp. 466-491
-
-
Flora, D.B.1
Curran, P.J.2
-
21
-
-
84860458749
-
Effect size estimates: current use, calculations, and interpretation
-
C.O.Fritz, P.E.Morris, & J.J.Richler, (2012). Effect size estimates:current use, calculations, and interpretation. Journal of Experimental Psychology:General, 141, 2–18. doi:10.1037/a0024338
-
(2012)
Journal of Experimental Psychology: General
, vol.141
, pp. 2-18
-
-
Fritz, C.O.1
Morris, P.E.2
Richler, J.J.3
-
22
-
-
77956201379
-
A study of clustered data and approaches to its analysis
-
S.Galbraith, J.A.Daniel, & B.Vissel, (2010). A study of clustered data and approaches to its analysis. The Journal of Neuroscience, 30, 10601–10608. doi:10.1523/JNEUROSCI.0362-10.2010
-
(2010)
The Journal of Neuroscience
, vol.30
, pp. 10601-10608
-
-
Galbraith, S.1
Daniel, J.A.2
Vissel, B.3
-
23
-
-
61749087965
-
Fixed effects, random effects and GEE: What are the differences?
-
J.C.Gardiner, Z.Luo, & L.A.Roman, (2009). Fixed effects, random effects and GEE:What are the differences? Statistics in Medicine, 28, 221–239. doi:10.1002/sim.3478
-
(2009)
Statistics in Medicine
, vol.28
, pp. 221-239
-
-
Gardiner, J.C.1
Luo, Z.2
Roman, L.A.3
-
24
-
-
84867086419
-
Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper)
-
A.Gelman, (2006). Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper). Bayesian Analysis, 1, 515–534.
-
(2006)
Bayesian Analysis
, vol.1
, pp. 515-534
-
-
Gelman, A.1
-
25
-
-
0004012196
-
-
Boca Raton, FL: CRC press
-
A.Gelman, J.B.Carlin, H.S.Stern, & D.B.Rubin, (2003). Bayesian data analysis. Boca Raton, FL:CRC press. doi:10.1214/06-BA117A
-
(2003)
Bayesian data analysis
-
-
Gelman, A.1
Carlin, J.B.2
Stern, H.S.3
Rubin, D.B.4
-
26
-
-
0000293390
-
Small sample characteristics of generalized estimating equations
-
J.C.Gunsolley, C.Getchell, & V.M.Chinchilli, (1995). Small sample characteristics of generalized estimating equations. Communications in Statistics-Simulation and Computation, 24, 869–878. doi/10.1080/03610919508813280
-
(1995)
Communications in Statistics-Simulation and Computation
, vol.24
, pp. 869-878
-
-
Gunsolley, J.C.1
Getchell, C.2
Chinchilli, V.M.3
-
27
-
-
30444457239
-
A primer for using and understanding weights with national datasets
-
D.L.Hahs-Vaughn, (2005). A primer for using and understanding weights with national datasets. The Journal of Experimental Education, 73, 221–248. doi:10.3200/JEXE.73.3.221-248
-
(2005)
The Journal of Experimental Education
, vol.73
, pp. 221-248
-
-
Hahs-Vaughn, D.L.1
-
28
-
-
0000250716
-
Specification tests in econometrics
-
J.A.Hausman, (1978). Specification tests in econometrics. Econometrica, 46, 1251–1271.
-
(1978)
Econometrica
, vol.46
, pp. 1251-1271
-
-
Hausman, J.A.1
-
29
-
-
34247269174
-
Intraclass correlation values for planning group randomized trials in education
-
L.V.Hedges, & E.C.Hedberg, (2007). Intraclass correlation values for planning group randomized trials in education. Educational Evaluation and Policy Analysis, 29, 60–87. doi:10.3102/0162373707299706
-
(2007)
Educational Evaluation and Policy Analysis
, vol.29
, pp. 60-87
-
-
Hedges, L.V.1
Hedberg, E.C.2
-
30
-
-
0038934381
-
Review of software to fit generalized estimating equation regression models
-
N.J.Horton, & S.R.Lipsitz, (1999). Review of software to fit generalized estimating equation regression models. The American Statistician, 53, 160–169. doi:10.2307/2685737
-
(1999)
The American Statistician
, vol.53
, pp. 160-169
-
-
Horton, N.J.1
Lipsitz, S.R.2
-
32
-
-
84883641307
-
How few countries will do? Comparative survey analysis from a Bayesian perspective
-
J.Hox, R.van de Schoot, & S.Matthijsse, (2012). How few countries will do? Comparative survey analysis from a Bayesian perspective. Survey Research Methods, 6, 87–93. doi:10.18148/srm/2012.v6i2.5033
-
(2012)
Survey Research Methods
, vol.6
, pp. 87-93
-
-
Hox, J.1
van de Schoot, R.2
Matthijsse, S.3
-
33
-
-
84947036889
-
Alternatives to multilevel modeling for the analysis of clustered data
-
F.L.Huang, (2016) Alternatives to multilevel modeling for the analysis of clustered data. The Journal of Experimental Education, 84, 175–196. doi:10.1080/00220973.2014.952397
-
(2016)
The Journal of Experimental Education
, vol.84
, pp. 175-196
-
-
Huang, F.L.1
-
34
-
-
0000250624
-
-
June, Proceedings of the fifth Berkeley symposium on mathematical statistics and probability
-
P.J.Huber, (1967, June). The behavior of maximum likelihood estimates under nonstandard conditions. In Proceedings of the fifth Berkeley symposium on mathematical statistics and probability (Vol. 1, No. 1, pp. 221–233).
-
(1967)
The behavior of maximum likelihood estimates under nonstandard conditions
, vol.1
, Issue.1
, pp. 221-233
-
-
Huber, P.J.1
-
35
-
-
34247368897
-
Robustness of the linear mixed model to misspecified error distribution
-
H.Jacqmin-Gadda, S.Sibillot, C.Proust, J.M.Molina, & R.Thiébaut, (2008). Robustness of the linear mixed model to misspecified error distribution. Computational Statistics & Data Analysis, 51, 5142–5154. doi:10.1016/j.csda.2006.05.021
-
(2008)
Computational Statistics & Data Analysis
, vol.51
, pp. 5142-5154
-
-
Jacqmin-Gadda, H.1
Sibillot, S.2
Proust, C.3
Molina, J.M.4
Thiébaut, R.5
-
36
-
-
70350184453
-
Approximations for standard errors of estimators of fixed and random effects in mixed linear models
-
R.N.Kackar, & D.A.Harville, (1984). Approximations for standard errors of estimators of fixed and random effects in mixed linear models. Journal of the American Statistical Association, 79, 853–862. doi:10.2307/2288715
-
(1984)
Journal of the American Statistical Association
, vol.79
, pp. 853-862
-
-
Kackar, R.N.1
Harville, D.A.2
-
37
-
-
1542784440
-
A note on the efficiency of sandwich covariance matrix estimation
-
G.Kauermann, & R.J.Carroll, (2001). A note on the efficiency of sandwich covariance matrix estimation. Journal of the American Statistical Association, 96, 1387–1396. doi:10.1198/016214501753382309
-
(2001)
Journal of the American Statistical Association
, vol.96
, pp. 1387-1396
-
-
Kauermann, G.1
Carroll, R.J.2
-
38
-
-
0030880605
-
Small sample inference for fixed effects from restricted maximum likelihood
-
M.G.Kenward, & J.H.Roger, (1997). Small sample inference for fixed effects from restricted maximum likelihood. Biometrics, 53, 983–997. doi:10.2307/2533558
-
(1997)
Biometrics
, vol.53
, pp. 983-997
-
-
Kenward, M.G.1
Roger, J.H.2
-
39
-
-
61849100484
-
An improved approximation to the precision of fixed effects from restricted maximum likelihood
-
M.G.Kenward, & J.H.Roger, (2009). An improved approximation to the precision of fixed effects from restricted maximum likelihood. Computational Statistics & Data Analysis, 53, 2583–2595. doi:10.1016/j.csda.2008.12.013
-
(2009)
Computational Statistics & Data Analysis
, vol.53
, pp. 2583-2595
-
-
Kenward, M.G.1
Roger, J.H.2
-
40
-
-
1842484314
-
The analysis of repeated measurements with mixed-model adjusted F tests
-
R.K.Kowalchuk, H.J.Keselman, J.Algina, & R.D.Wolfinger, (2004). The analysis of repeated measurements with mixed-model adjusted F tests. Educational and Psychological Measurement, 64, 224–242. doi:10.1177/0013164403260196
-
(2004)
Educational and Psychological Measurement
, vol.64
, pp. 224-242
-
-
Kowalchuk, R.K.1
Keselman, H.J.2
Algina, J.3
Wolfinger, R.D.4
-
41
-
-
0003538388
-
Are multilevel techniques necessary?
-
Unpublished manuscript, Los Angeles, CA: California State University
-
I.G.G.Kreft, (1996). Are multilevel techniques necessary? An overview, including simulation studies. Unpublished manuscript, Los Angeles, CA:California State University
-
(1996)
An overview, including simulation studies
-
-
Kreft, I.G.G.1
-
42
-
-
84873827979
-
The time has come Bayesian methods for data analysis in the organizational sciences
-
J.K.Kruschke, H.Aguinis, & H.Joo, (2012). The time has come Bayesian methods for data analysis in the organizational sciences. Organizational Research Methods, 15, 722–752. doi:10.1177/1094428112457829
-
(2012)
Organizational Research Methods
, vol.15
, pp. 722-752
-
-
Kruschke, J.K.1
Aguinis, H.2
Joo, H.3
-
43
-
-
77649173768
-
Longitudinal data analysis using generalized linear models
-
K.Y.Liang, & S.L.Zeger, (1986). Longitudinal data analysis using generalized linear models. Biometrika, 73, 13–22. doi:10.1093/biomet/73.1.13
-
(1986)
Biometrika
, vol.73
, pp. 13-22
-
-
Liang, K.Y.1
Zeger, S.L.2
-
44
-
-
84940526875
-
Design effects for a regression slope in a cluster sample
-
S.L.Lohr, (2014). Design effects for a regression slope in a cluster sample. Journal of Survey Statistics and Methodology, 2, 97–125. doi:10.1093/jssam/smu003
-
(2014)
Journal of Survey Statistics and Methodology
, vol.2
, pp. 97-125
-
-
Lohr, S.L.1
-
45
-
-
34547882049
-
A comparison of two bias-corrected covariance estimators for generalized estimating equations
-
B.Lu, J.S.Preisser, B.F.Qaqish, C.Suchindran, S.I.Bangdiwala, & M.Wolfson, (2007). A comparison of two bias-corrected covariance estimators for generalized estimating equations. Biometrics, 63, 935–941. doi:10.1111/j.1541-0420.2007.00764.x
-
(2007)
Biometrics
, vol.63
, pp. 935-941
-
-
Lu, B.1
Preisser, J.S.2
Qaqish, B.F.3
Suchindran, C.4
Bangdiwala, S.I.5
Wolfson, M.6
-
46
-
-
69949190053
-
Sufficient sample sizes for multilevel modeling
-
C.J.Maas, & J.J.Hox, (2005). Sufficient sample sizes for multilevel modeling. Methodology, 1, 86–92. doi:10.1027/1614-2241.1.3.85
-
(2005)
Methodology
, vol.1
, pp. 86-92
-
-
Maas, C.J.1
Hox, J.J.2
-
47
-
-
1842783963
-
Robustness issues in multilevel regression analysis
-
C.Maas, & J.J.Hox, (2004). Robustness issues in multilevel regression analysis. Statistica Neerlandica, 58, 127–137. doi:10.1027/1614-2241.1.3.85
-
(2004)
Statistica Neerlandica
, vol.58
, pp. 127-137
-
-
Maas, C.1
Hox, J.J.2
-
48
-
-
3042541252
-
Small sample inference for the fixed effects in the mixed linear model
-
O.Manor, & D.M.Zucker, (2004). Small sample inference for the fixed effects in the mixed linear model. Computational Statistics & Data Analysis, 46, 801–817. doi:10.1016/j.csda.2003.10.005
-
(2004)
Computational Statistics & Data Analysis
, vol.46
, pp. 801-817
-
-
Manor, O.1
Zucker, D.M.2
-
49
-
-
0035099161
-
A covariance estimator for GEE with improved small sample properties
-
L.A.Mancl, & T.A.DeRouen, (2001). A covariance estimator for GEE with improved small sample properties. Biometrics, 57, 126–134. doi:10.1111/j.0006-341X.2001.00126.x
-
(2001)
Biometrics
, vol.57
, pp. 126-134
-
-
Mancl, L.A.1
DeRouen, T.A.2
-
51
-
-
0003646026
-
-
New York, NY: Wiley
-
C.E.McCulloch, & S.R.Searle, (2001). Generalized, linear, and mixed models. New York, NY:Wiley.
-
(2001)
Generalized, linear, and mixed models
-
-
McCulloch, C.E.1
Searle, S.R.2
-
52
-
-
84955483682
-
Using data-dependent priors to mitigate small sample bias in latent growth models: A discussion and illustration using Mplus
-
D.M.McNeish, (2016). Using data-dependent priors to mitigate small sample bias in latent growth models:A discussion and illustration using Mplus. Journal of Educational and Behavioral Statistics, 41, 27–56. doi:10.3102/1076998615621299
-
(2016)
Journal of Educational and Behavioral Statistics
, vol.41
, pp. 27-56
-
-
McNeish, D.M.1
-
56
-
-
0038684155
-
Small sample correction for the variance of GEE estimators
-
J.G.Morel, M.C.Bokossa, & N.K.Neerchal, (2003). Small sample correction for the variance of GEE estimators. Biometrical Journal, 45, 395–409. doi:10.1002/bimj.200390021
-
(2003)
Biometrical Journal
, vol.45
, pp. 395-409
-
-
Morel, J.G.1
Bokossa, M.C.2
Neerchal, N.K.3
-
58
-
-
0037198575
-
Small‐sample adjustments in using the sandwich variance estimator in generalized estimating equations
-
W.Pan, & M.M.Wall, (2002). Small‐sample adjustments in using the sandwich variance estimator in generalized estimating equations. Statistics in Medicine, 21, 1429–1441. doi:10.1002/sim.1142
-
(2002)
Statistics in Medicine
, vol.21
, pp. 1429-1441
-
-
Pan, W.1
Wall, M.M.2
-
59
-
-
84892702170
-
Estimating standard errors in finance panel data sets: Comparing approaches
-
M.A.Petersen, (2009). Estimating standard errors in finance panel data sets:Comparing approaches. Review of Financial Studies, 22, 435–480. doi:10.1093/rfs/hhn053
-
(2009)
Review of Financial Studies
, vol.22
, pp. 435-480
-
-
Petersen, M.A.1
-
60
-
-
84872515955
-
On the half-Cauchy prior for a global scale parameter
-
N.G.Polson, & J.G.Scott, (2012). On the half-Cauchy prior for a global scale parameter. Bayesian Analysis, 7, 887–902. doi:10.1214/12-BA730
-
(2012)
Bayesian Analysis
, vol.7
, pp. 887-902
-
-
Polson, N.G.1
Scott, J.G.2
-
62
-
-
2342641287
-
Adequacy of approximations to distributions of test statistics in complex mixed linear models
-
G.B.Schaalje, J.B.McBride, & G.W.Fellingham, (2002). Adequacy of approximations to distributions of test statistics in complex mixed linear models. Journal of Agricultural, Biological, and Environmental Statistics, 7, 512–524. doi:10.1198/108571102726
-
(2002)
Journal of Agricultural, Biological, and Environmental Statistics
, vol.7
, pp. 512-524
-
-
Schaalje, G.B.1
McBride, J.B.2
Fellingham, G.W.3
-
63
-
-
84980652297
-
-
Washington, DC: U.S. Department of Education, Institute of Education Sciences, National Center for Education Evaluation and Regional Assistance, Analytic Technical Assistance and Development
-
P.Z.Schochet, (2015). Statistical theory for the RCT-YES software:Design-based causal inference for RCTs (NCEE 2015–4011). Washington, DC:U.S. Department of Education, Institute of Education Sciences, National Center for Education Evaluation and Regional Assistance, Analytic Technical Assistance and Development. Retrieved from http://ies.ed.gov/ncee/edlabs.
-
(2015)
Statistical theory for the RCT-YES software: Design-based causal inference for RCTs (NCEE 2015–4011)
-
-
Schochet, P.Z.1
-
64
-
-
57549116350
-
The Hausman test statistic can be negative even asymptotically
-
S.Schreiber, (2008). The Hausman test statistic can be negative even asymptotically. Journal of Economics and Statistics, 228, 394–405. doi:10.1515/jbnst-2008-0407
-
(2008)
Journal of Economics and Statistics
, vol.228
, pp. 394-405
-
-
Schreiber, S.1
-
65
-
-
85085473785
-
Accuracy of the Hausman test in panel data: A Monte Carlo study
-
Öreboro University, Sweden:
-
T.Sheytanova, (2014). Accuracy of the Hausman test in panel data:A Monte Carlo study. (Unpublished thesis) Öreboro University, Sweden. http://oru.diva-portal.org/smash/get/diva2:805823/FULLTEXT01.pdf
-
(2014)
Unpublished thesis
-
-
Sheytanova, T.1
-
66
-
-
78349291530
-
The analysis of very small samples of repeatedmeasurements I: An adjusted sandwich estimator
-
S.S.Skene, & M.G.Kenward, (2010a). The analysis of very small samples of repeatedmeasurements I:An adjusted sandwich estimator. Statistics in Medicine, 29, 2825–2837. doi:10.1002/sim.4073
-
(2010)
Statistics in Medicine
, vol.29
, pp. 2825-2837
-
-
Skene, S.S.1
Kenward, M.G.2
-
67
-
-
78349238542
-
The analysis of very small samples of repeated measurements II: A modified Box correction
-
S.S.Skene, & M.G.Kenward, (2010b). The analysis of very small samples of repeated measurements II:A modified Box correction. Statistics in Medicine, 29, 2838–2856. doi:10.1002/sim.4072
-
(2010)
Statistics in Medicine
, vol.29
, pp. 2838-2856
-
-
Skene, S.S.1
Kenward, M.G.2
-
68
-
-
25444520271
-
A simulation study on tests of hypotheses and confidence intervals for fixed effects in mixed models for blocked experiments with missing data
-
J.Spilke, H.P.Piepho, & X.Hu, (2005). A simulation study on tests of hypotheses and confidence intervals for fixed effects in mixed models for blocked experiments with missing data. Journal of Agricultural, Biological, and Environmental Statistics, 10, 374–389. doi:10.1198/108571105X58199
-
(2005)
Journal of Agricultural, Biological, and Environmental Statistics
, vol.10
, pp. 374-389
-
-
Spilke, J.1
Piepho, H.P.2
Hu, X.3
-
69
-
-
84879841014
-
How many countries for multilevel modeling? A Comparison of frequentist and Bayesian approaches
-
D.Stegmueller, (2013). How many countries for multilevel modeling? A Comparison of frequentist and Bayesian approaches. American Journal of Political Science, 57, 748–761. doi:10.1111/ajps.12001
-
(2013)
American Journal of Political Science
, vol.57
, pp. 748-761
-
-
Stegmueller, D.1
-
70
-
-
0035486318
-
Analysis of large-scale secondary data in higher education research: Potential perils associated with complex sampling designs
-
S.L.Thomas, & R.H.Heck, (2001). Analysis of large-scale secondary data in higher education research:Potential perils associated with complex sampling designs. Research in Higher Education, 42, 517–540. doi:10.1023/A:1011098109834
-
(2001)
Research in Higher Education
, vol.42
, pp. 517-540
-
-
Thomas, S.L.1
Heck, R.H.2
-
71
-
-
34547219034
-
Weighting and adjusting for design effects in secondary data analyses
-
S.L.Thomas, R.H.Heck, & K.W.Bauer, (2005). Weighting and adjusting for design effects in secondary data analyses. New Directions for Institutional Research, 127, 51–72.
-
(2005)
New Directions for Institutional Research
, vol.127
, pp. 51-72
-
-
Thomas, S.L.1
Heck, R.H.2
Bauer, K.W.3
-
72
-
-
16544363356
-
Longitudinal data analysis. A comparison between generalized estimating equations and random coefficient analysis
-
J.W.Twisk, (2004). Longitudinal data analysis. A comparison between generalized estimating equations and random coefficient analysis. European Journal of Epidemiology, 19, 769–776. doi:10.1023/B:EJEP.0000036572.00663.f2
-
(2004)
European Journal of Epidemiology
, vol.19
, pp. 769-776
-
-
Twisk, J.W.1
-
73
-
-
27844495717
-
Comparison of two procedures for analyzing small sets of repeated measures data
-
G.Vallejo, & P.Livacic-Rojas, (2005). Comparison of two procedures for analyzing small sets of repeated measures data. Multivariate Behavioral Research, 40, 179–205. doi:10.1207/s15327906mbr4002_2
-
(2005)
Multivariate Behavioral Research
, vol.40
, pp. 179-205
-
-
Vallejo, G.1
Livacic-Rojas, P.2
-
74
-
-
84977106631
-
Analyzing small data sets using Bayesian estimation: the case of posttraumatic stress symptoms following mechanical ventilation in burn survivors
-
R.van de Schoot, J.J.Broere, K.H.Perryck, M.Zondervan-Zwijnenburg, & N.E.Van Loey, (2015). Analyzing small data sets using Bayesian estimation:the case of posttraumatic stress symptoms following mechanical ventilation in burn survivors. European Journal of Psychotraumatology, 6, 1–13. doi:10.3402/ejpt.v6.25216
-
(2015)
European Journal of Psychotraumatology
, vol.6
, pp. 1-13
-
-
van de Schoot, R.1
Broere, J.J.2
Perryck, K.H.3
Zondervan-Zwijnenburg, M.4
Van Loey, N.E.5
-
75
-
-
84899945186
-
A gentle introduction to Bayesian analysis: applications to developmental research
-
R.van de Schoot, D.Kaplan, J.Denissen, J.B.Asendorpf, F.J.Neyer, & M.A.Aken, (2014). A gentle introduction to Bayesian analysis:applications to developmental research. Child Development, 85, 842–860. doi:10.1111/cdev.12169
-
(2014)
Child Development
, vol.85
, pp. 842-860
-
-
van de Schoot, R.1
Kaplan, D.2
Denissen, J.3
Asendorpf, J.B.4
Neyer, F.J.5
Aken, M.A.6
-
76
-
-
84856958759
-
Mean field variational Bayes for elaborate distributions
-
M.P.Wand, J.T.Ormerod, S.A.Padoan, & R.Fuhrwirth, (2011). Mean field variational Bayes for elaborate distributions. Bayesian Analysis, 6, 847–900. doi:10.1214/11-BA631
-
(2011)
Bayesian Analysis
, vol.6
, pp. 847-900
-
-
Wand, M.P.1
Ormerod, J.T.2
Padoan, S.A.3
Fuhrwirth, R.4
-
77
-
-
84879180863
-
A bias correction for covariance estimators to improve inference with generalized estimating equations that use an unstructured correlation matrix
-
P.M.Westgate, (2013). A bias correction for covariance estimators to improve inference with generalized estimating equations that use an unstructured correlation matrix. Statistics in Medicine, 32, 2850–2858. doi:10.1002/sim.5709
-
(2013)
Statistics in Medicine
, vol.32
, pp. 2850-2858
-
-
Westgate, P.M.1
-
78
-
-
0000095552
-
A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity
-
H.White, (1980). A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica, 48, 817–838. doi:10.2307/1912934
-
(1980)
Econometrica
, vol.48
, pp. 817-838
-
-
White, H.1
-
79
-
-
84864297644
-
Comparison of methods for estimating the intraclass correlation coefficient for binary responses in cancer prevention cluster randomized trials
-
S.Wu, C.M.Crespi, & W.K.Wong, (2012). Comparison of methods for estimating the intraclass correlation coefficient for binary responses in cancer prevention cluster randomized trials. Contemporary Clinical Trials, 33, 869–880. doi:10.1016/j.cct.2012.05.004
-
(2012)
Contemporary Clinical Trials
, vol.33
, pp. 869-880
-
-
Wu, S.1
Crespi, C.M.2
Wong, W.K.3
-
80
-
-
0022673130
-
Longitudinal data analysis for discrete and continuous outcomes
-
S.L.Zeger, & K.Y.Liang, (1986). Longitudinal data analysis for discrete and continuous outcomes. Biometrics, 42, 121–130. doi:10.2307/2531248
-
(1986)
Biometrics
, vol.42
, pp. 121-130
-
-
Zeger, S.L.1
Liang, K.Y.2
-
81
-
-
0024205301
-
Models for longitudinal data: A generalized estimating equation approach
-
S.L.Zeger, K.Y.Liang, & P.S.Albert, (1988). Models for longitudinal data:A generalized estimating equation approach. Biometrics, 44, 1049–1060. doi:10.2307/2531734
-
(1988)
Biometrics
, vol.44
, pp. 1049-1060
-
-
Zeger, S.L.1
Liang, K.Y.2
Albert, P.S.3
-
82
-
-
0034354312
-
Improved small sample inference in the mixed linear model: Bartlett correction and adjusted likelihood
-
D.M.Zucker, O.Lieberman, & O.Manor, (2000). Improved small sample inference in the mixed linear model:Bartlett correction and adjusted likelihood. Journal of the Royal Statistical Society:Series B, 62, 827–838. doi:10.1111/1467-9868.00267
-
(2000)
Journal of the Royal Statistical Society: Series B
, vol.62
, pp. 827-838
-
-
Zucker, D.M.1
Lieberman, O.2
Manor, O.3
-
83
-
-
84922051374
-
Rendezvous overdue: Bayes analysis meets organizational research
-
M.J.Zyphur, F.L.Oswald, & D.E.Rupp, (2015). Rendezvous overdue:Bayes analysis meets organizational research. Journal of Management, 41, 387–389. doi:10.1177/0149206314549252
-
(2015)
Journal of Management
, vol.41
, pp. 387-389
-
-
Zyphur, M.J.1
Oswald, F.L.2
Rupp, D.E.3
|