메뉴 건너뛰기




Volumn 51, Issue 4, 2016, Pages 495-518

Modeling Clustered Data with Very Few Clusters

Author keywords

Bayesian; cluster randomized trial; fixed effect model; GEE; HLM; multilevel model; small sample

Indexed keywords

CONTROLLED CLINICAL TRIAL; HUMAN; MODEL; PSYCHOLOGY; RANDOMIZED CONTROLLED TRIAL; BAYES THEOREM; CLUSTER ANALYSIS; COMPUTER SIMULATION; LANGUAGE TEST; MULTILEVEL ANALYSIS; PROCEDURES; RANDOMIZED CONTROLLED TRIAL (TOPIC); SAMPLE SIZE; SOFTWARE; STATISTICAL MODEL;

EID: 84973596359     PISSN: 00273171     EISSN: None     Source Type: Journal    
DOI: 10.1080/00273171.2016.1167008     Document Type: Article
Times cited : (283)

References (83)
  • 3
    • 84879535463 scopus 로고    scopus 로고
    • Bayesian methods for the analysis of small sample multilevel data with a complex variance structure
    • S.A.Baldwin, & G.W.Fellingham, (2013). Bayesian methods for the analysis of small sample multilevel data with a complex variance structure. Psychological Methods, 18, 151–164. doi:10.1037/a0030642
    • (2013) Psychological Methods , vol.18 , pp. 151-164
    • Baldwin, S.A.1    Fellingham, G.W.2
  • 4
    • 2342557088 scopus 로고    scopus 로고
    • Using generalized estimating equations for longitudinal data analysis
    • G.A.Ballinger, (2004). Using generalized estimating equations for longitudinal data analysis. Organizational Research Methods, 7, 127–150. doi:10.1177/1094428104263672
    • (2004) Organizational Research Methods , vol.7 , pp. 127-150
    • Ballinger, G.A.1
  • 5
    • 83755185645 scopus 로고    scopus 로고
    • Fitting multilevel models with ordinal outcomes: Performance of alternative specifications and methods of estimation
    • D.J.Bauer, & S.K.Sterba, (2011). Fitting multilevel models with ordinal outcomes:Performance of alternative specifications and methods of estimation. Psychological Methods, 16, 373–390. doi:10.1037/a0025813
    • (2011) Psychological Methods , vol.16 , pp. 373-390
    • Bauer, D.J.1    Sterba, S.K.2
  • 6
    • 0041565373 scopus 로고    scopus 로고
    • Separation of individual-level and cluster-level covariate effects in regression analysis of correlated data
    • M.D.Begg, & M.K.Parides, (2003). Separation of individual-level and cluster-level covariate effects in regression analysis of correlated data. Statistics in Medicine, 22, 2591–2602. doi:10.1002/sim.1524
    • (2003) Statistics in Medicine , vol.22 , pp. 2591-2602
    • Begg, M.D.1    Parides, M.K.2
  • 7
    • 84894161242 scopus 로고    scopus 로고
    • How low can you go? An investigation of the influence of sample size and model complexity on point and interval estimates in two-level linear models
    • B.A.Bell, G.B.Morgan, J.A.Schoeneberger, J.D.Kromrey, & J.M.Ferron, (2014). How low can you go? An investigation of the influence of sample size and model complexity on point and interval estimates in two-level linear models. Methodology, 10, 1–11. doi:10.1002/sim.1524
    • (2014) Methodology , vol.10 , pp. 1-11
    • Bell, B.A.1    Morgan, G.B.2    Schoeneberger, J.A.3    Kromrey, J.D.4    Ferron, J.M.5
  • 8
    • 6344243533 scopus 로고    scopus 로고
    • Asymptotic effect of misspecification in the random part of the multilevel model
    • J.Berkhof, & J.K.Kampen, (2004). Asymptotic effect of misspecification in the random part of the multilevel model. Journal of Educational and Behavioral Statistics, 29, 201–218. doi:10.3102/10769986029002201
    • (2004) Journal of Educational and Behavioral Statistics , vol.29 , pp. 201-218
    • Berkhof, J.1    Kampen, J.K.2
  • 10
    • 33847083094 scopus 로고    scopus 로고
    • A comparison of Bayesian and likelihood-based methods for fitting multilevel models
    • W.J.Browne, & D.Draper, (2006). A comparison of Bayesian and likelihood-based methods for fitting multilevel models. Bayesian Analysis, 1, 473–514. doi:10.1214/06-BA117
    • (2006) Bayesian Analysis , vol.1 , pp. 473-514
    • Browne, W.J.1    Draper, D.2
  • 12
    • 84873347427 scopus 로고    scopus 로고
    • Implementing restricted maximum likelihood estimation in structural equation models
    • M.W.L.Cheung, (2013). Implementing restricted maximum likelihood estimation in structural equation models. Structural Equation Modeling, 20, 157–167. doi:10.1080/10705511.2013.742404
    • (2013) Structural Equation Modeling , vol.20 , pp. 157-167
    • Cheung, M.W.L.1
  • 13
    • 0033266211 scopus 로고    scopus 로고
    • A prior for the variance in hierarchical models
    • M.J.Daniels, (1999). A prior for the variance in hierarchical models. The Canadian Journal of Statistics, 27, 567–578. doi:10.2307/3316112
    • (1999) The Canadian Journal of Statistics , vol.27 , pp. 567-578
    • Daniels, M.J.1
  • 14
    • 84951310169 scopus 로고    scopus 로고
    • Improving transparency and replication in Bayesian statistics: The WAMBS-checklist
    • S.Depaoli, & R.van de Schoot, (2016). Improving transparency and replication in Bayesian statistics:The WAMBS-checklist. Psychological Methods. Advance online publication. doi:10.1037/met0000065
    • (2016) Psychological Methods
    • Depaoli, S.1    van de Schoot, R.2
  • 15
    • 0001968264 scopus 로고
    • On some small sample properties of generalized estimating equation estimates for multivariate dichotomous outcomes
    • L.J.Emrich, & M.R.Piedmonte, (1992). On some small sample properties of generalized estimating equation estimates for multivariate dichotomous outcomes. Journal of Statistical Computation and Simulation, 41, 19–29. doi:10.1080/00949659208811388
    • (1992) Journal of Statistical Computation and Simulation , vol.41 , pp. 19-29
    • Emrich, L.J.1    Piedmonte, M.R.2
  • 16
    • 34548463099 scopus 로고    scopus 로고
    • Centering predictor variables in cross-sectional multilevel models: a new look at an old issue
    • C.K.Enders, & D.Tofighi, (2007). Centering predictor variables in cross-sectional multilevel models:a new look at an old issue. Psychological Methods, 12, 121–138. doi:10.1037/1082-989X.12.2.121
    • (2007) Psychological Methods , vol.12 , pp. 121-138
    • Enders, C.K.1    Tofighi, D.2
  • 17
    • 0035184396 scopus 로고    scopus 로고
    • Small-sample adjustments for Wald-type tests using sandwich estimators
    • M.P.Fay, & B.I.Graubard, (2001). Small-sample adjustments for Wald-type tests using sandwich estimators. Biometrics, 57, 1198–1206. doi:10.1111/j.0006-341X.2001.01198.x
    • (2001) Biometrics , vol.57 , pp. 1198-1206
    • Fay, M.P.1    Graubard, B.I.2
  • 18
    • 66149144783 scopus 로고    scopus 로고
    • Making treatment effect inferences from multiple-baseline data: The utility of multilevel modeling approaches
    • J.M.Ferron, B.A.Bell, M.R.Hess, G.Rendina-Gobioff, & S.T.Hibbard, (2009). Making treatment effect inferences from multiple-baseline data:The utility of multilevel modeling approaches. Behavior Research Methods, 41, 372–384. doi:10.3758/BRM.41.2.372
    • (2009) Behavior Research Methods , vol.41 , pp. 372-384
    • Ferron, J.M.1    Bell, B.A.2    Hess, M.R.3    Rendina-Gobioff, G.4    Hibbard, S.T.5
  • 20
    • 10844245499 scopus 로고    scopus 로고
    • An empirical evaluation of alternative methods of estimation for confirmatory factor analysis with ordinal data
    • D.B.Flora, & P.J.Curran, (2004). An empirical evaluation of alternative methods of estimation for confirmatory factor analysis with ordinal data. Psychological Methods, 9, 466–491. doi:10.1037/1082-989X.9.4.466
    • (2004) Psychological Methods , vol.9 , pp. 466-491
    • Flora, D.B.1    Curran, P.J.2
  • 22
    • 77956201379 scopus 로고    scopus 로고
    • A study of clustered data and approaches to its analysis
    • S.Galbraith, J.A.Daniel, & B.Vissel, (2010). A study of clustered data and approaches to its analysis. The Journal of Neuroscience, 30, 10601–10608. doi:10.1523/JNEUROSCI.0362-10.2010
    • (2010) The Journal of Neuroscience , vol.30 , pp. 10601-10608
    • Galbraith, S.1    Daniel, J.A.2    Vissel, B.3
  • 23
    • 61749087965 scopus 로고    scopus 로고
    • Fixed effects, random effects and GEE: What are the differences?
    • J.C.Gardiner, Z.Luo, & L.A.Roman, (2009). Fixed effects, random effects and GEE:What are the differences? Statistics in Medicine, 28, 221–239. doi:10.1002/sim.3478
    • (2009) Statistics in Medicine , vol.28 , pp. 221-239
    • Gardiner, J.C.1    Luo, Z.2    Roman, L.A.3
  • 24
    • 84867086419 scopus 로고    scopus 로고
    • Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper)
    • A.Gelman, (2006). Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper). Bayesian Analysis, 1, 515–534.
    • (2006) Bayesian Analysis , vol.1 , pp. 515-534
    • Gelman, A.1
  • 27
    • 30444457239 scopus 로고    scopus 로고
    • A primer for using and understanding weights with national datasets
    • D.L.Hahs-Vaughn, (2005). A primer for using and understanding weights with national datasets. The Journal of Experimental Education, 73, 221–248. doi:10.3200/JEXE.73.3.221-248
    • (2005) The Journal of Experimental Education , vol.73 , pp. 221-248
    • Hahs-Vaughn, D.L.1
  • 28
    • 0000250716 scopus 로고
    • Specification tests in econometrics
    • J.A.Hausman, (1978). Specification tests in econometrics. Econometrica, 46, 1251–1271.
    • (1978) Econometrica , vol.46 , pp. 1251-1271
    • Hausman, J.A.1
  • 29
    • 34247269174 scopus 로고    scopus 로고
    • Intraclass correlation values for planning group randomized trials in education
    • L.V.Hedges, & E.C.Hedberg, (2007). Intraclass correlation values for planning group randomized trials in education. Educational Evaluation and Policy Analysis, 29, 60–87. doi:10.3102/0162373707299706
    • (2007) Educational Evaluation and Policy Analysis , vol.29 , pp. 60-87
    • Hedges, L.V.1    Hedberg, E.C.2
  • 30
    • 0038934381 scopus 로고    scopus 로고
    • Review of software to fit generalized estimating equation regression models
    • N.J.Horton, & S.R.Lipsitz, (1999). Review of software to fit generalized estimating equation regression models. The American Statistician, 53, 160–169. doi:10.2307/2685737
    • (1999) The American Statistician , vol.53 , pp. 160-169
    • Horton, N.J.1    Lipsitz, S.R.2
  • 32
    • 84883641307 scopus 로고    scopus 로고
    • How few countries will do? Comparative survey analysis from a Bayesian perspective
    • J.Hox, R.van de Schoot, & S.Matthijsse, (2012). How few countries will do? Comparative survey analysis from a Bayesian perspective. Survey Research Methods, 6, 87–93. doi:10.18148/srm/2012.v6i2.5033
    • (2012) Survey Research Methods , vol.6 , pp. 87-93
    • Hox, J.1    van de Schoot, R.2    Matthijsse, S.3
  • 33
    • 84947036889 scopus 로고    scopus 로고
    • Alternatives to multilevel modeling for the analysis of clustered data
    • F.L.Huang, (2016) Alternatives to multilevel modeling for the analysis of clustered data. The Journal of Experimental Education, 84, 175–196. doi:10.1080/00220973.2014.952397
    • (2016) The Journal of Experimental Education , vol.84 , pp. 175-196
    • Huang, F.L.1
  • 34
    • 0000250624 scopus 로고
    • June, Proceedings of the fifth Berkeley symposium on mathematical statistics and probability
    • P.J.Huber, (1967, June). The behavior of maximum likelihood estimates under nonstandard conditions. In Proceedings of the fifth Berkeley symposium on mathematical statistics and probability (Vol. 1, No. 1, pp. 221–233).
    • (1967) The behavior of maximum likelihood estimates under nonstandard conditions , vol.1 , Issue.1 , pp. 221-233
    • Huber, P.J.1
  • 36
    • 70350184453 scopus 로고
    • Approximations for standard errors of estimators of fixed and random effects in mixed linear models
    • R.N.Kackar, & D.A.Harville, (1984). Approximations for standard errors of estimators of fixed and random effects in mixed linear models. Journal of the American Statistical Association, 79, 853–862. doi:10.2307/2288715
    • (1984) Journal of the American Statistical Association , vol.79 , pp. 853-862
    • Kackar, R.N.1    Harville, D.A.2
  • 37
    • 1542784440 scopus 로고    scopus 로고
    • A note on the efficiency of sandwich covariance matrix estimation
    • G.Kauermann, & R.J.Carroll, (2001). A note on the efficiency of sandwich covariance matrix estimation. Journal of the American Statistical Association, 96, 1387–1396. doi:10.1198/016214501753382309
    • (2001) Journal of the American Statistical Association , vol.96 , pp. 1387-1396
    • Kauermann, G.1    Carroll, R.J.2
  • 38
    • 0030880605 scopus 로고    scopus 로고
    • Small sample inference for fixed effects from restricted maximum likelihood
    • M.G.Kenward, & J.H.Roger, (1997). Small sample inference for fixed effects from restricted maximum likelihood. Biometrics, 53, 983–997. doi:10.2307/2533558
    • (1997) Biometrics , vol.53 , pp. 983-997
    • Kenward, M.G.1    Roger, J.H.2
  • 39
    • 61849100484 scopus 로고    scopus 로고
    • An improved approximation to the precision of fixed effects from restricted maximum likelihood
    • M.G.Kenward, & J.H.Roger, (2009). An improved approximation to the precision of fixed effects from restricted maximum likelihood. Computational Statistics & Data Analysis, 53, 2583–2595. doi:10.1016/j.csda.2008.12.013
    • (2009) Computational Statistics & Data Analysis , vol.53 , pp. 2583-2595
    • Kenward, M.G.1    Roger, J.H.2
  • 41
    • 0003538388 scopus 로고    scopus 로고
    • Are multilevel techniques necessary?
    • Unpublished manuscript, Los Angeles, CA: California State University
    • I.G.G.Kreft, (1996). Are multilevel techniques necessary? An overview, including simulation studies. Unpublished manuscript, Los Angeles, CA:California State University
    • (1996) An overview, including simulation studies
    • Kreft, I.G.G.1
  • 42
    • 84873827979 scopus 로고    scopus 로고
    • The time has come Bayesian methods for data analysis in the organizational sciences
    • J.K.Kruschke, H.Aguinis, & H.Joo, (2012). The time has come Bayesian methods for data analysis in the organizational sciences. Organizational Research Methods, 15, 722–752. doi:10.1177/1094428112457829
    • (2012) Organizational Research Methods , vol.15 , pp. 722-752
    • Kruschke, J.K.1    Aguinis, H.2    Joo, H.3
  • 43
    • 77649173768 scopus 로고
    • Longitudinal data analysis using generalized linear models
    • K.Y.Liang, & S.L.Zeger, (1986). Longitudinal data analysis using generalized linear models. Biometrika, 73, 13–22. doi:10.1093/biomet/73.1.13
    • (1986) Biometrika , vol.73 , pp. 13-22
    • Liang, K.Y.1    Zeger, S.L.2
  • 44
    • 84940526875 scopus 로고    scopus 로고
    • Design effects for a regression slope in a cluster sample
    • S.L.Lohr, (2014). Design effects for a regression slope in a cluster sample. Journal of Survey Statistics and Methodology, 2, 97–125. doi:10.1093/jssam/smu003
    • (2014) Journal of Survey Statistics and Methodology , vol.2 , pp. 97-125
    • Lohr, S.L.1
  • 45
    • 34547882049 scopus 로고    scopus 로고
    • A comparison of two bias-corrected covariance estimators for generalized estimating equations
    • B.Lu, J.S.Preisser, B.F.Qaqish, C.Suchindran, S.I.Bangdiwala, & M.Wolfson, (2007). A comparison of two bias-corrected covariance estimators for generalized estimating equations. Biometrics, 63, 935–941. doi:10.1111/j.1541-0420.2007.00764.x
    • (2007) Biometrics , vol.63 , pp. 935-941
    • Lu, B.1    Preisser, J.S.2    Qaqish, B.F.3    Suchindran, C.4    Bangdiwala, S.I.5    Wolfson, M.6
  • 46
    • 69949190053 scopus 로고    scopus 로고
    • Sufficient sample sizes for multilevel modeling
    • C.J.Maas, & J.J.Hox, (2005). Sufficient sample sizes for multilevel modeling. Methodology, 1, 86–92. doi:10.1027/1614-2241.1.3.85
    • (2005) Methodology , vol.1 , pp. 86-92
    • Maas, C.J.1    Hox, J.J.2
  • 47
    • 1842783963 scopus 로고    scopus 로고
    • Robustness issues in multilevel regression analysis
    • C.Maas, & J.J.Hox, (2004). Robustness issues in multilevel regression analysis. Statistica Neerlandica, 58, 127–137. doi:10.1027/1614-2241.1.3.85
    • (2004) Statistica Neerlandica , vol.58 , pp. 127-137
    • Maas, C.1    Hox, J.J.2
  • 48
    • 3042541252 scopus 로고    scopus 로고
    • Small sample inference for the fixed effects in the mixed linear model
    • O.Manor, & D.M.Zucker, (2004). Small sample inference for the fixed effects in the mixed linear model. Computational Statistics & Data Analysis, 46, 801–817. doi:10.1016/j.csda.2003.10.005
    • (2004) Computational Statistics & Data Analysis , vol.46 , pp. 801-817
    • Manor, O.1    Zucker, D.M.2
  • 49
    • 0035099161 scopus 로고    scopus 로고
    • A covariance estimator for GEE with improved small sample properties
    • L.A.Mancl, & T.A.DeRouen, (2001). A covariance estimator for GEE with improved small sample properties. Biometrics, 57, 126–134. doi:10.1111/j.0006-341X.2001.00126.x
    • (2001) Biometrics , vol.57 , pp. 126-134
    • Mancl, L.A.1    DeRouen, T.A.2
  • 52
    • 84955483682 scopus 로고    scopus 로고
    • Using data-dependent priors to mitigate small sample bias in latent growth models: A discussion and illustration using Mplus
    • D.M.McNeish, (2016). Using data-dependent priors to mitigate small sample bias in latent growth models:A discussion and illustration using Mplus. Journal of Educational and Behavioral Statistics, 41, 27–56. doi:10.3102/1076998615621299
    • (2016) Journal of Educational and Behavioral Statistics , vol.41 , pp. 27-56
    • McNeish, D.M.1
  • 56
    • 0038684155 scopus 로고    scopus 로고
    • Small sample correction for the variance of GEE estimators
    • J.G.Morel, M.C.Bokossa, & N.K.Neerchal, (2003). Small sample correction for the variance of GEE estimators. Biometrical Journal, 45, 395–409. doi:10.1002/bimj.200390021
    • (2003) Biometrical Journal , vol.45 , pp. 395-409
    • Morel, J.G.1    Bokossa, M.C.2    Neerchal, N.K.3
  • 58
    • 0037198575 scopus 로고    scopus 로고
    • Small‐sample adjustments in using the sandwich variance estimator in generalized estimating equations
    • W.Pan, & M.M.Wall, (2002). Small‐sample adjustments in using the sandwich variance estimator in generalized estimating equations. Statistics in Medicine, 21, 1429–1441. doi:10.1002/sim.1142
    • (2002) Statistics in Medicine , vol.21 , pp. 1429-1441
    • Pan, W.1    Wall, M.M.2
  • 59
    • 84892702170 scopus 로고    scopus 로고
    • Estimating standard errors in finance panel data sets: Comparing approaches
    • M.A.Petersen, (2009). Estimating standard errors in finance panel data sets:Comparing approaches. Review of Financial Studies, 22, 435–480. doi:10.1093/rfs/hhn053
    • (2009) Review of Financial Studies , vol.22 , pp. 435-480
    • Petersen, M.A.1
  • 60
    • 84872515955 scopus 로고    scopus 로고
    • On the half-Cauchy prior for a global scale parameter
    • N.G.Polson, & J.G.Scott, (2012). On the half-Cauchy prior for a global scale parameter. Bayesian Analysis, 7, 887–902. doi:10.1214/12-BA730
    • (2012) Bayesian Analysis , vol.7 , pp. 887-902
    • Polson, N.G.1    Scott, J.G.2
  • 63
    • 84980652297 scopus 로고    scopus 로고
    • Washington, DC: U.S. Department of Education, Institute of Education Sciences, National Center for Education Evaluation and Regional Assistance, Analytic Technical Assistance and Development
    • P.Z.Schochet, (2015). Statistical theory for the RCT-YES software:Design-based causal inference for RCTs (NCEE 2015–4011). Washington, DC:U.S. Department of Education, Institute of Education Sciences, National Center for Education Evaluation and Regional Assistance, Analytic Technical Assistance and Development. Retrieved from http://ies.ed.gov/ncee/edlabs.
    • (2015) Statistical theory for the RCT-YES software: Design-based causal inference for RCTs (NCEE 2015–4011)
    • Schochet, P.Z.1
  • 64
    • 57549116350 scopus 로고    scopus 로고
    • The Hausman test statistic can be negative even asymptotically
    • S.Schreiber, (2008). The Hausman test statistic can be negative even asymptotically. Journal of Economics and Statistics, 228, 394–405. doi:10.1515/jbnst-2008-0407
    • (2008) Journal of Economics and Statistics , vol.228 , pp. 394-405
    • Schreiber, S.1
  • 65
    • 85085473785 scopus 로고    scopus 로고
    • Accuracy of the Hausman test in panel data: A Monte Carlo study
    • Öreboro University, Sweden:
    • T.Sheytanova, (2014). Accuracy of the Hausman test in panel data:A Monte Carlo study. (Unpublished thesis) Öreboro University, Sweden. http://oru.diva-portal.org/smash/get/diva2:805823/FULLTEXT01.pdf
    • (2014) Unpublished thesis
    • Sheytanova, T.1
  • 66
    • 78349291530 scopus 로고    scopus 로고
    • The analysis of very small samples of repeatedmeasurements I: An adjusted sandwich estimator
    • S.S.Skene, & M.G.Kenward, (2010a). The analysis of very small samples of repeatedmeasurements I:An adjusted sandwich estimator. Statistics in Medicine, 29, 2825–2837. doi:10.1002/sim.4073
    • (2010) Statistics in Medicine , vol.29 , pp. 2825-2837
    • Skene, S.S.1    Kenward, M.G.2
  • 67
    • 78349238542 scopus 로고    scopus 로고
    • The analysis of very small samples of repeated measurements II: A modified Box correction
    • S.S.Skene, & M.G.Kenward, (2010b). The analysis of very small samples of repeated measurements II:A modified Box correction. Statistics in Medicine, 29, 2838–2856. doi:10.1002/sim.4072
    • (2010) Statistics in Medicine , vol.29 , pp. 2838-2856
    • Skene, S.S.1    Kenward, M.G.2
  • 68
    • 25444520271 scopus 로고    scopus 로고
    • A simulation study on tests of hypotheses and confidence intervals for fixed effects in mixed models for blocked experiments with missing data
    • J.Spilke, H.P.Piepho, & X.Hu, (2005). A simulation study on tests of hypotheses and confidence intervals for fixed effects in mixed models for blocked experiments with missing data. Journal of Agricultural, Biological, and Environmental Statistics, 10, 374–389. doi:10.1198/108571105X58199
    • (2005) Journal of Agricultural, Biological, and Environmental Statistics , vol.10 , pp. 374-389
    • Spilke, J.1    Piepho, H.P.2    Hu, X.3
  • 69
    • 84879841014 scopus 로고    scopus 로고
    • How many countries for multilevel modeling? A Comparison of frequentist and Bayesian approaches
    • D.Stegmueller, (2013). How many countries for multilevel modeling? A Comparison of frequentist and Bayesian approaches. American Journal of Political Science, 57, 748–761. doi:10.1111/ajps.12001
    • (2013) American Journal of Political Science , vol.57 , pp. 748-761
    • Stegmueller, D.1
  • 70
    • 0035486318 scopus 로고    scopus 로고
    • Analysis of large-scale secondary data in higher education research: Potential perils associated with complex sampling designs
    • S.L.Thomas, & R.H.Heck, (2001). Analysis of large-scale secondary data in higher education research:Potential perils associated with complex sampling designs. Research in Higher Education, 42, 517–540. doi:10.1023/A:1011098109834
    • (2001) Research in Higher Education , vol.42 , pp. 517-540
    • Thomas, S.L.1    Heck, R.H.2
  • 72
    • 16544363356 scopus 로고    scopus 로고
    • Longitudinal data analysis. A comparison between generalized estimating equations and random coefficient analysis
    • J.W.Twisk, (2004). Longitudinal data analysis. A comparison between generalized estimating equations and random coefficient analysis. European Journal of Epidemiology, 19, 769–776. doi:10.1023/B:EJEP.0000036572.00663.f2
    • (2004) European Journal of Epidemiology , vol.19 , pp. 769-776
    • Twisk, J.W.1
  • 73
    • 27844495717 scopus 로고    scopus 로고
    • Comparison of two procedures for analyzing small sets of repeated measures data
    • G.Vallejo, & P.Livacic-Rojas, (2005). Comparison of two procedures for analyzing small sets of repeated measures data. Multivariate Behavioral Research, 40, 179–205. doi:10.1207/s15327906mbr4002_2
    • (2005) Multivariate Behavioral Research , vol.40 , pp. 179-205
    • Vallejo, G.1    Livacic-Rojas, P.2
  • 74
    • 84977106631 scopus 로고    scopus 로고
    • Analyzing small data sets using Bayesian estimation: the case of posttraumatic stress symptoms following mechanical ventilation in burn survivors
    • R.van de Schoot, J.J.Broere, K.H.Perryck, M.Zondervan-Zwijnenburg, & N.E.Van Loey, (2015). Analyzing small data sets using Bayesian estimation:the case of posttraumatic stress symptoms following mechanical ventilation in burn survivors. European Journal of Psychotraumatology, 6, 1–13. doi:10.3402/ejpt.v6.25216
    • (2015) European Journal of Psychotraumatology , vol.6 , pp. 1-13
    • van de Schoot, R.1    Broere, J.J.2    Perryck, K.H.3    Zondervan-Zwijnenburg, M.4    Van Loey, N.E.5
  • 76
    • 84856958759 scopus 로고    scopus 로고
    • Mean field variational Bayes for elaborate distributions
    • M.P.Wand, J.T.Ormerod, S.A.Padoan, & R.Fuhrwirth, (2011). Mean field variational Bayes for elaborate distributions. Bayesian Analysis, 6, 847–900. doi:10.1214/11-BA631
    • (2011) Bayesian Analysis , vol.6 , pp. 847-900
    • Wand, M.P.1    Ormerod, J.T.2    Padoan, S.A.3    Fuhrwirth, R.4
  • 77
    • 84879180863 scopus 로고    scopus 로고
    • A bias correction for covariance estimators to improve inference with generalized estimating equations that use an unstructured correlation matrix
    • P.M.Westgate, (2013). A bias correction for covariance estimators to improve inference with generalized estimating equations that use an unstructured correlation matrix. Statistics in Medicine, 32, 2850–2858. doi:10.1002/sim.5709
    • (2013) Statistics in Medicine , vol.32 , pp. 2850-2858
    • Westgate, P.M.1
  • 78
    • 0000095552 scopus 로고
    • A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity
    • H.White, (1980). A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica, 48, 817–838. doi:10.2307/1912934
    • (1980) Econometrica , vol.48 , pp. 817-838
    • White, H.1
  • 79
    • 84864297644 scopus 로고    scopus 로고
    • Comparison of methods for estimating the intraclass correlation coefficient for binary responses in cancer prevention cluster randomized trials
    • S.Wu, C.M.Crespi, & W.K.Wong, (2012). Comparison of methods for estimating the intraclass correlation coefficient for binary responses in cancer prevention cluster randomized trials. Contemporary Clinical Trials, 33, 869–880. doi:10.1016/j.cct.2012.05.004
    • (2012) Contemporary Clinical Trials , vol.33 , pp. 869-880
    • Wu, S.1    Crespi, C.M.2    Wong, W.K.3
  • 80
    • 0022673130 scopus 로고
    • Longitudinal data analysis for discrete and continuous outcomes
    • S.L.Zeger, & K.Y.Liang, (1986). Longitudinal data analysis for discrete and continuous outcomes. Biometrics, 42, 121–130. doi:10.2307/2531248
    • (1986) Biometrics , vol.42 , pp. 121-130
    • Zeger, S.L.1    Liang, K.Y.2
  • 81
    • 0024205301 scopus 로고
    • Models for longitudinal data: A generalized estimating equation approach
    • S.L.Zeger, K.Y.Liang, & P.S.Albert, (1988). Models for longitudinal data:A generalized estimating equation approach. Biometrics, 44, 1049–1060. doi:10.2307/2531734
    • (1988) Biometrics , vol.44 , pp. 1049-1060
    • Zeger, S.L.1    Liang, K.Y.2    Albert, P.S.3
  • 82
    • 0034354312 scopus 로고    scopus 로고
    • Improved small sample inference in the mixed linear model: Bartlett correction and adjusted likelihood
    • D.M.Zucker, O.Lieberman, & O.Manor, (2000). Improved small sample inference in the mixed linear model:Bartlett correction and adjusted likelihood. Journal of the Royal Statistical Society:Series B, 62, 827–838. doi:10.1111/1467-9868.00267
    • (2000) Journal of the Royal Statistical Society: Series B , vol.62 , pp. 827-838
    • Zucker, D.M.1    Lieberman, O.2    Manor, O.3
  • 83
    • 84922051374 scopus 로고    scopus 로고
    • Rendezvous overdue: Bayes analysis meets organizational research
    • M.J.Zyphur, F.L.Oswald, & D.E.Rupp, (2015). Rendezvous overdue:Bayes analysis meets organizational research. Journal of Management, 41, 387–389. doi:10.1177/0149206314549252
    • (2015) Journal of Management , vol.41 , pp. 387-389
    • Zyphur, M.J.1    Oswald, F.L.2    Rupp, D.E.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.