-
3
-
-
0141712557
-
Polychotomous quantal response by maximum indicant
-
Aitchison, J., & Bennett, J. A. (1970). Polychotomous quantal response by maximum indicant. Biometrika, 57, 253-262. http://dx. doi. org/10. 1093/biomet/57. 2. 253
-
(1970)
Biometrika
, vol.57
, pp. 253-262
-
-
Aitchison, J.1
Bennett, J.A.2
-
4
-
-
84916537550
-
Bayesian analysis of binary and polychotomous response data
-
Albert, J. H., & Chib, S. (1993). Bayesian analysis of binary and polychotomous response data. Journal of the American Statistical Association, 88, 669-679. http://dx. doi. org/10. 1080/01621459. 1993. 10476321
-
(1993)
Journal of the American Statistical Association
, vol.88
, pp. 669-679
-
-
Albert, J.H.1
Chib, S.2
-
5
-
-
85020593580
-
-
April Paper presented at the SAS Users Group International. Allison, P. D. 2002 Missing data Newbury Park, CA: Sage
-
Allison, P. D. (2005, April). Imputation of categorical variables with PROC MI. Paper presented at the SAS Users Group International. Allison, P. D. (2002). Missing data. Newbury Park, CA: Sage
-
(2005)
Imputation of categorical variables with PROC MI
-
-
Allison, P.D.1
-
6
-
-
78851470246
-
Quantifying the impact of fixed effects modeling of clusters in multiple imputation for cluster randomized trials
-
Andridge, R. R. (2011). Quantifying the impact of fixed effects modeling of clusters in multiple imputation for cluster randomized trials. Biometrical Journal Biometrische Zeitschrift, 53, 57-74. http://dx. doi. org/10. 1002/bimj. 201000140
-
(2011)
Biometrical Journal Biometrische Zeitschrift
, vol.53
, pp. 57-74
-
-
Andridge, R.R.1
-
8
-
-
33847711413
-
Robustness of a multivariate normal approximation for imputation of incomplete binary data
-
Bernaards, C. A., Belin, T. R., & Schafer, J. L. (2007). Robustness of a multivariate normal approximation for imputation of incomplete binary data. Statistics in Medicine, 26, 1368-1382. http://dx. doi. org/10. 1002/sim. 2619
-
(2007)
Statistics in Medicine
, vol.26
, pp. 1368-1382
-
-
Bernaards, C.A.1
Belin, T.R.2
Schafer, J.L.3
-
9
-
-
0034394761
-
Implementation and performance issues in the Bayesian and likelihood fitting of multilevel models
-
Browne, W. J., & Draper, D. (2000). Implementation and performance issues in the Bayesian and likelihood fitting of multilevel models. Computational Statistics, 15, 391-420. http://dx. doi. org/10. 1007/s001800000041
-
(2000)
Computational Statistics
, vol.15
, pp. 391-420
-
-
Browne, W.J.1
Draper, D.2
-
10
-
-
84856274182
-
REALCOMIMPUTE software for multilevel multiple imputation with mixed response types
-
Carpenter, J. R., Goldstein, H., & Kenward, M. G. (2011). REALCOMIMPUTE software for multilevel multiple imputation with mixed response types. Journal of Statistical Software, 45, 1-14. http://dx. doi. org/10. 18637/jss. v045. i05
-
(2011)
Journal of Statistical Software
, vol.45
, pp. 1-14
-
-
Carpenter, J.R.1
Goldstein, H.2
Kenward, M.G.3
-
12
-
-
0035755636
-
A comparison of inclusive and restrictive strategies in modern missing data procedures
-
Collins, L. M., Schafer, J. L., & Kam, C.-M. (2001). A comparison of inclusive and restrictive strategies in modern missing data procedures. Psychological Methods, 6, 330-351. http://dx. doi. org/10. 1037/1082-989X. 6. 4. 330
-
(2001)
Psychological Methods
, vol.6
, pp. 330-351
-
-
Collins, L.M.1
Schafer, J.L.2
Kam, C.-M.3
-
13
-
-
21344474305
-
Accelerating Monte Carlo Markov chain convergence for cumulative-link generalized linear models
-
Cowles, K. (1996). Accelerating Monte Carlo Markov chain convergence for cumulative-link generalized linear models. Statistics and Computing, 6, 101-111. http://dx. doi. org/10. 1007/BF00162520
-
(1996)
Statistics and Computing
, vol.6
, pp. 101-111
-
-
Cowles, K.1
-
14
-
-
38349186156
-
Plausibility of multivariate normality assumption when multiple imputing non-Gaussian continuous outcomes: A simulation assessment
-
Demirtas, H., Freels, S. A., & Yucel, R. M. (2008). Plausibility of multivariate normality assumption when multiple imputing non-Gaussian continuous outcomes: A simulation assessment. Journal of Statistical Computation and Simulation, 78, 69-84. http://dx. doi. org/10. 1080/10629360600903866
-
(2008)
Journal of Statistical Computation and Simulation
, vol.78
, pp. 69-84
-
-
Demirtas, H.1
Freels, S.A.2
Yucel, R.M.3
-
16
-
-
85020591387
-
Missing data methods
-
(in press) P. Irwing, T. Booth, & D. Hughes (Eds.). Oxford, UK: Wiley-Blackwell
-
Enders, C. K., & Baraldi, A. N. (in press). Missing data methods. In P. Irwing, T. Booth, & D. Hughes (Eds.), Handbook of psychometrics. Oxford, UK: Wiley-Blackwell
-
Handbook of psychometrics
-
-
Enders, C.K.1
Baraldi, A.N.2
-
17
-
-
0001885793
-
Effects of sample size and nonnormality on the estimation of mediated effects in latent variable models
-
Finch, J. F., West, S. G., & MacKinnon, D. P. (1997). Effects of sample size and nonnormality on the estimation of mediated effects in latent variable models. Structural Equation Modeling, 4, 87-107. http://dx. doi. org/10. 1080/10705519709540063
-
(1997)
Structural Equation Modeling
, vol.4
, pp. 87-107
-
-
Finch, J.F.1
West, S.G.2
MacKinnon, D.P.3
-
18
-
-
84962778584
-
Nonnormal and categorical data in structural equation models
-
In G. R. Hancock & R. O. Mueller (Eds.) (2nd ed). Charlotte, NC: Information Age
-
Finney, S. J., & DiStefano, C. (2013). Nonnormal and categorical data in structural equation models. In G. R. Hancock & R. O. Mueller (Eds.), A second course in structural equation modeling (2nd ed., pp. 439-492). Charlotte, NC: Information Age
-
(2013)
A second course in structural equation modeling
, pp. 439-492
-
-
Finney, S.J.1
DiStefano, C.2
-
19
-
-
85053970271
-
-
(2nd ed). Boca Raton, FL: Chapman and Hall
-
Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013). Bayesian data analysis (2nd ed.). Boca Raton, FL: Chapman and Hall
-
(2013)
Bayesian data analysis
-
-
Gelman, A.1
Carlin, J.B.2
Stern, H.S.3
Dunson, D.B.4
Vehtari, A.5
Rubin, D.B.6
-
21
-
-
84972492387
-
Inference from iterative simulation using multiple sequences
-
Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 7, 457-511. http://dx. doi. org/10. 1214/ss/1177011136
-
(1992)
Statistical Science
, vol.7
, pp. 457-511
-
-
Gelman, A.1
Rubin, D.B.2
-
22
-
-
34948888256
-
Multilevel structural equation models for the analysis of comparative data on educational performance
-
Goldstein, H., Bonnet, G., & Rocher, T. (2007). Multilevel structural equation models for the analysis of comparative data on educational performance. Journal of Educational and Behavioral Statistics, 32, 252-286. http://dx. doi. org/10. 3102/1076998606298042
-
(2007)
Journal of Educational and Behavioral Statistics
, vol.32
, pp. 252-286
-
-
Goldstein, H.1
Bonnet, G.2
Rocher, T.3
-
23
-
-
63049094081
-
Multilevel models with multivariate mixed response types
-
Goldstein, H., Carpenter, J., Kenward, M. G., & Levin, K. A. (2009). Multilevel models with multivariate mixed response types. Statistical Modelling, 9, 173-197. http://dx. doi. org/10. 1177/1471082X0800900301
-
(2009)
Statistical Modelling
, vol.9
, pp. 173-197
-
-
Goldstein, H.1
Carpenter, J.2
Kenward, M.G.3
Levin, K.A.4
-
25
-
-
34548451124
-
How many imputations are really needed?. Some practical clarifications of multiple imputation theory
-
Graham, J. W., Olchowski, A. E., & Gilreath, T. D. (2007). How many imputations are really needed? Some practical clarifications of multiple imputation theory. Prevention Science, 8, 206-213. http://dx. doi. org/10. 1007/s11121-007-0070-9
-
(2007)
Prevention Science
, vol.8
, pp. 206-213
-
-
Graham, J.W.1
Olchowski, A.E.2
Gilreath, T.D.3
-
26
-
-
0242710940
-
A potential for bias when rounding in multiple imputation
-
Horton, N. J., Lipsitz, S. R., & Parzen, M. (2003). A potential for bias when rounding in multiple imputation. The American Statistician, 57, 229-232. http://dx. doi. org/10. 1198/0003130032314
-
(2003)
The American Statistician
, vol.57
, pp. 229-232
-
-
Horton, N.J.1
Lipsitz, S.R.2
Parzen, M.3
-
27
-
-
84897646212
-
Joint modeling rationale for chained equations
-
Hughes, R. A., White, I. R., Seaman, S. R., Carpenter, J. R., Tilling, K., & Sterne, J. A. C. (2014). Joint modeling rationale for chained equations. BMC Medical Research Methodology, 14, 1-10. http://dx. doi. org/10. 1186/1471-2288-14-28
-
(2014)
BMC Medical Research Methodology
, vol.14
, pp. 1-10
-
-
Hughes, R.A.1
White, I.R.2
Seaman, S.R.3
Carpenter, J.R.4
Tilling, K.5
Sterne, J.A.C.6
-
28
-
-
0347574107
-
Estimation and inference via Bayesian simulation: An introduction to Markov Chain Monte Carlo
-
Jackman, S. (2000). Estimation and inference via Bayesian simulation: An introduction to Markov Chain Monte Carlo. American Journal of Political Science, 44, 375-404. http://dx. doi. org/10. 2307/2669318
-
(2000)
American Journal of Political Science
, vol.44
, pp. 375-404
-
-
Jackman, S.1
-
30
-
-
78751699389
-
The impact of specification error on the estimation, testing and improvement of structural equation models
-
Kaplan, D. (1988). The impact of specification error on the estimation, testing and improvement of structural equation models. Multivariate Behavioral Research, 23, 69-86. http://dx. doi. org/10. 1207/s15327906mbr2301_4
-
(1988)
Multivariate Behavioral Research
, vol.23
, pp. 69-86
-
-
Kaplan, D.1
-
31
-
-
0032359236
-
Application of Gibbs sampling to nested variance components models with heterogeneous withingroup variance
-
Kasim, R. M., & Raudenbush, S. W. (1998). Application of Gibbs sampling to nested variance components models with heterogeneous withingroup variance. Journal of Educational and Behavioral Statistics, 23, 93-116. http://dx. doi. org/10. 3102/10769986023002093
-
(1998)
Journal of Educational and Behavioral Statistics
, vol.23
, pp. 93-116
-
-
Kasim, R.M.1
Raudenbush, S.W.2
-
32
-
-
85020600168
-
-
May Paper presented at the Modern Modeling Methods Conference, Storrs, CT
-
Keller, B. T., & Enders, C. K. (2014, May). A latent variable chained equations approach for multilevel multiple imputation. Paper presented at the Modern Modeling Methods Conference, Storrs, CT
-
(2014)
A latent variable chained equations approach for multilevel multiple imputation
-
-
Keller, B.T.1
Enders, C.K.2
-
34
-
-
83755205919
-
A 2-2 taxonomy of multilevel latent contextual models: Accuracy-bias tradeoffs in full and partial error correction models
-
Lüdtke, O., Marsh, H. W., Robitzsch, A., & Trautwein, U. (2011). A 2-2 taxonomy of multilevel latent contextual models: Accuracy-bias tradeoffs in full and partial error correction models. Psychological Methods, 16, 444-467. http://dx. doi. org/10. 1037/a0024376
-
(2011)
Psychological Methods
, vol.16
, pp. 444-467
-
-
Lüdtke, O.1
Marsh, H.W.2
Robitzsch, A.3
Trautwein, U.4
-
35
-
-
85020589407
-
-
Retrieved from cran. r-project. org/web/packages/baboon/baboon. pdf on 5-16-2015
-
Meinfelder, F. (2011). Package "mice. "Retrieved from cran. r-project. org/web/packages/baboon/baboon. pdf on 5-16-2015
-
(2011)
Package "mice"
-
-
Meinfelder, F.1
-
36
-
-
84972537494
-
Multiple-imputation inferences with uncongenial sources of input
-
Meng, X.-L. (1994). Multiple-imputation inferences with uncongenial sources of input. Statistical Science, 9, 538-558
-
(1994)
Statistical Science
, vol.9
, pp. 538-558
-
-
Meng, X.-L.1
-
38
-
-
84921506056
-
The effects of cognitive strategy instruction on math problem solving of middle school students of varying abilities
-
Montague, M., Krawec, J., Enders, C., & Dietz, S. (2014). The effects of cognitive strategy instruction on math problem solving of middle school students of varying abilities. Journal of Educational Psychology, 106, 469-481. http://dx. doi. org/10. 1037/a0035176
-
(2014)
Journal of Educational Psychology
, vol.106
, pp. 469-481
-
-
Montague, M.1
Krawec, J.2
Enders, C.3
Dietz, S.4
-
40
-
-
0002344593
-
A multivariate technique for multiply imputing missing values using a sequence of regression models
-
Raghunathan, T. E., Lepkowski, J. M., van Hoewyk, J., & Solenberger, P. (2001). A multivariate technique for multiply imputing missing values using a sequence of regression models. Survey Methodology, 27, 85-95
-
(2001)
Survey Methodology
, vol.27
, pp. 85-95
-
-
Raghunathan, T.E.1
Lepkowski, J.M.2
van Hoewyk, J.3
Solenberger, P.4
-
42
-
-
34548704976
-
The importance of modeling the survey design in multiple imputation for missing data
-
Reiter, J. P., Raghunathan, T. E., & Kinney, S. K. (2006). The importance of modeling the survey design in multiple imputation for missing data. Survey Methodology, 32, 143-150
-
(2006)
Survey Methodology
, vol.32
, pp. 143-150
-
-
Reiter, J.P.1
Raghunathan, T.E.2
Kinney, S.K.3
-
43
-
-
0017133178
-
Inference and missing data
-
Rubin, D. B. (1976). Inference and missing data. Biometrika, 63, 581-592. http://dx. doi. org/10. 1093/biomet/63. 3. 581
-
(1976)
Biometrika
, vol.63
, pp. 581-592
-
-
Rubin, D.B.1
-
45
-
-
0030539070
-
Multiple imputation after 18 years
-
Rubin, D. B. (1996). Multiple imputation after 18 years. Journal of the American Statistical Association, 91, 473-489. http://dx. doi. org/10. 1080/01621459. 1996. 10476908
-
(1996)
Journal of the American Statistical Association
, vol.91
, pp. 473-489
-
-
Rubin, D.B.1
-
47
-
-
0004211748
-
Multiple imputation with PAN
-
A. G. Sayer & L. M. Collins (Eds.), Washington, DC: American Psychological Association
-
Schafer, J. L. (2001). Multiple imputation with PAN. In A. G. Sayer & L. M. Collins (Eds.), New methods for the analysis of change (pp. 355-377). Washington, DC: American Psychological Association. http://dx. doi. org/10. 1037/10409-012
-
(2001)
New methods for the analysis of change
, pp. 355-377
-
-
Schafer, J.L.1
-
48
-
-
28444485368
-
Multiple imputation in multivariate problems when the imputation and analysis models differ
-
Schafer, J. L. (2003). Multiple imputation in multivariate problems when the imputation and analysis models differ. Statistica Neerlandica, 57, 19-35. http://dx. doi. org/10. 1111/1467-9574. 00218
-
(2003)
Statistica Neerlandica
, vol.57
, pp. 19-35
-
-
Schafer, J.L.1
-
49
-
-
85047673373
-
Missing data: Our view of the state of the art
-
Schafer, J. L., & Graham, J. W. (2002). Missing data: Our view of the state of the art. Psychological Methods, 7, 147-177. http://dx. doi. org/10. 1037/1082-989X. 7. 2. 147
-
(2002)
Psychological Methods
, vol.7
, pp. 147-177
-
-
Schafer, J.L.1
Graham, J.W.2
-
50
-
-
0032219074
-
Multiple imputation for multivariate missing-data problems: A data analyst's perspective
-
Schafer, J. L., & Olsen, M. K. (1998). Multiple imputation for multivariate missing-data problems: A data analyst's perspective. Multivariate Behavioral Research, 33, 545-571. http://dx. doi. org/10. 1207/s15327906mbr3304_5
-
(1998)
Multivariate Behavioral Research
, vol.33
, pp. 545-571
-
-
Schafer, J.L.1
Olsen, M.K.2
-
51
-
-
0036017469
-
Computational strategies for multivariate linear mixed effects models with missing data
-
Schafer, J. L., & Yucel, R. M. (2002). Computational strategies for multivariate linear mixed effects models with missing data. Journal of Computational and Graphical Statistics, 11, 437-457. http://dx. doi. org/10. 1198/106186002760180608
-
(2002)
Journal of Computational and Graphical Statistics
, vol.11
, pp. 437-457
-
-
Schafer, J.L.1
Yucel, R.M.2
-
52
-
-
84949806873
-
Multilevel model notation-Establishing the commonalities
-
M. A. Scott, J. S. Simonoff, & B. D. Marx (Eds.), Newbury Park, CA: Sage
-
Scott, M. A., Shrout, P. E., & Weinberg, S. L. (2013). Multilevel model notation-Establishing the commonalities. In M. A. Scott, J. S. Simonoff, & B. D. Marx (Eds.), The Sage handbook of multilevel modeling (pp. 21-38). Newbury Park, CA: Sage. http://dx. doi. org/10. 4135/9781446247600. n2
-
(2013)
The Sage handbook of multilevel modeling
, pp. 21-38
-
-
Scott, M.A.1
Shrout, P.E.2
Weinberg, S.L.3
-
53
-
-
0035748192
-
The use of multiple imputation for the analysis of missing data
-
Sinharay, S., Stern, H. S., & Russell, D. (2001). The use of multiple imputation for the analysis of missing data. Psychological Methods, 6, 317-329. http://dx. doi. org/10. 1037/1082-989X. 6. 4. 317
-
(2001)
Psychological Methods
, vol.6
, pp. 317-329
-
-
Sinharay, S.1
Stern, H.S.2
Russell, D.3
-
54
-
-
49849097915
-
Imputation strategies for missing continuous outcomes in cluster randomized trials
-
Taljaard, M., Donner, A., & Klar, N. (2008). Imputation strategies for missing continuous outcomes in cluster randomized trials. Biometrical Journal, 50, 329-345. http://dx. doi. org/10. 1002/bimj. 200710423
-
(2008)
Biometrical Journal
, vol.50
, pp. 329-345
-
-
Taljaard, M.1
Donner, A.2
Klar, N.3
-
55
-
-
34347407592
-
Multiple imputation of discrete and continuous data by fully conditional specification
-
van Buuren, S. (2007). Multiple imputation of discrete and continuous data by fully conditional specification. Statistical Methods in Medical Research, 16, 219-242. http://dx. doi. org/10. 1177/0962280206074463
-
(2007)
Statistical Methods in Medical Research
, vol.16
, pp. 219-242
-
-
van Buuren, S.1
-
56
-
-
85130029608
-
Multiple imputation of multilevel data
-
J. K. Roberts & J. J. Hox (Eds.), New York, NY: Routledge
-
van Buuren, S. (2011). Multiple imputation of multilevel data. In J. K. Roberts & J. J. Hox (Eds.), The handbook of advanced multilevel analysis (pp. 173-196). New York, NY: Routledge
-
(2011)
The handbook of advanced multilevel analysis
, pp. 173-196
-
-
van Buuren, S.1
-
58
-
-
33751583679
-
Fully conditional specification in multivariate imputation
-
van Buuren, S., Brand, J. P. L., Groothuis-Oudshoorn, C. G. M., & Rubin, D. B. (2006). Fully conditional specification in multivariate imputation. Journal of Statistical Computation and Simulation, 76, 1049-1064. http://dx. doi. org/10. 1080/10629360600810434
-
(2006)
Journal of Statistical Computation and Simulation
, vol.76
, pp. 1049-1064
-
-
van Buuren, S.1
Brand, J.P.L.2
Groothuis-Oudshoorn, C.G.M.3
Rubin, D.B.4
-
60
-
-
85020458411
-
-
Retrieved from cran. r-project. org/web/packages/mice/mice. pdf on 5-18-2014
-
van Buuren, S., Groothuis-Oudshoorn, K., Robitzsch, A., Vink, G., Doove, L., & Jolani, S. (2014). Package "mice. "Retrieved from cran. r-project. org/web/packages/mice/mice. pdf on 5-18-2014
-
(2014)
Package "mice"
-
-
van Buuren, S.1
Groothuis-Oudshoorn, K.2
Robitzsch, A.3
Vink, G.4
Doove, L.5
Jolani, S.6
-
62
-
-
80051757583
-
Random-covariances and mixed-effects models for imputing multivariate multilevel continuous data
-
Yucel, R. M. (2011). Random-covariances and mixed-effects models for imputing multivariate multilevel continuous data. Statistical Modelling, 11, 351-370. http://dx. doi. org/10. 1177/1471082X1001100404
-
(2011)
Statistical Modelling
, vol.11
, pp. 351-370
-
-
Yucel, R.M.1
-
63
-
-
45749110814
-
Using calibration to improve rounding in imputation
-
Yucel, R. M., He, Y., & Zaslavsky, A. M. (2008). Using calibration to improve rounding in imputation. The American Statistician, 62, 1-5. http://dx. doi. org/10. 1198/000313008X300912
-
(2008)
The American Statistician
, vol.62
, pp. 1-5
-
-
Yucel, R.M.1
He, Y.2
Zaslavsky, A.M.3
-
64
-
-
84960437357
-
-
August Paper presented at the American Statistical Association Joint Statistical Meetings, Washington, DC
-
Zhao, E., & Yucel, R. M. (2009, August). Performance of sequential imputation method in multilevel applications. Paper presented at the American Statistical Association Joint Statistical Meetings, Washington, DC
-
(2009)
Performance of sequential imputation method in multilevel applications
-
-
Zhao, E.1
Yucel, R.M.2
|