메뉴 건너뛰기




Volumn 21, Issue 2, 2016, Pages 222-240

Multilevel multiple imputation: A review and evaluation of joint modeling and chained equations imputation

Author keywords

Missing data; Multilevel modeling; Multiple imputation

Indexed keywords

COMPUTER SIMULATION; JOINT; MODEL; STATISTICAL MODEL; THEORETICAL MODEL; HUMAN; METHODOLOGY; MULTILEVEL ANALYSIS;

EID: 84951310155     PISSN: 1082989X     EISSN: None     Source Type: Journal    
DOI: 10.1037/met0000063     Document Type: Article
Times cited : (130)

References (64)
  • 3
    • 0141712557 scopus 로고
    • Polychotomous quantal response by maximum indicant
    • Aitchison, J., & Bennett, J. A. (1970). Polychotomous quantal response by maximum indicant. Biometrika, 57, 253-262. http://dx. doi. org/10. 1093/biomet/57. 2. 253
    • (1970) Biometrika , vol.57 , pp. 253-262
    • Aitchison, J.1    Bennett, J.A.2
  • 4
    • 84916537550 scopus 로고
    • Bayesian analysis of binary and polychotomous response data
    • Albert, J. H., & Chib, S. (1993). Bayesian analysis of binary and polychotomous response data. Journal of the American Statistical Association, 88, 669-679. http://dx. doi. org/10. 1080/01621459. 1993. 10476321
    • (1993) Journal of the American Statistical Association , vol.88 , pp. 669-679
    • Albert, J.H.1    Chib, S.2
  • 5
    • 85020593580 scopus 로고    scopus 로고
    • April Paper presented at the SAS Users Group International. Allison, P. D. 2002 Missing data Newbury Park, CA: Sage
    • Allison, P. D. (2005, April). Imputation of categorical variables with PROC MI. Paper presented at the SAS Users Group International. Allison, P. D. (2002). Missing data. Newbury Park, CA: Sage
    • (2005) Imputation of categorical variables with PROC MI
    • Allison, P.D.1
  • 6
    • 78851470246 scopus 로고    scopus 로고
    • Quantifying the impact of fixed effects modeling of clusters in multiple imputation for cluster randomized trials
    • Andridge, R. R. (2011). Quantifying the impact of fixed effects modeling of clusters in multiple imputation for cluster randomized trials. Biometrical Journal Biometrische Zeitschrift, 53, 57-74. http://dx. doi. org/10. 1002/bimj. 201000140
    • (2011) Biometrical Journal Biometrische Zeitschrift , vol.53 , pp. 57-74
    • Andridge, R.R.1
  • 8
    • 33847711413 scopus 로고    scopus 로고
    • Robustness of a multivariate normal approximation for imputation of incomplete binary data
    • Bernaards, C. A., Belin, T. R., & Schafer, J. L. (2007). Robustness of a multivariate normal approximation for imputation of incomplete binary data. Statistics in Medicine, 26, 1368-1382. http://dx. doi. org/10. 1002/sim. 2619
    • (2007) Statistics in Medicine , vol.26 , pp. 1368-1382
    • Bernaards, C.A.1    Belin, T.R.2    Schafer, J.L.3
  • 9
    • 0034394761 scopus 로고    scopus 로고
    • Implementation and performance issues in the Bayesian and likelihood fitting of multilevel models
    • Browne, W. J., & Draper, D. (2000). Implementation and performance issues in the Bayesian and likelihood fitting of multilevel models. Computational Statistics, 15, 391-420. http://dx. doi. org/10. 1007/s001800000041
    • (2000) Computational Statistics , vol.15 , pp. 391-420
    • Browne, W.J.1    Draper, D.2
  • 10
    • 84856274182 scopus 로고    scopus 로고
    • REALCOMIMPUTE software for multilevel multiple imputation with mixed response types
    • Carpenter, J. R., Goldstein, H., & Kenward, M. G. (2011). REALCOMIMPUTE software for multilevel multiple imputation with mixed response types. Journal of Statistical Software, 45, 1-14. http://dx. doi. org/10. 18637/jss. v045. i05
    • (2011) Journal of Statistical Software , vol.45 , pp. 1-14
    • Carpenter, J.R.1    Goldstein, H.2    Kenward, M.G.3
  • 12
    • 0035755636 scopus 로고    scopus 로고
    • A comparison of inclusive and restrictive strategies in modern missing data procedures
    • Collins, L. M., Schafer, J. L., & Kam, C.-M. (2001). A comparison of inclusive and restrictive strategies in modern missing data procedures. Psychological Methods, 6, 330-351. http://dx. doi. org/10. 1037/1082-989X. 6. 4. 330
    • (2001) Psychological Methods , vol.6 , pp. 330-351
    • Collins, L.M.1    Schafer, J.L.2    Kam, C.-M.3
  • 13
    • 21344474305 scopus 로고    scopus 로고
    • Accelerating Monte Carlo Markov chain convergence for cumulative-link generalized linear models
    • Cowles, K. (1996). Accelerating Monte Carlo Markov chain convergence for cumulative-link generalized linear models. Statistics and Computing, 6, 101-111. http://dx. doi. org/10. 1007/BF00162520
    • (1996) Statistics and Computing , vol.6 , pp. 101-111
    • Cowles, K.1
  • 14
    • 38349186156 scopus 로고    scopus 로고
    • Plausibility of multivariate normality assumption when multiple imputing non-Gaussian continuous outcomes: A simulation assessment
    • Demirtas, H., Freels, S. A., & Yucel, R. M. (2008). Plausibility of multivariate normality assumption when multiple imputing non-Gaussian continuous outcomes: A simulation assessment. Journal of Statistical Computation and Simulation, 78, 69-84. http://dx. doi. org/10. 1080/10629360600903866
    • (2008) Journal of Statistical Computation and Simulation , vol.78 , pp. 69-84
    • Demirtas, H.1    Freels, S.A.2    Yucel, R.M.3
  • 16
    • 85020591387 scopus 로고    scopus 로고
    • Missing data methods
    • (in press) P. Irwing, T. Booth, & D. Hughes (Eds.). Oxford, UK: Wiley-Blackwell
    • Enders, C. K., & Baraldi, A. N. (in press). Missing data methods. In P. Irwing, T. Booth, & D. Hughes (Eds.), Handbook of psychometrics. Oxford, UK: Wiley-Blackwell
    • Handbook of psychometrics
    • Enders, C.K.1    Baraldi, A.N.2
  • 17
    • 0001885793 scopus 로고    scopus 로고
    • Effects of sample size and nonnormality on the estimation of mediated effects in latent variable models
    • Finch, J. F., West, S. G., & MacKinnon, D. P. (1997). Effects of sample size and nonnormality on the estimation of mediated effects in latent variable models. Structural Equation Modeling, 4, 87-107. http://dx. doi. org/10. 1080/10705519709540063
    • (1997) Structural Equation Modeling , vol.4 , pp. 87-107
    • Finch, J.F.1    West, S.G.2    MacKinnon, D.P.3
  • 18
    • 84962778584 scopus 로고    scopus 로고
    • Nonnormal and categorical data in structural equation models
    • In G. R. Hancock & R. O. Mueller (Eds.) (2nd ed). Charlotte, NC: Information Age
    • Finney, S. J., & DiStefano, C. (2013). Nonnormal and categorical data in structural equation models. In G. R. Hancock & R. O. Mueller (Eds.), A second course in structural equation modeling (2nd ed., pp. 439-492). Charlotte, NC: Information Age
    • (2013) A second course in structural equation modeling , pp. 439-492
    • Finney, S.J.1    DiStefano, C.2
  • 21
    • 84972492387 scopus 로고
    • Inference from iterative simulation using multiple sequences
    • Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 7, 457-511. http://dx. doi. org/10. 1214/ss/1177011136
    • (1992) Statistical Science , vol.7 , pp. 457-511
    • Gelman, A.1    Rubin, D.B.2
  • 22
    • 34948888256 scopus 로고    scopus 로고
    • Multilevel structural equation models for the analysis of comparative data on educational performance
    • Goldstein, H., Bonnet, G., & Rocher, T. (2007). Multilevel structural equation models for the analysis of comparative data on educational performance. Journal of Educational and Behavioral Statistics, 32, 252-286. http://dx. doi. org/10. 3102/1076998606298042
    • (2007) Journal of Educational and Behavioral Statistics , vol.32 , pp. 252-286
    • Goldstein, H.1    Bonnet, G.2    Rocher, T.3
  • 23
    • 63049094081 scopus 로고    scopus 로고
    • Multilevel models with multivariate mixed response types
    • Goldstein, H., Carpenter, J., Kenward, M. G., & Levin, K. A. (2009). Multilevel models with multivariate mixed response types. Statistical Modelling, 9, 173-197. http://dx. doi. org/10. 1177/1471082X0800900301
    • (2009) Statistical Modelling , vol.9 , pp. 173-197
    • Goldstein, H.1    Carpenter, J.2    Kenward, M.G.3    Levin, K.A.4
  • 25
    • 34548451124 scopus 로고    scopus 로고
    • How many imputations are really needed?. Some practical clarifications of multiple imputation theory
    • Graham, J. W., Olchowski, A. E., & Gilreath, T. D. (2007). How many imputations are really needed? Some practical clarifications of multiple imputation theory. Prevention Science, 8, 206-213. http://dx. doi. org/10. 1007/s11121-007-0070-9
    • (2007) Prevention Science , vol.8 , pp. 206-213
    • Graham, J.W.1    Olchowski, A.E.2    Gilreath, T.D.3
  • 26
    • 0242710940 scopus 로고    scopus 로고
    • A potential for bias when rounding in multiple imputation
    • Horton, N. J., Lipsitz, S. R., & Parzen, M. (2003). A potential for bias when rounding in multiple imputation. The American Statistician, 57, 229-232. http://dx. doi. org/10. 1198/0003130032314
    • (2003) The American Statistician , vol.57 , pp. 229-232
    • Horton, N.J.1    Lipsitz, S.R.2    Parzen, M.3
  • 28
    • 0347574107 scopus 로고    scopus 로고
    • Estimation and inference via Bayesian simulation: An introduction to Markov Chain Monte Carlo
    • Jackman, S. (2000). Estimation and inference via Bayesian simulation: An introduction to Markov Chain Monte Carlo. American Journal of Political Science, 44, 375-404. http://dx. doi. org/10. 2307/2669318
    • (2000) American Journal of Political Science , vol.44 , pp. 375-404
    • Jackman, S.1
  • 30
    • 78751699389 scopus 로고
    • The impact of specification error on the estimation, testing and improvement of structural equation models
    • Kaplan, D. (1988). The impact of specification error on the estimation, testing and improvement of structural equation models. Multivariate Behavioral Research, 23, 69-86. http://dx. doi. org/10. 1207/s15327906mbr2301_4
    • (1988) Multivariate Behavioral Research , vol.23 , pp. 69-86
    • Kaplan, D.1
  • 31
    • 0032359236 scopus 로고    scopus 로고
    • Application of Gibbs sampling to nested variance components models with heterogeneous withingroup variance
    • Kasim, R. M., & Raudenbush, S. W. (1998). Application of Gibbs sampling to nested variance components models with heterogeneous withingroup variance. Journal of Educational and Behavioral Statistics, 23, 93-116. http://dx. doi. org/10. 3102/10769986023002093
    • (1998) Journal of Educational and Behavioral Statistics , vol.23 , pp. 93-116
    • Kasim, R.M.1    Raudenbush, S.W.2
  • 34
    • 83755205919 scopus 로고    scopus 로고
    • A 2-2 taxonomy of multilevel latent contextual models: Accuracy-bias tradeoffs in full and partial error correction models
    • Lüdtke, O., Marsh, H. W., Robitzsch, A., & Trautwein, U. (2011). A 2-2 taxonomy of multilevel latent contextual models: Accuracy-bias tradeoffs in full and partial error correction models. Psychological Methods, 16, 444-467. http://dx. doi. org/10. 1037/a0024376
    • (2011) Psychological Methods , vol.16 , pp. 444-467
    • Lüdtke, O.1    Marsh, H.W.2    Robitzsch, A.3    Trautwein, U.4
  • 35
    • 85020589407 scopus 로고    scopus 로고
    • Retrieved from cran. r-project. org/web/packages/baboon/baboon. pdf on 5-16-2015
    • Meinfelder, F. (2011). Package "mice. "Retrieved from cran. r-project. org/web/packages/baboon/baboon. pdf on 5-16-2015
    • (2011) Package "mice"
    • Meinfelder, F.1
  • 36
    • 84972537494 scopus 로고
    • Multiple-imputation inferences with uncongenial sources of input
    • Meng, X.-L. (1994). Multiple-imputation inferences with uncongenial sources of input. Statistical Science, 9, 538-558
    • (1994) Statistical Science , vol.9 , pp. 538-558
    • Meng, X.-L.1
  • 38
    • 84921506056 scopus 로고    scopus 로고
    • The effects of cognitive strategy instruction on math problem solving of middle school students of varying abilities
    • Montague, M., Krawec, J., Enders, C., & Dietz, S. (2014). The effects of cognitive strategy instruction on math problem solving of middle school students of varying abilities. Journal of Educational Psychology, 106, 469-481. http://dx. doi. org/10. 1037/a0035176
    • (2014) Journal of Educational Psychology , vol.106 , pp. 469-481
    • Montague, M.1    Krawec, J.2    Enders, C.3    Dietz, S.4
  • 40
    • 0002344593 scopus 로고    scopus 로고
    • A multivariate technique for multiply imputing missing values using a sequence of regression models
    • Raghunathan, T. E., Lepkowski, J. M., van Hoewyk, J., & Solenberger, P. (2001). A multivariate technique for multiply imputing missing values using a sequence of regression models. Survey Methodology, 27, 85-95
    • (2001) Survey Methodology , vol.27 , pp. 85-95
    • Raghunathan, T.E.1    Lepkowski, J.M.2    van Hoewyk, J.3    Solenberger, P.4
  • 42
    • 34548704976 scopus 로고    scopus 로고
    • The importance of modeling the survey design in multiple imputation for missing data
    • Reiter, J. P., Raghunathan, T. E., & Kinney, S. K. (2006). The importance of modeling the survey design in multiple imputation for missing data. Survey Methodology, 32, 143-150
    • (2006) Survey Methodology , vol.32 , pp. 143-150
    • Reiter, J.P.1    Raghunathan, T.E.2    Kinney, S.K.3
  • 43
    • 0017133178 scopus 로고
    • Inference and missing data
    • Rubin, D. B. (1976). Inference and missing data. Biometrika, 63, 581-592. http://dx. doi. org/10. 1093/biomet/63. 3. 581
    • (1976) Biometrika , vol.63 , pp. 581-592
    • Rubin, D.B.1
  • 45
    • 0030539070 scopus 로고    scopus 로고
    • Multiple imputation after 18 years
    • Rubin, D. B. (1996). Multiple imputation after 18 years. Journal of the American Statistical Association, 91, 473-489. http://dx. doi. org/10. 1080/01621459. 1996. 10476908
    • (1996) Journal of the American Statistical Association , vol.91 , pp. 473-489
    • Rubin, D.B.1
  • 47
    • 0004211748 scopus 로고    scopus 로고
    • Multiple imputation with PAN
    • A. G. Sayer & L. M. Collins (Eds.), Washington, DC: American Psychological Association
    • Schafer, J. L. (2001). Multiple imputation with PAN. In A. G. Sayer & L. M. Collins (Eds.), New methods for the analysis of change (pp. 355-377). Washington, DC: American Psychological Association. http://dx. doi. org/10. 1037/10409-012
    • (2001) New methods for the analysis of change , pp. 355-377
    • Schafer, J.L.1
  • 48
    • 28444485368 scopus 로고    scopus 로고
    • Multiple imputation in multivariate problems when the imputation and analysis models differ
    • Schafer, J. L. (2003). Multiple imputation in multivariate problems when the imputation and analysis models differ. Statistica Neerlandica, 57, 19-35. http://dx. doi. org/10. 1111/1467-9574. 00218
    • (2003) Statistica Neerlandica , vol.57 , pp. 19-35
    • Schafer, J.L.1
  • 49
    • 85047673373 scopus 로고    scopus 로고
    • Missing data: Our view of the state of the art
    • Schafer, J. L., & Graham, J. W. (2002). Missing data: Our view of the state of the art. Psychological Methods, 7, 147-177. http://dx. doi. org/10. 1037/1082-989X. 7. 2. 147
    • (2002) Psychological Methods , vol.7 , pp. 147-177
    • Schafer, J.L.1    Graham, J.W.2
  • 50
    • 0032219074 scopus 로고    scopus 로고
    • Multiple imputation for multivariate missing-data problems: A data analyst's perspective
    • Schafer, J. L., & Olsen, M. K. (1998). Multiple imputation for multivariate missing-data problems: A data analyst's perspective. Multivariate Behavioral Research, 33, 545-571. http://dx. doi. org/10. 1207/s15327906mbr3304_5
    • (1998) Multivariate Behavioral Research , vol.33 , pp. 545-571
    • Schafer, J.L.1    Olsen, M.K.2
  • 51
    • 0036017469 scopus 로고    scopus 로고
    • Computational strategies for multivariate linear mixed effects models with missing data
    • Schafer, J. L., & Yucel, R. M. (2002). Computational strategies for multivariate linear mixed effects models with missing data. Journal of Computational and Graphical Statistics, 11, 437-457. http://dx. doi. org/10. 1198/106186002760180608
    • (2002) Journal of Computational and Graphical Statistics , vol.11 , pp. 437-457
    • Schafer, J.L.1    Yucel, R.M.2
  • 52
    • 84949806873 scopus 로고    scopus 로고
    • Multilevel model notation-Establishing the commonalities
    • M. A. Scott, J. S. Simonoff, & B. D. Marx (Eds.), Newbury Park, CA: Sage
    • Scott, M. A., Shrout, P. E., & Weinberg, S. L. (2013). Multilevel model notation-Establishing the commonalities. In M. A. Scott, J. S. Simonoff, & B. D. Marx (Eds.), The Sage handbook of multilevel modeling (pp. 21-38). Newbury Park, CA: Sage. http://dx. doi. org/10. 4135/9781446247600. n2
    • (2013) The Sage handbook of multilevel modeling , pp. 21-38
    • Scott, M.A.1    Shrout, P.E.2    Weinberg, S.L.3
  • 53
    • 0035748192 scopus 로고    scopus 로고
    • The use of multiple imputation for the analysis of missing data
    • Sinharay, S., Stern, H. S., & Russell, D. (2001). The use of multiple imputation for the analysis of missing data. Psychological Methods, 6, 317-329. http://dx. doi. org/10. 1037/1082-989X. 6. 4. 317
    • (2001) Psychological Methods , vol.6 , pp. 317-329
    • Sinharay, S.1    Stern, H.S.2    Russell, D.3
  • 54
    • 49849097915 scopus 로고    scopus 로고
    • Imputation strategies for missing continuous outcomes in cluster randomized trials
    • Taljaard, M., Donner, A., & Klar, N. (2008). Imputation strategies for missing continuous outcomes in cluster randomized trials. Biometrical Journal, 50, 329-345. http://dx. doi. org/10. 1002/bimj. 200710423
    • (2008) Biometrical Journal , vol.50 , pp. 329-345
    • Taljaard, M.1    Donner, A.2    Klar, N.3
  • 55
    • 34347407592 scopus 로고    scopus 로고
    • Multiple imputation of discrete and continuous data by fully conditional specification
    • van Buuren, S. (2007). Multiple imputation of discrete and continuous data by fully conditional specification. Statistical Methods in Medical Research, 16, 219-242. http://dx. doi. org/10. 1177/0962280206074463
    • (2007) Statistical Methods in Medical Research , vol.16 , pp. 219-242
    • van Buuren, S.1
  • 56
    • 85130029608 scopus 로고    scopus 로고
    • Multiple imputation of multilevel data
    • J. K. Roberts & J. J. Hox (Eds.), New York, NY: Routledge
    • van Buuren, S. (2011). Multiple imputation of multilevel data. In J. K. Roberts & J. J. Hox (Eds.), The handbook of advanced multilevel analysis (pp. 173-196). New York, NY: Routledge
    • (2011) The handbook of advanced multilevel analysis , pp. 173-196
    • van Buuren, S.1
  • 62
    • 80051757583 scopus 로고    scopus 로고
    • Random-covariances and mixed-effects models for imputing multivariate multilevel continuous data
    • Yucel, R. M. (2011). Random-covariances and mixed-effects models for imputing multivariate multilevel continuous data. Statistical Modelling, 11, 351-370. http://dx. doi. org/10. 1177/1471082X1001100404
    • (2011) Statistical Modelling , vol.11 , pp. 351-370
    • Yucel, R.M.1
  • 63
    • 45749110814 scopus 로고    scopus 로고
    • Using calibration to improve rounding in imputation
    • Yucel, R. M., He, Y., & Zaslavsky, A. M. (2008). Using calibration to improve rounding in imputation. The American Statistician, 62, 1-5. http://dx. doi. org/10. 1198/000313008X300912
    • (2008) The American Statistician , vol.62 , pp. 1-5
    • Yucel, R.M.1    He, Y.2    Zaslavsky, A.M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.