-
1
-
-
0034339545
-
Multiple imputation for missing data: A cautionary tale
-
Allison, P. D. 2000. Multiple imputation for missing data: A cautionary tale. Sociological Methods and Research 28: 301-309.
-
(2000)
Sociological Methods and Research
, vol.28
, pp. 301-309
-
-
Allison, P.D.1
-
2
-
-
0345475379
-
Missing data techniques for structural equation modeling
-
Allison, P. D. 2003. Missing data techniques for structural equation modeling. Journal of Abnormal Psychology 112: 545-557.
-
(2003)
Journal of Abnormal Psychology
, vol.112
, pp. 545-557
-
-
Allison, P.D.1
-
3
-
-
2442736478
-
Small-sample degrees of freedom with multiple imputation
-
Barnard, J., and D. B. Rubin. 1999. Small-sample degrees of freedom with multiple imputation. Biometrika 86: 948-955.
-
(1999)
Biometrika
, vol.86
, pp. 948-955
-
-
Barnard, J.1
Rubin, D.B.2
-
5
-
-
34548451124
-
How many imputations are really needed? Some practical clarifications of multiple imputation theory
-
Graham, J. W., A. E. Olchowski, and T. D. Gilreath. 2007. How many imputations are really needed? Some practical clarifications of multiple imputation theory. Prevention Science 8: 206-213.
-
(2007)
Prevention Science
, vol.8
, pp. 206-213
-
-
Graham, J.W.1
Olchowski, A.E.2
Gilreath, T.D.3
-
6
-
-
33845210459
-
Inferences on missing information under multiple imputation and twostage multiple imputation
-
Harel, O. 2007. Inferences on missing information under multiple imputation and twostage multiple imputation. Statistical Methodology 4: 75-89.
-
(2007)
Statistical Methodology
, vol.4
, pp. 75-89
-
-
Harel, O.1
-
7
-
-
34250686456
-
Multiple imputation: Review of theory, implementation and software
-
Harel, O., and X.-H. Zhou. 2007. Multiple imputation: Review of theory, implementation and software. Statistics in Medicine 26: 3057-3077.
-
(2007)
Statistics in Medicine
, vol.26
, pp. 3057-3077
-
-
Harel, O.1
Zhou, X.-H.2
-
8
-
-
3042719018
-
A note on determining the number of imputations for missing data
-
Hershberger, S. L., and D. G. Fisher. 2003. A note on determining the number of imputations for missing data. Structural Equation Modeling 10: 648-650.
-
(2003)
Structural Equation Modeling
, vol.10
, pp. 648-650
-
-
Hershberger, S.L.1
Fisher, D.G.2
-
9
-
-
67449131551
-
On the assessment of Monte Carlo error in simulation-based statistical analyses
-
Koehler, E., E. Brown, and S. J.-P. A. Haneuse. 2009. On the assessment of Monte Carlo error in simulation-based statistical analyses. American Statistician 63: 155-162.
-
(2009)
American Statistician
, vol.63
, pp. 155-162
-
-
Koehler, E.1
Brown, E.2
Haneuse, S.J.-P.A.3
-
10
-
-
77249147857
-
Multiple imputation for missing data: Fully conditional specification versus multivariate normal imputation
-
Lee, K. J., and J. B. Carlin. 2010. Multiple imputation for missing data: Fully conditional specification versus multivariate normal imputation. American Journal of Epidemiology 171: 624-632.
-
(2010)
American Journal of Epidemiology
, vol.171
, pp. 624-632
-
-
Lee, K.J.1
Carlin, J.B.2
-
11
-
-
0000265107
-
Large-sample significance levels from multiply imputed data using moment-based statistics and an F reference distribution
-
Li, K.-H., T. E. Raghunathan, and D. B. Rubin. 1991. Large-sample significance levels from multiply imputed data using moment-based statistics and an F reference distribution. Journal of the American Statistical Association 86: 1065-1073.
-
(1991)
Journal of the American Statistical Association
, vol.86
, pp. 1065-1073
-
-
Li, K.-H.1
Raghunathan, T.E.2
Rubin, D.B.3
-
14
-
-
70349608446
-
Improved degrees of freedom for multivariate significance tests obtained from multiply imputed, small-sample data
-
Marchenko, Y. V., and J. R. Reiter. 2009. Improved degrees of freedom for multivariate significance tests obtained from multiply imputed, small-sample data. Stata Journal 9: 388-397.
-
(2009)
Stata Journal
, vol.9
, pp. 388-397
-
-
Marchenko, Y.V.1
Reiter, J.R.2
-
15
-
-
0001109923
-
Performing likelihood ratio tests with multiplyimputed data sets
-
Meng, X. L., and D. B. Rubin. 1992. Performing likelihood ratio tests with multiplyimputed data sets. Biometrika 79: 103-111.
-
(1992)
Biometrika
, vol.79
, pp. 103-111
-
-
Meng, X.L.1
Rubin, D.B.2
-
16
-
-
34548452163
-
Small-sample degrees of freedom for multi-component significance tests with multiple imputation for missing data
-
Reiter, J. P. 2007. Small-sample degrees of freedom for multi-component significance tests with multiple imputation for missing data. Biometrika 94: 502-508.
-
(2007)
Biometrika
, vol.94
, pp. 502-508
-
-
Reiter, J.P.1
-
17
-
-
20344370565
-
Multiple imputation of missing values
-
Royston, P. 2004. Multiple imputation of missing values. Stata Journal 4: 227-241.
-
(2004)
Stata Journal
, vol.4
, pp. 227-241
-
-
Royston, P.1
-
18
-
-
33646501982
-
Multiple imputation of missing values: Update of ice
-
Royston, P. 2005. Multiple imputation of missing values: Update of ice. Stata Journal 5: 527-536.
-
(2005)
Stata Journal
, vol.5
, pp. 527-536
-
-
Royston, P.1
-
19
-
-
43749105785
-
Multiple imputation of missing values: Further update of ice, with an emphasis on interval censoring
-
Royston, P. 2007. Multiple imputation of missing values: Further update of ice, with an emphasis on interval censoring. Stata Journal 7: 445-464.
-
(2007)
Stata Journal
, vol.7
, pp. 445-464
-
-
Royston, P.1
-
20
-
-
68949111980
-
Multiple imputation of missing values: New features for mim
-
Royston, P., J. B. Carlin, and I. R. White. 2009. Multiple imputation of missing values: New features for mim. Stata Journal 9: 252-264.
-
(2009)
Stata Journal
, vol.9
, pp. 252-264
-
-
Royston, P.1
Carlin, J.B.2
White, I.R.3
-
21
-
-
0017133178
-
Inference and missing data
-
Rubin, D. B. 1976. Inference and missing data. Biometrika 63: 581-592.
-
(1976)
Biometrika
, vol.63
, pp. 581-592
-
-
Rubin, D.B.1
-
22
-
-
0001354633
-
Formalizing subjective notions about the effect of nonrespondents in sample surveys
-
Rubin, D. B. 1977. Formalizing subjective notions about the effect of nonrespondents in sample surveys. Journal of the American Statistical Association 72: 538-543.
-
(1977)
Journal of the American Statistical Association
, vol.72
, pp. 538-543
-
-
Rubin, D.B.1
-
25
-
-
84950918760
-
Multiple imputation for interval estimation from simple random samples with ignorable nonresponse
-
Rubin, D. B., and N. Schenker. 1986. Multiple imputation for interval estimation from simple random samples with ignorable nonresponse. Journal of the American Statistical Association 81: 366-374.
-
(1986)
Journal of the American Statistical Association
, vol.81
, pp. 366-374
-
-
Rubin, D.B.1
Schenker, N.2
-
28
-
-
85047673373
-
Missing data: Our view of the state of the art
-
Schafer, J. L., and J. W. Graham. 2002. Missing data: Our view of the state of the art. Psychological Methods 7: 147-177.
-
(2002)
Psychological Methods
, vol.7
, pp. 147-177
-
-
Schafer, J.L.1
Graham, J.W.2
-
29
-
-
0032219074
-
Multiple imputation for multivariate missing data problems: A data analyst's perspective
-
Schafer, J. L., and M. K. Olsen. 1998. Multiple imputation for multivariate missing data problems: A data analyst's perspective. Multivariate Behavioral Research 33: 545-571.
-
(1998)
Multivariate Behavioral Research
, vol.33
, pp. 545-571
-
-
Schafer, J.L.1
Olsen, M.K.2
-
30
-
-
77949558576
-
-
StataCorp. Statistical Software. College Station, TX: StataCorp LP
-
StataCorp. 2009. Stata: Release 11. Statistical Software. College Station, TX: StataCorp LP.
-
(2009)
Stata: Release 11
-
-
-
31
-
-
34347407592
-
Multiple imputation of discrete and continuous data by fully conditional specification
-
van Buuren, S. 2007. Multiple imputation of discrete and continuous data by fully conditional specification. Statistical Methods in Medical Research 16: 219-242.
-
(2007)
Statistical Methods in Medical Research
, vol.16
, pp. 219-242
-
-
van Buuren, S.1
-
32
-
-
75649144910
-
Item imputation without specifying scale structure
-
van Buuren, S. 2010. Item imputation without specifying scale structure. Methodology 6: 31-36.
-
(2010)
Methodology
, vol.6
, pp. 31-36
-
-
van Buuren, S.1
-
33
-
-
33751583679
-
Fully conditional specification in multivariate imputation
-
van Buuren, S., J. P. L. Brand, C. G. M. Groothuis-Oudshoorn, and D. B. Rubin. 2006. Fully conditional specification in multivariate imputation. Journal of Statistical Computation and Simulation 76: 1049-1064.
-
(2006)
Journal of Statistical Computation and Simulation
, vol.76
, pp. 1049-1064
-
-
van Buuren, S.1
Brand, J.P.L.2
Groothuis-Oudshoorn, C.G.M.3
Rubin, D.B.4
-
34
-
-
18444377893
-
How many imputations are needed? A comment on Hershberger and Fisher (2003)
-
von Hippel, P. T. 2005. How many imputations are needed? A comment on Hershberger and Fisher (2003). Structural Equation Modeling 12: 334-335.
-
(2005)
Structural Equation Modeling
, vol.12
, pp. 334-335
-
-
von Hippel, P.T.1
-
35
-
-
78651256743
-
Multiple imputation using chained equations: Issues and guidance for practice
-
White, I. R., P. Royston, and A. M. Wood. 2011. Multiple imputation using chained equations: Issues and guidance for practice. Statistics in Medicine 30: 377-399.
-
(2011)
Statistics in Medicine
, vol.30
, pp. 377-399
-
-
White, I.R.1
Royston, P.2
Wood, A.M.3
|