-
1
-
-
84874455583
-
Prognosis research strategy (PROGRESS) 2: prognostic factor research
-
e1001380.
-
Riley RD, Hayden JA, Steyerberg EW, Moons KarelGM, Abrams K, Kyzas PA, Malats N, A Briggs, Schroter S, Altman DG, Hemingway H. Prognosis research strategy (PROGRESS) 2: prognostic factor research. PLoS Medicine10 2013; (2): e1001380.
-
(2013)
PLoS Medicine
, vol.10
, Issue.2
-
-
Riley, R.D.1
Hayden, J.A.2
Steyerberg, E.W.3
Moons, K.4
Abrams, K.5
Kyzas, P.A.6
Malats, N.7
Briggs, A.8
Schroter, S.9
Altman, D.G.10
Hemingway, H.11
-
2
-
-
84874505367
-
Prognosis research strategy (PROGRESS) 3: prognostic model research
-
Steyerberg EW, Moons KarelGM, vander Windt DA, Hayden JA, Perel P, Schroter S, Riley RD, Hemingway H, Altman DG. Prognosis research strategy (PROGRESS) 3: prognostic model research. PLoS Medicine 2013; 10(2): e1001381.
-
(2013)
PLoS Medicine
, vol.10
, Issue.2
, pp. e1001381
-
-
Steyerberg, E.W.1
Moons, K.2
vander Windt, D.A.3
Hayden, J.A.4
Perel, P.5
Schroter, S.6
Riley, R.D.7
Hemingway, H.8
Altman, D.G.9
-
3
-
-
84860113852
-
Risk prediction models: I. Development, internal validation, and assessing the incremental value of a new (bio)marker
-
Moons KGM, Kengne AP, Woodward M, Royston P, Vergouwe Y, Altman DG, Grobbee DE. Risk prediction models: I. Development, internal validation, and assessing the incremental value of a new (bio)marker. Heart 2012; 98(9): 683-690.
-
(2012)
Heart
, vol.98
, Issue.9
, pp. 683-690
-
-
Moons, K.G.M.1
Kengne, A.P.2
Woodward, M.3
Royston, P.4
Vergouwe, Y.5
Altman, D.G.6
Grobbee, D.E.7
-
4
-
-
1542506052
-
Construction and validation of a prognostic model across several studies, with an application in superficial bladder cancer
-
Royston P, Parmar MKB, Sylvester R. Construction and validation of a prognostic model across several studies, with an application in superficial bladder cancer. Statistics in Medicine 2004; 23(6): 907-926.
-
(2004)
Statistics in Medicine
, vol.23
, Issue.6
, pp. 907-926
-
-
Royston, P.1
Parmar, M.K.B.2
Sylvester, R.3
-
5
-
-
50949101668
-
Predicting outcome after traumatic brain injury: development and international validation of prognostic scores based on admission characteristics
-
Steyerberg EW, Mushkudiani N, Perel P, Butcher I, Lu J, McHugh GS, Murray GD, Marmarou A, Roberts I, Habbema JDF, Maas AIR. Predicting outcome after traumatic brain injury: development and international validation of prognostic scores based on admission characteristics. PLoS Medicine 2008; 5(8): e165.
-
(2008)
PLoS Medicine
, vol.5
, Issue.8
, pp. e165
-
-
Steyerberg, E.W.1
Mushkudiani, N.2
Perel, P.3
Butcher, I.4
Lu, J.5
McHugh, G.S.6
Murray, G.D.7
Marmarou, A.8
Roberts, I.9
Habbema, J.D.F.10
Maas, A.I.R.11
-
6
-
-
84862571423
-
A clinical prediction model to assess the risk of operative delivery
-
Schuit E, Kwee A, Westerhuis MEMH, VanDessel HJHM, Graziosi GCM, VanLith JMM, Nijhuis JG, Oei SG, Oosterbaan HP, Schuitemaker NWE, Wouters MGAJ, Visser GHA, Mol BWJ, Moons KGM, Groenwold RHH. A clinical prediction model to assess the risk of operative delivery. BJOG: An International Journal of Obstetrics and Gynaecology 2012; 119(8): 915-923.
-
(2012)
BJOG: An International Journal of Obstetrics and Gynaecology
, vol.119
, Issue.8
, pp. 915-923
-
-
Schuit, E.1
Kwee, A.2
Westerhuis, M.E.M.H.3
VanDessel, H.J.H.M.4
Graziosi, G.C.M.5
VanLith, J.M.M.6
Nijhuis, J.G.7
Oei, S.G.8
Oosterbaan, H.P.9
Schuitemaker, N.W.E.10
Wouters, M.G.A.J.11
Visser, G.H.A.12
Mol, B.W.J.13
Moons, K.G.M.14
Groenwold, R.H.H.15
-
7
-
-
84865793102
-
Predicting infectious complications in neutropenic children and young people with cancer (IPD protocol)
-
the PICNICC Collaboration
-
Phillips RS, Sutton AJ, Riley RD, Chisholm JC, Picton SV, Stewart LA, the PICNICC Collaboration . Predicting infectious complications in neutropenic children and young people with cancer (IPD protocol). Systematic Reviews 2012; 1(1): 8.
-
(2012)
Systematic Reviews
, vol.1
, Issue.1
, pp. 8
-
-
Phillips, R.S.1
Sutton, A.J.2
Riley, R.D.3
Chisholm, J.C.4
Picton, S.V.5
Stewart, L.A.6
-
8
-
-
84880044696
-
A framework for developing, implementing, and evaluating clinical prediction models in an individual participant data meta-analysis
-
Debray TPA, Moons KGM, Ahmed I, Koffijberg H, Riley RD. A framework for developing, implementing, and evaluating clinical prediction models in an individual participant data meta-analysis. Statistics in Medicine 2013; 32(18): 3158-3180.
-
(2013)
Statistics in Medicine
, vol.32
, Issue.18
, pp. 3158-3180
-
-
Debray, T.P.A.1
Moons, K.G.M.2
Ahmed, I.3
Koffijberg, H.4
Riley, R.D.5
-
9
-
-
84892152641
-
Developing and validating risk prediction models in an individual participant data meta-analysis
-
Ahmed I, Debray TPA, Moons KGM, Riley RD. Developing and validating risk prediction models in an individual participant data meta-analysis. BMC Medical Research Methodology 2014; 14(1): 3.
-
(2014)
BMC Medical Research Methodology
, vol.14
, Issue.1
, pp. 3
-
-
Ahmed, I.1
Debray, T.P.A.2
Moons, K.G.M.3
Riley, R.D.4
-
11
-
-
84885418293
-
Combining multiple imputation and meta-analysis with individual participant data
-
Burgess S, White IR, Resche-Rigon M, Wood AM. Combining multiple imputation and meta-analysis with individual participant data. Statistics in Medicine 2013; 32(26): 4499-4514.
-
(2013)
Statistics in Medicine
, vol.32
, Issue.26
, pp. 4499-4514
-
-
Burgess, S.1
White, I.R.2
Resche-Rigon, M.3
Wood, A.M.4
-
12
-
-
65649135034
-
Systematically missing confounders in individual participant data meta-analysis of observational cohort studies
-
The Fibrinogen Studies Collaboration . Systematically missing confounders in individual participant data meta-analysis of observational cohort studies. Statistics in Medicine 2009; 28(8): 1218-1237.
-
(2009)
Statistics in Medicine
, vol.28
, Issue.8
, pp. 1218-1237
-
-
-
13
-
-
84923527988
-
A new framework to enhance the interpretation of external validation studies of clinical prediction models
-
Debray TPA, Vergouwe Y, Koffijberg H, Nieboer D, Steyerberg EW, Moons KGM. A new framework to enhance the interpretation of external validation studies of clinical prediction models. Journal of Clinical Epidemiology 2015; 68(3):279-289.
-
(2015)
Journal of Clinical Epidemiology
, vol.68
, Issue.3
, pp. 279-289
-
-
Debray, T.P.A.1
Vergouwe, Y.2
Koffijberg, H.3
Nieboer, D.4
Steyerberg, E.W.5
Moons, K.G.M.6
-
14
-
-
84864822196
-
Incorporating published univariable associations in diagnostic and prognostic modeling
-
Debray TPA, Koffijberg H, Lu Difei, Vergouwe Y, Steyerberg EW, Moons KG. Incorporating published univariable associations in diagnostic and prognostic modeling. BMC Medical Research Methodology2012; 12(1): 121.
-
(2012)
BMC Medical Research Methodology
, vol.12
, Issue.1
, pp. 121
-
-
Debray, T.P.A.1
Koffijberg, H.2
Lu, D.3
Vergouwe, Y.4
Steyerberg, E.W.5
Moons, K.G.6
-
15
-
-
0034731813
-
Prognostic models based on literature and individual patient data in logistic regression analysis
-
Steyerberg EW, Eijkemans MJ, VanHouwelingen JC, Lee KL, Habbema JD. Prognostic models based on literature and individual patient data in logistic regression analysis. Statistics in Medicine 2000; 19(2): 141-160.
-
(2000)
Statistics in Medicine
, vol.19
, Issue.2
, pp. 141-160
-
-
Steyerberg, E.W.1
Eijkemans, M.J.2
VanHouwelingen, J.C.3
Lee, K.L.4
Habbema, J.D.5
-
16
-
-
84887138473
-
Multiple imputation for handling systematically missing confounders in meta-analysis of individual participant data
-
Resche-Rigon M, White IR, Bartlett JW, Peters SAE, Thompson SG. Multiple imputation for handling systematically missing confounders in meta-analysis of individual participant data. Statistics in Medicine2013; 32(28): 4890-4905.
-
(2013)
Statistics in Medicine
, vol.32
, Issue.28
, pp. 4890-4905
-
-
Resche-Rigon, M.1
White, I.R.2
Bartlett, J.W.3
Peters, S.A.E.4
Thompson, S.G.5
-
17
-
-
84946045727
-
Approximations to the log-likelihood function in the nonlinear mixed-effects model
-
Pinheiro JC, Bates DM. Approximations to the log-likelihood function in the nonlinear mixed-effects model. Journal of Computational and Graphical Statistics 1995; 4(1): 12-35.
-
(1995)
Journal of Computational and Graphical Statistics
, vol.4
, Issue.1
, pp. 12-35
-
-
Pinheiro, J.C.1
Bates, D.M.2
-
20
-
-
33751583679
-
Fully conditional specifications in multivariate imputation
-
van Buuren S, Brand JPL, Groothuis-Oudshoorn CGM, Rubin DB. Fully conditional specifications in multivariate imputation. Journal of Statistical Computation and Simulation 2006; 72(12): 1049-1064.
-
(2006)
Journal of Statistical Computation and Simulation
, vol.72
, Issue.12
, pp. 1049-1064
-
-
van Buuren, S.1
Brand, J.P.L.2
Groothuis-Oudshoorn, C.G.M.3
Rubin, D.B.4
-
21
-
-
34347407592
-
Multiple imputation of discrete and continuous data by fully conditional specification
-
van Buuren S. Multiple imputation of discrete and continuous data by fully conditional specification. Statistical Methods in Medical Research 2007; 16(3): 219-242.
-
(2007)
Statistical Methods in Medical Research
, vol.16
, Issue.3
, pp. 219-242
-
-
van Buuren, S.1
-
22
-
-
78651256743
-
Multiple imputation using chained equations: issues and guidance for practice
-
White IR, Royston P, Wood AM. Multiple imputation using chained equations: issues and guidance for practice. Statistics in Medicine 2011; 30(4): 377-399.
-
(2011)
Statistics in Medicine
, vol.30
, Issue.4
, pp. 377-399
-
-
White, I.R.1
Royston, P.2
Wood, A.M.3
-
23
-
-
84926499511
-
-
Flexible multivariate imputation by MICE, PG 99.054, TNO Prevention and Health
-
van Buuren S, Oudshoorn K. Flexible multivariate imputation by MICE, PG 99.054, TNO Prevention and Health, 1999.
-
(1999)
-
-
van Buuren, S.1
Oudshoorn, K.2
-
25
-
-
84897149362
-
lme4: Linear mixed-effects models using Eigen and S4
-
[Accessed on November 2014].
-
Bates D, Maechler M, Bolker B, Walker S. lme4: Linear mixed-effects models using Eigen and S4, 2014. http://CRAN.R-project.org/package=lme4[Accessed on November 2014].
-
(2014)
-
-
Bates, D.1
Maechler, M.2
Bolker, B.3
Walker, S.4
-
26
-
-
84972537494
-
Multiple-imputation inferences with uncongenial sources of input
-
Meng X-L. Multiple-imputation inferences with uncongenial sources of input. Statistical Science 1994; 9(4): 538-558.
-
(1994)
Statistical Science
, vol.9
, Issue.4
, pp. 538-558
-
-
Meng, X.-L.1
-
28
-
-
22144442457
-
Ruling out deep venous thrombosis in primary care. A simple diagnostic algorithm including D-dimer testing
-
Oudega R, Moons KGM, Hoes AW. Ruling out deep venous thrombosis in primary care. A simple diagnostic algorithm including D-dimer testing. Thrombosis and Haemostasis 2005; 94(1): 200-205.
-
(2005)
Thrombosis and Haemostasis
, vol.94
, Issue.1
, pp. 200-205
-
-
Oudega, R.1
Moons, K.G.M.2
Hoes, A.W.3
-
29
-
-
84896930969
-
Exclusion of deep vein thrombosis using the Wells rule in clinically important subgroups: individual patient data meta-analysis
-
g1340.
-
Geersing GJ, Zuithoff NPA, Kearon C, Anderson DR, Ten Cate-Hoek AJ, Elf JL, Bates SM, Hoes AW, Kraaijenhagen RA, Oudega R, Schutgens REG, Stevens SM, Woller SC, Wells PS. Exclusion of deep vein thrombosis using the Wells rule in clinically important subgroups: individual patient data meta-analysis. British Medical Journal 2014; 348:g1340.
-
(2014)
British Medical Journal
, vol.348
-
-
Geersing, G.J.1
Zuithoff, N.P.A.2
Kearon, C.3
Anderson, D.R.4
Ten Cate-Hoek, A.J.5
Elf, J.L.6
Bates, S.M.7
Hoes, A.W.8
Kraaijenhagen, R.A.9
Oudega, R.10
Schutgens, R.E.G.11
Stevens, S.M.12
Woller, S.C.13
Wells, P.S.14
-
31
-
-
84876028745
-
Individual participant data meta-analysis for a binary outcome: one-stage or two-stage?
-
Debray TPA, Moons KGM, Abo-Zaid GMA, Koffijberg H, Riley RD. Individual participant data meta-analysis for a binary outcome: one-stage or two-stage?. PLoS One 2013; 8(4): e60650.
-
(2013)
PLoS One
, vol.8
, Issue.4
, pp. e60650
-
-
Debray, T.P.A.1
Moons, K.G.M.2
Abo-Zaid, G.M.A.3
Koffijberg, H.4
Riley, R.D.5
-
32
-
-
77952026461
-
Estimating multilevel logistic regression models when the number of clusters is low: a comparison of different statistical software procedures
-
Austin PC. Estimating multilevel logistic regression models when the number of clusters is low: a comparison of different statistical software procedures. International Journal of Biostatistics 2010; 6(1).
-
(2010)
International Journal of Biostatistics
, vol.6
, Issue.1
-
-
Austin, P.C.1
-
33
-
-
60949108998
-
Generalized linear mixed models: a practical guide for ecology and evolution
-
Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White J-SS. Generalized linear mixed models: a practical guide for ecology and evolution. Trends in Ecology & Evolution(2009); 24:127-135.
-
(2009)
Trends in Ecology & Evolution
, vol.24
, pp. 127-135
-
-
Bolker, B.M.1
Brooks, M.E.2
Clark, C.J.3
Geange, S.W.4
Poulsen, J.R.5
Stevens, M.H.H.6
White, J.-S.7
-
34
-
-
38049121396
-
REML estimation of variance parameters in nonlinear mixed effects models using the SAEM algorithm
-
Meza C, Jaffrzic F, Foulley J-L. REML estimation of variance parameters in nonlinear mixed effects models using the SAEM algorithm. Biometrical Journal 2007; 49(6): 876-888.
-
(2007)
Biometrical Journal
, vol.49
, Issue.6
, pp. 876-888
-
-
Meza, C.1
Jaffrzic, F.2
Foulley, J.-L.3
-
35
-
-
33947127673
-
REML estimation for binary data in GLMMs
-
Noh M, Lee Y. REML estimation for binary data in GLMMs. Journal of Multivariate Analysis 2007; 98(5): 896-915.
-
(2007)
Journal of Multivariate Analysis
, vol.98
, Issue.5
, pp. 896-915
-
-
Noh, M.1
Lee, Y.2
-
37
-
-
34247575801
-
Infinitely imbalanced logistic regression
-
Owen AB. Infinitely imbalanced logistic regression. Journal of Machine Learning Research(2007); 8:761-773.
-
(2007)
Journal of Machine Learning Research
, vol.8
, pp. 761-773
-
-
Owen, A.B.1
-
38
-
-
33845900763
-
A comparative investigation of methods for logistic regression with separated or nearly separated data
-
Heinze G. A comparative investigation of methods for logistic regression with separated or nearly separated data. Statistics in Medicine2006Dec; 25(24): 4216-4226.
-
(2006)
Statistics in Medicine
, vol.25
, Issue.24
, pp. 4216-4226
-
-
Heinze, G.1
-
39
-
-
0034159815
-
Problems due to small samples and sparse data in conditional logistic regression analysis
-
Greenland S, Schwartzbaum JA, Finkle WD. Problems due to small samples and sparse data in conditional logistic regression analysis. American Journal of Epidemiology 2000; 151(5): 531-539.
-
(2000)
American Journal of Epidemiology
, vol.151
, Issue.5
, pp. 531-539
-
-
Greenland, S.1
Schwartzbaum, J.A.2
Finkle, W.D.3
-
40
-
-
34548451124
-
How many imputations are really needed? Some practical clarifications of multiple imputation theory
-
Graham JW, Olchowski AE, Gilreath TD. How many imputations are really needed? Some practical clarifications of multiple imputation theory. Prevention Science 2007; 8(3): 206-213.
-
(2007)
Prevention Science
, vol.8
, Issue.3
, pp. 206-213
-
-
Graham, J.W.1
Olchowski, A.E.2
Gilreath, T.D.3
|