메뉴 건너뛰기




Volumn 34, Issue 11, 2015, Pages 1841-1863

Imputation of systematically missing predictors in an individual participant data meta-analysis: A generalized approach using MICE

Author keywords

IPD meta analysis; Missing data; Multilevel model; Multiple imputation; Prediction research

Indexed keywords

ALGORITHM; ARTICLE; CALCULATION; CONTROLLED STUDY; COVARIANCE; DEEP VEIN THROMBOSIS; HUMAN; LINEAR SYSTEM; MATHEMATICAL COMPUTING; MAXIMUM LIKELIHOOD METHOD; MULTILEVEL MULTIPLE IMPUTATION; MULTIVARIATE ANALYSIS; MULTIVARIATE IMPUTATION BY CHAINED EQUATION; NONLINEAR SYSTEM; PREDICTION; PREVALENCE; PROBABILITY; RESCHE RIGON METHOD; SIMULATION; STATISTICAL DISTRIBUTION; STATISTICAL MODEL; STRATIFIED MULTIPLE IMPUTATION; TRADITIONAL MULTIPLE IMPUTATION; COMPUTER SIMULATION; META ANALYSIS (TOPIC); PREDICTIVE VALUE; RISK ASSESSMENT; RISK FACTOR; VENOUS THROMBOSIS;

EID: 84926444242     PISSN: 02776715     EISSN: 10970258     Source Type: Journal    
DOI: 10.1002/sim.6451     Document Type: Article
Times cited : (121)

References (40)
  • 3
    • 84860113852 scopus 로고    scopus 로고
    • Risk prediction models: I. Development, internal validation, and assessing the incremental value of a new (bio)marker
    • Moons KGM, Kengne AP, Woodward M, Royston P, Vergouwe Y, Altman DG, Grobbee DE. Risk prediction models: I. Development, internal validation, and assessing the incremental value of a new (bio)marker. Heart 2012; 98(9): 683-690.
    • (2012) Heart , vol.98 , Issue.9 , pp. 683-690
    • Moons, K.G.M.1    Kengne, A.P.2    Woodward, M.3    Royston, P.4    Vergouwe, Y.5    Altman, D.G.6    Grobbee, D.E.7
  • 4
    • 1542506052 scopus 로고    scopus 로고
    • Construction and validation of a prognostic model across several studies, with an application in superficial bladder cancer
    • Royston P, Parmar MKB, Sylvester R. Construction and validation of a prognostic model across several studies, with an application in superficial bladder cancer. Statistics in Medicine 2004; 23(6): 907-926.
    • (2004) Statistics in Medicine , vol.23 , Issue.6 , pp. 907-926
    • Royston, P.1    Parmar, M.K.B.2    Sylvester, R.3
  • 7
    • 84865793102 scopus 로고    scopus 로고
    • Predicting infectious complications in neutropenic children and young people with cancer (IPD protocol)
    • the PICNICC Collaboration
    • Phillips RS, Sutton AJ, Riley RD, Chisholm JC, Picton SV, Stewart LA, the PICNICC Collaboration . Predicting infectious complications in neutropenic children and young people with cancer (IPD protocol). Systematic Reviews 2012; 1(1): 8.
    • (2012) Systematic Reviews , vol.1 , Issue.1 , pp. 8
    • Phillips, R.S.1    Sutton, A.J.2    Riley, R.D.3    Chisholm, J.C.4    Picton, S.V.5    Stewart, L.A.6
  • 8
    • 84880044696 scopus 로고    scopus 로고
    • A framework for developing, implementing, and evaluating clinical prediction models in an individual participant data meta-analysis
    • Debray TPA, Moons KGM, Ahmed I, Koffijberg H, Riley RD. A framework for developing, implementing, and evaluating clinical prediction models in an individual participant data meta-analysis. Statistics in Medicine 2013; 32(18): 3158-3180.
    • (2013) Statistics in Medicine , vol.32 , Issue.18 , pp. 3158-3180
    • Debray, T.P.A.1    Moons, K.G.M.2    Ahmed, I.3    Koffijberg, H.4    Riley, R.D.5
  • 9
    • 84892152641 scopus 로고    scopus 로고
    • Developing and validating risk prediction models in an individual participant data meta-analysis
    • Ahmed I, Debray TPA, Moons KGM, Riley RD. Developing and validating risk prediction models in an individual participant data meta-analysis. BMC Medical Research Methodology 2014; 14(1): 3.
    • (2014) BMC Medical Research Methodology , vol.14 , Issue.1 , pp. 3
    • Ahmed, I.1    Debray, T.P.A.2    Moons, K.G.M.3    Riley, R.D.4
  • 10
  • 11
    • 84885418293 scopus 로고    scopus 로고
    • Combining multiple imputation and meta-analysis with individual participant data
    • Burgess S, White IR, Resche-Rigon M, Wood AM. Combining multiple imputation and meta-analysis with individual participant data. Statistics in Medicine 2013; 32(26): 4499-4514.
    • (2013) Statistics in Medicine , vol.32 , Issue.26 , pp. 4499-4514
    • Burgess, S.1    White, I.R.2    Resche-Rigon, M.3    Wood, A.M.4
  • 12
    • 65649135034 scopus 로고    scopus 로고
    • Systematically missing confounders in individual participant data meta-analysis of observational cohort studies
    • The Fibrinogen Studies Collaboration . Systematically missing confounders in individual participant data meta-analysis of observational cohort studies. Statistics in Medicine 2009; 28(8): 1218-1237.
    • (2009) Statistics in Medicine , vol.28 , Issue.8 , pp. 1218-1237
  • 16
    • 84887138473 scopus 로고    scopus 로고
    • Multiple imputation for handling systematically missing confounders in meta-analysis of individual participant data
    • Resche-Rigon M, White IR, Bartlett JW, Peters SAE, Thompson SG. Multiple imputation for handling systematically missing confounders in meta-analysis of individual participant data. Statistics in Medicine2013; 32(28): 4890-4905.
    • (2013) Statistics in Medicine , vol.32 , Issue.28 , pp. 4890-4905
    • Resche-Rigon, M.1    White, I.R.2    Bartlett, J.W.3    Peters, S.A.E.4    Thompson, S.G.5
  • 17
    • 84946045727 scopus 로고
    • Approximations to the log-likelihood function in the nonlinear mixed-effects model
    • Pinheiro JC, Bates DM. Approximations to the log-likelihood function in the nonlinear mixed-effects model. Journal of Computational and Graphical Statistics 1995; 4(1): 12-35.
    • (1995) Journal of Computational and Graphical Statistics , vol.4 , Issue.1 , pp. 12-35
    • Pinheiro, J.C.1    Bates, D.M.2
  • 21
    • 34347407592 scopus 로고    scopus 로고
    • Multiple imputation of discrete and continuous data by fully conditional specification
    • van Buuren S. Multiple imputation of discrete and continuous data by fully conditional specification. Statistical Methods in Medical Research 2007; 16(3): 219-242.
    • (2007) Statistical Methods in Medical Research , vol.16 , Issue.3 , pp. 219-242
    • van Buuren, S.1
  • 22
    • 78651256743 scopus 로고    scopus 로고
    • Multiple imputation using chained equations: issues and guidance for practice
    • White IR, Royston P, Wood AM. Multiple imputation using chained equations: issues and guidance for practice. Statistics in Medicine 2011; 30(4): 377-399.
    • (2011) Statistics in Medicine , vol.30 , Issue.4 , pp. 377-399
    • White, I.R.1    Royston, P.2    Wood, A.M.3
  • 23
    • 84926499511 scopus 로고    scopus 로고
    • Flexible multivariate imputation by MICE, PG 99.054, TNO Prevention and Health
    • van Buuren S, Oudshoorn K. Flexible multivariate imputation by MICE, PG 99.054, TNO Prevention and Health, 1999.
    • (1999)
    • van Buuren, S.1    Oudshoorn, K.2
  • 25
    • 84897149362 scopus 로고    scopus 로고
    • lme4: Linear mixed-effects models using Eigen and S4
    • [Accessed on November 2014].
    • Bates D, Maechler M, Bolker B, Walker S. lme4: Linear mixed-effects models using Eigen and S4, 2014. http://CRAN.R-project.org/package=lme4[Accessed on November 2014].
    • (2014)
    • Bates, D.1    Maechler, M.2    Bolker, B.3    Walker, S.4
  • 26
    • 84972537494 scopus 로고
    • Multiple-imputation inferences with uncongenial sources of input
    • Meng X-L. Multiple-imputation inferences with uncongenial sources of input. Statistical Science 1994; 9(4): 538-558.
    • (1994) Statistical Science , vol.9 , Issue.4 , pp. 538-558
    • Meng, X.-L.1
  • 28
    • 22144442457 scopus 로고    scopus 로고
    • Ruling out deep venous thrombosis in primary care. A simple diagnostic algorithm including D-dimer testing
    • Oudega R, Moons KGM, Hoes AW. Ruling out deep venous thrombosis in primary care. A simple diagnostic algorithm including D-dimer testing. Thrombosis and Haemostasis 2005; 94(1): 200-205.
    • (2005) Thrombosis and Haemostasis , vol.94 , Issue.1 , pp. 200-205
    • Oudega, R.1    Moons, K.G.M.2    Hoes, A.W.3
  • 31
    • 84876028745 scopus 로고    scopus 로고
    • Individual participant data meta-analysis for a binary outcome: one-stage or two-stage?
    • Debray TPA, Moons KGM, Abo-Zaid GMA, Koffijberg H, Riley RD. Individual participant data meta-analysis for a binary outcome: one-stage or two-stage?. PLoS One 2013; 8(4): e60650.
    • (2013) PLoS One , vol.8 , Issue.4 , pp. e60650
    • Debray, T.P.A.1    Moons, K.G.M.2    Abo-Zaid, G.M.A.3    Koffijberg, H.4    Riley, R.D.5
  • 32
    • 77952026461 scopus 로고    scopus 로고
    • Estimating multilevel logistic regression models when the number of clusters is low: a comparison of different statistical software procedures
    • Austin PC. Estimating multilevel logistic regression models when the number of clusters is low: a comparison of different statistical software procedures. International Journal of Biostatistics 2010; 6(1).
    • (2010) International Journal of Biostatistics , vol.6 , Issue.1
    • Austin, P.C.1
  • 34
    • 38049121396 scopus 로고    scopus 로고
    • REML estimation of variance parameters in nonlinear mixed effects models using the SAEM algorithm
    • Meza C, Jaffrzic F, Foulley J-L. REML estimation of variance parameters in nonlinear mixed effects models using the SAEM algorithm. Biometrical Journal 2007; 49(6): 876-888.
    • (2007) Biometrical Journal , vol.49 , Issue.6 , pp. 876-888
    • Meza, C.1    Jaffrzic, F.2    Foulley, J.-L.3
  • 35
    • 33947127673 scopus 로고    scopus 로고
    • REML estimation for binary data in GLMMs
    • Noh M, Lee Y. REML estimation for binary data in GLMMs. Journal of Multivariate Analysis 2007; 98(5): 896-915.
    • (2007) Journal of Multivariate Analysis , vol.98 , Issue.5 , pp. 896-915
    • Noh, M.1    Lee, Y.2
  • 37
    • 34247575801 scopus 로고    scopus 로고
    • Infinitely imbalanced logistic regression
    • Owen AB. Infinitely imbalanced logistic regression. Journal of Machine Learning Research(2007); 8:761-773.
    • (2007) Journal of Machine Learning Research , vol.8 , pp. 761-773
    • Owen, A.B.1
  • 38
    • 33845900763 scopus 로고    scopus 로고
    • A comparative investigation of methods for logistic regression with separated or nearly separated data
    • Heinze G. A comparative investigation of methods for logistic regression with separated or nearly separated data. Statistics in Medicine2006Dec; 25(24): 4216-4226.
    • (2006) Statistics in Medicine , vol.25 , Issue.24 , pp. 4216-4226
    • Heinze, G.1
  • 39
    • 0034159815 scopus 로고    scopus 로고
    • Problems due to small samples and sparse data in conditional logistic regression analysis
    • Greenland S, Schwartzbaum JA, Finkle WD. Problems due to small samples and sparse data in conditional logistic regression analysis. American Journal of Epidemiology 2000; 151(5): 531-539.
    • (2000) American Journal of Epidemiology , vol.151 , Issue.5 , pp. 531-539
    • Greenland, S.1    Schwartzbaum, J.A.2    Finkle, W.D.3
  • 40
    • 34548451124 scopus 로고    scopus 로고
    • How many imputations are really needed? Some practical clarifications of multiple imputation theory
    • Graham JW, Olchowski AE, Gilreath TD. How many imputations are really needed? Some practical clarifications of multiple imputation theory. Prevention Science 2007; 8(3): 206-213.
    • (2007) Prevention Science , vol.8 , Issue.3 , pp. 206-213
    • Graham, J.W.1    Olchowski, A.E.2    Gilreath, T.D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.