-
3
-
-
78651256743
-
Multiple imputation using chained equations: issues and guidance for practice
-
White I, Royston P, Wood A. Multiple imputation using chained equations: issues and guidance for practice. Stat Med 2011; 30: 377–399.
-
(2011)
Stat Med
, vol.30
, pp. 377-399
-
-
White, I.1
Royston, P.2
Wood, A.3
-
7
-
-
84951302330
-
SAS/STAT 9.1 user s guide
-
Cary, NC, SAS Institute Inc
-
SAS Institute Inc. SAS/STAT 9.1 user s guide. Chapter 46. Cary, NC: SAS Institute Inc., 2004
-
(2004)
Chapter
, vol.46
-
-
-
9
-
-
0033616909
-
Multiple imputation of missing blood pressure covariates in survival analysis
-
van Buuren S, Boshuizen H, Knook D. Multiple imputation of missing blood pressure covariates in survival analysis. Stat Med 1999; 18: 681–694.
-
(1999)
Stat Med
, vol.18
, pp. 681-694
-
-
van Buuren, S.1
Boshuizen, H.2
Knook, D.3
-
10
-
-
77049113735
-
Compatibility of conditionally specified models
-
Chen H. Compatibility of conditionally specified models. Stat Probab Lett 2010; 80: 670–677.
-
(2010)
Stat Probab Lett
, vol.80
, pp. 670-677
-
-
Chen, H.1
-
11
-
-
84897646212
-
Joint modelling rationale for chained equations
-
Hughes R, White I, Seaman S, Joint modelling rationale for chained equations. BMC Med Res Meth 2014; 14: 28–28.
-
(2014)
BMC Med Res Meth
, vol.14
, pp. 28
-
-
Hughes, R.1
White, I.2
Seaman, S.3
-
13
-
-
34347407592
-
Multiple imputation of discrete and continuous data by fully conditional specification
-
van Buuren S. Multiple imputation of discrete and continuous data by fully conditional specification. Stat Meth Med Res 2007; 16: 219–242.
-
(2007)
Stat Meth Med Res
, vol.16
, pp. 219-242
-
-
van Buuren, S.1
-
14
-
-
84937894556
-
Multiple imputation of covariates by fully conditional specification: accommodating the substantive model
-
Bartlett JW, Seaman SR, White IR, Multiple imputation of covariates by fully conditional specification: accommodating the substantive model. Stat Meth Med Res 2015; 24: 462–487.
-
(2015)
Stat Meth Med Res
, vol.24
, pp. 462-487
-
-
Bartlett, J.W.1
Seaman, S.R.2
White, I.R.3
-
15
-
-
79953732420
-
MICE: multivariate imputation by chained equations in R
-
van Buuren S, Groothuis-Oudshoorn K. MICE: multivariate imputation by chained equations in R. J Stat Softw 2011; 45: 1–67.
-
(2011)
J Stat Softw
, vol.45
, pp. 1-67
-
-
van Buuren, S.1
Groothuis-Oudshoorn, K.2
-
17
-
-
49849097915
-
Imputation strategies for missing continuous outcomes in cluster randomized trials
-
Taljaard M, Donner A, Klar N. Imputation strategies for missing continuous outcomes in cluster randomized trials. Biometr J 2008; 50: 329–345.
-
(2008)
Biometr J
, vol.50
, pp. 329-345
-
-
Taljaard, M.1
Donner, A.2
Klar, N.3
-
18
-
-
78851470246
-
Quantifying the impact of fixed effects modeling of clusters in multiple imputation for cluster randomized trials
-
Andridge R. Quantifying the impact of fixed effects modeling of clusters in multiple imputation for cluster randomized trials. Biometr J 2011; 53: 57–74.
-
(2011)
Biometr J
, vol.53
, pp. 57-74
-
-
Andridge, R.1
-
19
-
-
84921329943
-
Multiple imputation of multilevel missing datarigor versus simplicity
-
Drechsler J. Multiple imputation of multilevel missing datarigor versus simplicity. J Educ Behav Stat 2015; 40: 69–95.
-
(2015)
J Educ Behav Stat
, vol.40
, pp. 69-95
-
-
Drechsler, J.1
-
20
-
-
0036017469
-
Computational strategies for multivariate linear mixed-effects models with missing values
-
Schafer J, Yucel R. Computational strategies for multivariate linear mixed-effects models with missing values. J Comput Graph Stat 2002; 11: 437–457.
-
(2002)
J Comput Graph Stat
, vol.11
, pp. 437-457
-
-
Schafer, J.1
Yucel, R.2
-
21
-
-
80051757583
-
Random covariances and mixed-effects models for imputing multivariate multilevel continuous data
-
Yucel R. Random covariances and mixed-effects models for imputing multivariate multilevel continuous data. Stat Model 2011; 11: 351–370.
-
(2011)
Stat Model
, vol.11
, pp. 351-370
-
-
Yucel, R.1
-
22
-
-
85047105790
-
Multiple imputation for multivariate panel or clustered data
-
Zhao J and Schafer J. pan: Multiple imputation for multivariate panel or clustered data. R package version 1.3, 2015
-
(2015)
R package version
, vol.1
, pp. 3
-
-
Zhao, J.1
pan, S.J.2
-
23
-
-
84856274182
-
REALCOM-IMPUTE software for multilevel multiple imputation with mixed response types
-
Carpenter J, Goldstein H, Kenward M. REALCOM-IMPUTE software for multilevel multiple imputation with mixed response types. J Stat Softw 2011; 45: 1–14.
-
(2011)
J Stat Softw
, vol.45
, pp. 1-14
-
-
Carpenter, J.1
Goldstein, H.2
Kenward, M.3
-
24
-
-
85047156144
-
-
Quartagno M and Carpenter J. jomo: a package for multilevel joint modelling multiple imputation, 2016, R package version 2.2
-
Quartagno M and Carpenter J. jomo: a package for multilevel joint modelling multiple imputation, 2016, R package version 2.2, http://CRAN.R-project.org/package=jomo
-
-
-
-
25
-
-
85130029608
-
Multiple imputation of multilevel data
-
Hox J., Roberts J., (eds), New York: Taylor & Francis, Ltd, In:, (eds)
-
van Buuren S, Multiple imputation of multilevel data. In: Hox J, Roberts J, (eds). The handbook of advanced multilevel analysis, New York: Taylor & Francis, Ltd, 2010, pp. 173–196.
-
(2010)
The handbook of advanced multilevel analysis
, pp. 173-196
-
-
van Buuren, S.1
-
27
-
-
80053042198
-
MICE: multivariate imputation by chained equations in R, 2015
-
van Buuren S and Groothuis-Oudshoorn K. MICE: multivariate imputation by chained equations in R, 2015, R package version 2.25, http://CRAN.R-project.org/package=mice
-
R package version
, vol.2
, pp. 25
-
-
van Buuren, S.1
Groothuis-Oudshoorn, K.2
-
28
-
-
0027478423
-
Meta-analysis of the literature or of individual patient data: is there a difference?
-
Stewart L, Parmar M. Meta-analysis of the literature or of individual patient data: is there a difference? Lancet 1993; 341: 418–22.
-
(1993)
Lancet
, vol.341
, pp. 418-422
-
-
Stewart, L.1
Parmar, M.2
-
29
-
-
84887138473
-
Multiple imputation for handling systematically missing confounders in meta-analysis of individual participant data
-
Resche-Rigon M, White I, Bartlett J, Multiple imputation for handling systematically missing confounders in meta-analysis of individual participant data. Stat Med 2013; 32: 4890–4905.
-
(2013)
Stat Med
, vol.32
, pp. 4890-4905
-
-
Resche-Rigon, M.1
White, I.2
Bartlett, J.3
-
30
-
-
84926444242
-
Imputation of systematically missing predictors in an individual participant data meta-analysis: a generalized approach using MICE
-
Jolani S, Debray T, Koffijberg H, Imputation of systematically missing predictors in an individual participant data meta-analysis: a generalized approach using MICE. Stat Med 2015; 34: 1841–1863.
-
(2015)
Stat Med
, vol.34
, pp. 1841-1863
-
-
Jolani, S.1
Debray, T.2
Koffijberg, H.3
-
33
-
-
0020333131
-
Random-effects models for longitudinal data
-
Laird N, Ware J. Random-effects models for longitudinal data. Biometrics 1982; 38: 963–974.
-
(1982)
Biometrics
, vol.38
, pp. 963-974
-
-
Laird, N.1
Ware, J.2
-
34
-
-
80051781370
-
Multivariate meta-analysis: potential and promise
-
Jackson D, Riley R, White I. Multivariate meta-analysis: potential and promise. Stat Med 2011; 30: 2481–2498.
-
(2011)
Stat Med
, vol.30
, pp. 2481-2498
-
-
Jackson, D.1
Riley, R.2
White, I.3
-
35
-
-
43049159457
-
Meta-analysis of continuous outcomes combining individual patient data and aggregate data
-
Riley R, Lambert P, Staessen J, Meta-analysis of continuous outcomes combining individual patient data and aggregate data. Stat Med 2008; 27: 1870–1893.
-
(2008)
Stat Med
, vol.27
, pp. 1870-1893
-
-
Riley, R.1
Lambert, P.2
Staessen, J.3
-
36
-
-
84876028745
-
Individual participant data meta-analysis for a binary outcome: one-stage or two-stage?
-
Debray TP, Moons KG, Abo-Zaid GMA, Individual participant data meta-analysis for a binary outcome: one-stage or two-stage? PLoS One 2013; 8: e60650–e60650.
-
(2013)
PLoS One
, vol.8
, pp. e60650
-
-
Debray, T.P.1
Moons, K.G.2
Abo-Zaid, G.M.A.3
-
38
-
-
77952828976
-
Extending DerSimonian and Laird’s methodology to perform multivariate random effects meta-analyses
-
Jackson D, White I, Thompson S. Extending DerSimonian and Laird’s methodology to perform multivariate random effects meta-analyses. Stat Med 2010; 29: 1282–1297.
-
(2010)
Stat Med
, vol.29
, pp. 1282-1297
-
-
Jackson, D.1
White, I.2
Thompson, S.3
-
39
-
-
33847259379
-
DebRoy S, et al. nlme: linear and nonlinear mixed effects models, 2016
-
Pinheiro J, Bates D, DebRoy S, et al. nlme: linear and nonlinear mixed effects models, 2016, R package version 3.1-28, http://CRAN.R-project.org/package=nlme
-
R package version
, vol.3
, pp. 1-28
-
-
Pinheiro, J.1
Bates, D.2
-
41
-
-
21344439360
-
Meta-analysis of individual patient data from randomized trials: a review of methods used in practice
-
Simmonds M, Higgins J, Stewart L, Meta-analysis of individual patient data from randomized trials: a review of methods used in practice. Clinical Trials 2005; 2: 209–217.
-
(2005)
Clinical Trials
, vol.2
, pp. 209-217
-
-
Simmonds, M.1
Higgins, J.2
Stewart, L.3
-
42
-
-
84902756973
-
Systematic review of methods for individual patient data meta-analysis with binary outcomes
-
Thomas D, Radji S, Benedetti A. Systematic review of methods for individual patient data meta-analysis with binary outcomes. BMC Med Res Meth 2014; 14: 79–79.
-
(2014)
BMC Med Res Meth
, vol.14
, pp. 79
-
-
Thomas, D.1
Radji, S.2
Benedetti, A.3
-
45
-
-
84870061584
-
Multivariate meta-analysis for non-linear and other multi-parameter associations
-
Gasparrini A, Armstrong B, Kenward M. Multivariate meta-analysis for non-linear and other multi-parameter associations. Stat Med 2012; 31: 3821–3839.
-
(2012)
Stat Med
, vol.31
, pp. 3821-3839
-
-
Gasparrini, A.1
Armstrong, B.2
Kenward, M.3
-
46
-
-
85047144404
-
-
The Netherlands, TNO Prevention Center
-
Van Buuren S and Oudshoorn K. Flexible multivariate imputation by MICE. Technical report, Leiden, The Netherlands: TNO Prevention Center, 1999, http://www.stefvanbuuren.nl/publications/Flexible%20multivariate%20-%20TNO99054%201999.pdf
-
(1999)
Leiden
-
-
Van Buuren, S.1
-
47
-
-
84916241504
-
Bolker B, et al. lme4: linear mixed-effects models using Eigen and S4
-
Bates D, Maechler M, Bolker B, et al. lme4: linear mixed-effects models using Eigen and S4, R package version 1.1-12, 2016, http://CRAN.R-project.org/package=lme4
-
(2016)
R package version
, vol.1
, pp. 1-12
-
-
Bates, D.1
Maechler, M.2
-
48
-
-
84874529858
-
Association between elevated blood glucose and outcome in acute heart failure: results from an international observational cohort
-
Mebazaa A, Gayat E, Lassus J, Association between elevated blood glucose and outcome in acute heart failure: results from an international observational cohort. J Am Coll Cardiol 2013; 61: 820–829.
-
(2013)
J Am Coll Cardiol
, vol.61
, pp. 820-829
-
-
Mebazaa, A.1
Gayat, E.2
Lassus, J.3
-
49
-
-
84885623462
-
Incremental value of biomarkers to clinical variables for mortality prediction in acutely decompensated heart failure: the multinational observational cohort on acute heart failure (MOCA) study
-
Lassus J, Gayat E, Mueller C, Incremental value of biomarkers to clinical variables for mortality prediction in acutely decompensated heart failure: the multinational observational cohort on acute heart failure (MOCA) study. Int J Cardiol 2013; 168: 2186–2194.
-
(2013)
Int J Cardiol
, vol.168
, pp. 2186-2194
-
-
Lassus, J.1
Gayat, E.2
Mueller, C.3
-
50
-
-
77749306261
-
Meta-analysis of individual participant data: rationale, conduct, and reporting
-
Riley R, Lambert P, Abo-Zaid G. Meta-analysis of individual participant data: rationale, conduct, and reporting. Br Med J 2010; 340: 521–525.
-
(2010)
Br Med J
, vol.340
, pp. 521-525
-
-
Riley, R.1
Lambert, P.2
Abo-Zaid, G.3
-
51
-
-
84977572868
-
Multiple imputation for IPD meta-analysis: allowing for heterogeneity and studies with missing covariates
-
Quartagno M, Carpenter J. Multiple imputation for IPD meta-analysis: allowing for heterogeneity and studies with missing covariates. Stat Med 2016; 35: 2954–2938.
-
(2016)
Stat Med
, vol.35
-
-
Quartagno, M.1
Carpenter, J.2
-
53
-
-
84897668423
-
On the stationary distribution of iterative imputations
-
Liu J, Gelman A, Hill J, On the stationary distribution of iterative imputations. Biometrika 2014; 101: 155–173.
-
(2014)
Biometrika
, vol.101
, pp. 155-173
-
-
Liu, J.1
Gelman, A.2
Hill, J.3
-
54
-
-
2942628165
-
Parameterization and Bayesian modeling
-
Gelman A. Parameterization and Bayesian modeling. J Am Stat Assoc 2004; 99: 537–545.
-
(2004)
J Am Stat Assoc
, vol.99
, pp. 537-545
-
-
Gelman, A.1
|