메뉴 건너뛰기




Volumn 27, Issue 6, 2018, Pages 1634-1649

Multiple imputation by chained equations for systematically and sporadically missing multilevel data

Author keywords

chained equations; fully conditional specification; individual patient data meta analysis; Missing data; multilevel model; multiple imputation

Indexed keywords

ADULT; ARTICLE; FEMALE; HUMAN; JOINT; MALE; META ANALYSIS; PATIENT CODING; SIMULATION; ALGORITHM; MEDICAL RESEARCH; STATISTICAL BIAS; STATISTICAL MODEL;

EID: 85046752210     PISSN: 09622802     EISSN: 14770334     Source Type: Journal    
DOI: 10.1177/0962280216666564     Document Type: Article
Times cited : (121)

References (54)
  • 3
    • 78651256743 scopus 로고    scopus 로고
    • Multiple imputation using chained equations: issues and guidance for practice
    • White I, Royston P, Wood A. Multiple imputation using chained equations: issues and guidance for practice. Stat Med 2011; 30: 377–399.
    • (2011) Stat Med , vol.30 , pp. 377-399
    • White, I.1    Royston, P.2    Wood, A.3
  • 7
    • 84951302330 scopus 로고    scopus 로고
    • SAS/STAT 9.1 user s guide
    • Cary, NC, SAS Institute Inc
    • SAS Institute Inc. SAS/STAT 9.1 user s guide. Chapter 46. Cary, NC: SAS Institute Inc., 2004
    • (2004) Chapter , vol.46
  • 9
    • 0033616909 scopus 로고    scopus 로고
    • Multiple imputation of missing blood pressure covariates in survival analysis
    • van Buuren S, Boshuizen H, Knook D. Multiple imputation of missing blood pressure covariates in survival analysis. Stat Med 1999; 18: 681–694.
    • (1999) Stat Med , vol.18 , pp. 681-694
    • van Buuren, S.1    Boshuizen, H.2    Knook, D.3
  • 10
    • 77049113735 scopus 로고    scopus 로고
    • Compatibility of conditionally specified models
    • Chen H. Compatibility of conditionally specified models. Stat Probab Lett 2010; 80: 670–677.
    • (2010) Stat Probab Lett , vol.80 , pp. 670-677
    • Chen, H.1
  • 11
    • 84897646212 scopus 로고    scopus 로고
    • Joint modelling rationale for chained equations
    • Hughes R, White I, Seaman S, Joint modelling rationale for chained equations. BMC Med Res Meth 2014; 14: 28–28.
    • (2014) BMC Med Res Meth , vol.14 , pp. 28
    • Hughes, R.1    White, I.2    Seaman, S.3
  • 13
    • 34347407592 scopus 로고    scopus 로고
    • Multiple imputation of discrete and continuous data by fully conditional specification
    • van Buuren S. Multiple imputation of discrete and continuous data by fully conditional specification. Stat Meth Med Res 2007; 16: 219–242.
    • (2007) Stat Meth Med Res , vol.16 , pp. 219-242
    • van Buuren, S.1
  • 14
    • 84937894556 scopus 로고    scopus 로고
    • Multiple imputation of covariates by fully conditional specification: accommodating the substantive model
    • Bartlett JW, Seaman SR, White IR, Multiple imputation of covariates by fully conditional specification: accommodating the substantive model. Stat Meth Med Res 2015; 24: 462–487.
    • (2015) Stat Meth Med Res , vol.24 , pp. 462-487
    • Bartlett, J.W.1    Seaman, S.R.2    White, I.R.3
  • 15
    • 79953732420 scopus 로고    scopus 로고
    • MICE: multivariate imputation by chained equations in R
    • van Buuren S, Groothuis-Oudshoorn K. MICE: multivariate imputation by chained equations in R. J Stat Softw 2011; 45: 1–67.
    • (2011) J Stat Softw , vol.45 , pp. 1-67
    • van Buuren, S.1    Groothuis-Oudshoorn, K.2
  • 17
    • 49849097915 scopus 로고    scopus 로고
    • Imputation strategies for missing continuous outcomes in cluster randomized trials
    • Taljaard M, Donner A, Klar N. Imputation strategies for missing continuous outcomes in cluster randomized trials. Biometr J 2008; 50: 329–345.
    • (2008) Biometr J , vol.50 , pp. 329-345
    • Taljaard, M.1    Donner, A.2    Klar, N.3
  • 18
    • 78851470246 scopus 로고    scopus 로고
    • Quantifying the impact of fixed effects modeling of clusters in multiple imputation for cluster randomized trials
    • Andridge R. Quantifying the impact of fixed effects modeling of clusters in multiple imputation for cluster randomized trials. Biometr J 2011; 53: 57–74.
    • (2011) Biometr J , vol.53 , pp. 57-74
    • Andridge, R.1
  • 19
    • 84921329943 scopus 로고    scopus 로고
    • Multiple imputation of multilevel missing datarigor versus simplicity
    • Drechsler J. Multiple imputation of multilevel missing datarigor versus simplicity. J Educ Behav Stat 2015; 40: 69–95.
    • (2015) J Educ Behav Stat , vol.40 , pp. 69-95
    • Drechsler, J.1
  • 20
    • 0036017469 scopus 로고    scopus 로고
    • Computational strategies for multivariate linear mixed-effects models with missing values
    • Schafer J, Yucel R. Computational strategies for multivariate linear mixed-effects models with missing values. J Comput Graph Stat 2002; 11: 437–457.
    • (2002) J Comput Graph Stat , vol.11 , pp. 437-457
    • Schafer, J.1    Yucel, R.2
  • 21
    • 80051757583 scopus 로고    scopus 로고
    • Random covariances and mixed-effects models for imputing multivariate multilevel continuous data
    • Yucel R. Random covariances and mixed-effects models for imputing multivariate multilevel continuous data. Stat Model 2011; 11: 351–370.
    • (2011) Stat Model , vol.11 , pp. 351-370
    • Yucel, R.1
  • 22
    • 85047105790 scopus 로고    scopus 로고
    • Multiple imputation for multivariate panel or clustered data
    • Zhao J and Schafer J. pan: Multiple imputation for multivariate panel or clustered data. R package version 1.3, 2015
    • (2015) R package version , vol.1 , pp. 3
    • Zhao, J.1    pan, S.J.2
  • 23
    • 84856274182 scopus 로고    scopus 로고
    • REALCOM-IMPUTE software for multilevel multiple imputation with mixed response types
    • Carpenter J, Goldstein H, Kenward M. REALCOM-IMPUTE software for multilevel multiple imputation with mixed response types. J Stat Softw 2011; 45: 1–14.
    • (2011) J Stat Softw , vol.45 , pp. 1-14
    • Carpenter, J.1    Goldstein, H.2    Kenward, M.3
  • 24
    • 85047156144 scopus 로고    scopus 로고
    • Quartagno M and Carpenter J. jomo: a package for multilevel joint modelling multiple imputation, 2016, R package version 2.2
    • Quartagno M and Carpenter J. jomo: a package for multilevel joint modelling multiple imputation, 2016, R package version 2.2, http://CRAN.R-project.org/package=jomo
  • 25
    • 85130029608 scopus 로고    scopus 로고
    • Multiple imputation of multilevel data
    • Hox J., Roberts J., (eds), New York: Taylor & Francis, Ltd, In:, (eds)
    • van Buuren S, Multiple imputation of multilevel data. In: Hox J, Roberts J, (eds). The handbook of advanced multilevel analysis, New York: Taylor & Francis, Ltd, 2010, pp. 173–196.
    • (2010) The handbook of advanced multilevel analysis , pp. 173-196
    • van Buuren, S.1
  • 27
    • 80053042198 scopus 로고    scopus 로고
    • MICE: multivariate imputation by chained equations in R, 2015
    • van Buuren S and Groothuis-Oudshoorn K. MICE: multivariate imputation by chained equations in R, 2015, R package version 2.25, http://CRAN.R-project.org/package=mice
    • R package version , vol.2 , pp. 25
    • van Buuren, S.1    Groothuis-Oudshoorn, K.2
  • 28
    • 0027478423 scopus 로고
    • Meta-analysis of the literature or of individual patient data: is there a difference?
    • Stewart L, Parmar M. Meta-analysis of the literature or of individual patient data: is there a difference? Lancet 1993; 341: 418–22.
    • (1993) Lancet , vol.341 , pp. 418-422
    • Stewart, L.1    Parmar, M.2
  • 29
    • 84887138473 scopus 로고    scopus 로고
    • Multiple imputation for handling systematically missing confounders in meta-analysis of individual participant data
    • Resche-Rigon M, White I, Bartlett J, Multiple imputation for handling systematically missing confounders in meta-analysis of individual participant data. Stat Med 2013; 32: 4890–4905.
    • (2013) Stat Med , vol.32 , pp. 4890-4905
    • Resche-Rigon, M.1    White, I.2    Bartlett, J.3
  • 30
    • 84926444242 scopus 로고    scopus 로고
    • Imputation of systematically missing predictors in an individual participant data meta-analysis: a generalized approach using MICE
    • Jolani S, Debray T, Koffijberg H, Imputation of systematically missing predictors in an individual participant data meta-analysis: a generalized approach using MICE. Stat Med 2015; 34: 1841–1863.
    • (2015) Stat Med , vol.34 , pp. 1841-1863
    • Jolani, S.1    Debray, T.2    Koffijberg, H.3
  • 33
    • 0020333131 scopus 로고
    • Random-effects models for longitudinal data
    • Laird N, Ware J. Random-effects models for longitudinal data. Biometrics 1982; 38: 963–974.
    • (1982) Biometrics , vol.38 , pp. 963-974
    • Laird, N.1    Ware, J.2
  • 34
    • 80051781370 scopus 로고    scopus 로고
    • Multivariate meta-analysis: potential and promise
    • Jackson D, Riley R, White I. Multivariate meta-analysis: potential and promise. Stat Med 2011; 30: 2481–2498.
    • (2011) Stat Med , vol.30 , pp. 2481-2498
    • Jackson, D.1    Riley, R.2    White, I.3
  • 35
    • 43049159457 scopus 로고    scopus 로고
    • Meta-analysis of continuous outcomes combining individual patient data and aggregate data
    • Riley R, Lambert P, Staessen J, Meta-analysis of continuous outcomes combining individual patient data and aggregate data. Stat Med 2008; 27: 1870–1893.
    • (2008) Stat Med , vol.27 , pp. 1870-1893
    • Riley, R.1    Lambert, P.2    Staessen, J.3
  • 36
    • 84876028745 scopus 로고    scopus 로고
    • Individual participant data meta-analysis for a binary outcome: one-stage or two-stage?
    • Debray TP, Moons KG, Abo-Zaid GMA, Individual participant data meta-analysis for a binary outcome: one-stage or two-stage? PLoS One 2013; 8: e60650–e60650.
    • (2013) PLoS One , vol.8 , pp. e60650
    • Debray, T.P.1    Moons, K.G.2    Abo-Zaid, G.M.A.3
  • 38
    • 77952828976 scopus 로고    scopus 로고
    • Extending DerSimonian and Laird’s methodology to perform multivariate random effects meta-analyses
    • Jackson D, White I, Thompson S. Extending DerSimonian and Laird’s methodology to perform multivariate random effects meta-analyses. Stat Med 2010; 29: 1282–1297.
    • (2010) Stat Med , vol.29 , pp. 1282-1297
    • Jackson, D.1    White, I.2    Thompson, S.3
  • 39
    • 33847259379 scopus 로고    scopus 로고
    • DebRoy S, et al. nlme: linear and nonlinear mixed effects models, 2016
    • Pinheiro J, Bates D, DebRoy S, et al. nlme: linear and nonlinear mixed effects models, 2016, R package version 3.1-28, http://CRAN.R-project.org/package=nlme
    • R package version , vol.3 , pp. 1-28
    • Pinheiro, J.1    Bates, D.2
  • 41
    • 21344439360 scopus 로고    scopus 로고
    • Meta-analysis of individual patient data from randomized trials: a review of methods used in practice
    • Simmonds M, Higgins J, Stewart L, Meta-analysis of individual patient data from randomized trials: a review of methods used in practice. Clinical Trials 2005; 2: 209–217.
    • (2005) Clinical Trials , vol.2 , pp. 209-217
    • Simmonds, M.1    Higgins, J.2    Stewart, L.3
  • 42
    • 84902756973 scopus 로고    scopus 로고
    • Systematic review of methods for individual patient data meta-analysis with binary outcomes
    • Thomas D, Radji S, Benedetti A. Systematic review of methods for individual patient data meta-analysis with binary outcomes. BMC Med Res Meth 2014; 14: 79–79.
    • (2014) BMC Med Res Meth , vol.14 , pp. 79
    • Thomas, D.1    Radji, S.2    Benedetti, A.3
  • 45
    • 84870061584 scopus 로고    scopus 로고
    • Multivariate meta-analysis for non-linear and other multi-parameter associations
    • Gasparrini A, Armstrong B, Kenward M. Multivariate meta-analysis for non-linear and other multi-parameter associations. Stat Med 2012; 31: 3821–3839.
    • (2012) Stat Med , vol.31 , pp. 3821-3839
    • Gasparrini, A.1    Armstrong, B.2    Kenward, M.3
  • 46
    • 85047144404 scopus 로고    scopus 로고
    • The Netherlands, TNO Prevention Center
    • Van Buuren S and Oudshoorn K. Flexible multivariate imputation by MICE. Technical report, Leiden, The Netherlands: TNO Prevention Center, 1999, http://www.stefvanbuuren.nl/publications/Flexible%20multivariate%20-%20TNO99054%201999.pdf
    • (1999) Leiden
    • Van Buuren, S.1
  • 47
    • 84916241504 scopus 로고    scopus 로고
    • Bolker B, et al. lme4: linear mixed-effects models using Eigen and S4
    • Bates D, Maechler M, Bolker B, et al. lme4: linear mixed-effects models using Eigen and S4, R package version 1.1-12, 2016, http://CRAN.R-project.org/package=lme4
    • (2016) R package version , vol.1 , pp. 1-12
    • Bates, D.1    Maechler, M.2
  • 48
    • 84874529858 scopus 로고    scopus 로고
    • Association between elevated blood glucose and outcome in acute heart failure: results from an international observational cohort
    • Mebazaa A, Gayat E, Lassus J, Association between elevated blood glucose and outcome in acute heart failure: results from an international observational cohort. J Am Coll Cardiol 2013; 61: 820–829.
    • (2013) J Am Coll Cardiol , vol.61 , pp. 820-829
    • Mebazaa, A.1    Gayat, E.2    Lassus, J.3
  • 49
    • 84885623462 scopus 로고    scopus 로고
    • Incremental value of biomarkers to clinical variables for mortality prediction in acutely decompensated heart failure: the multinational observational cohort on acute heart failure (MOCA) study
    • Lassus J, Gayat E, Mueller C, Incremental value of biomarkers to clinical variables for mortality prediction in acutely decompensated heart failure: the multinational observational cohort on acute heart failure (MOCA) study. Int J Cardiol 2013; 168: 2186–2194.
    • (2013) Int J Cardiol , vol.168 , pp. 2186-2194
    • Lassus, J.1    Gayat, E.2    Mueller, C.3
  • 50
    • 77749306261 scopus 로고    scopus 로고
    • Meta-analysis of individual participant data: rationale, conduct, and reporting
    • Riley R, Lambert P, Abo-Zaid G. Meta-analysis of individual participant data: rationale, conduct, and reporting. Br Med J 2010; 340: 521–525.
    • (2010) Br Med J , vol.340 , pp. 521-525
    • Riley, R.1    Lambert, P.2    Abo-Zaid, G.3
  • 51
    • 84977572868 scopus 로고    scopus 로고
    • Multiple imputation for IPD meta-analysis: allowing for heterogeneity and studies with missing covariates
    • Quartagno M, Carpenter J. Multiple imputation for IPD meta-analysis: allowing for heterogeneity and studies with missing covariates. Stat Med 2016; 35: 2954–2938.
    • (2016) Stat Med , vol.35
    • Quartagno, M.1    Carpenter, J.2
  • 53
    • 84897668423 scopus 로고    scopus 로고
    • On the stationary distribution of iterative imputations
    • Liu J, Gelman A, Hill J, On the stationary distribution of iterative imputations. Biometrika 2014; 101: 155–173.
    • (2014) Biometrika , vol.101 , pp. 155-173
    • Liu, J.1    Gelman, A.2    Hill, J.3
  • 54
    • 2942628165 scopus 로고    scopus 로고
    • Parameterization and Bayesian modeling
    • Gelman A. Parameterization and Bayesian modeling. J Am Stat Assoc 2004; 99: 537–545.
    • (2004) J Am Stat Assoc , vol.99 , pp. 537-545
    • Gelman, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.