메뉴 건너뛰기




Volumn 35, Issue 17, 2016, Pages 2955-2974

Dealing with missing covariates in epidemiologic studies: a comparison between multiple imputation and a full Bayesian approach

Author keywords

Bayesian; epidemiology; MICE; missing covariate values; multiple imputation

Indexed keywords

LONGITUDINAL STUDY; STATISTICAL MODEL;

EID: 84977594497     PISSN: 02776715     EISSN: 10970258     Source Type: Journal    
DOI: 10.1002/sim.6944     Document Type: Article
Times cited : (84)

References (34)
  • 6
    • 84977483937 scopus 로고    scopus 로고
    • Flexible Imputation of Missing Data, Chapman & Hall/CRC Interdisciplinary Statistics
    • Boca Raton, FL
    • van Buuren S. Flexible Imputation of Missing Data, Chapman & Hall/CRC Interdisciplinary Statistics. CRC Press Taylor & Francis Group: Boca Raton, FL, 2012.
    • (2012) CRC Press Taylor & Francis Group
    • van Buuren, S.1
  • 11
    • 0036016749 scopus 로고    scopus 로고
    • Bayesian methods for generalized linear models with covariates missing at random
    • Ibrahim JG, Chen M-H, Lipsitz SR. Bayesian methods for generalized linear models with covariates missing at random. Canadian Journal of Statistics 2002; 30(1): 55–78.
    • (2002) Canadian Journal of Statistics , vol.30 , Issue.1 , pp. 55-78
    • Ibrahim, J.G.1    Chen, M.-H.2    Lipsitz, S.R.3
  • 12
    • 0346102882 scopus 로고    scopus 로고
    • Maximum likelihood methods for nonignorable missing responses and covariates in random effects models
    • Stubbendick AL, Ibrahim JG. Maximum likelihood methods for nonignorable missing responses and covariates in random effects models. Biometrics 2003; 59(4): 1140–1150.
    • (2003) Biometrics , vol.59 , Issue.4 , pp. 1140-1150
    • Stubbendick, A.L.1    Ibrahim, J.G.2
  • 13
    • 77952557371 scopus 로고    scopus 로고
    • Weighted generalized estimating functions for longitudinal response and covariate data that are missing at random
    • Chen B, Grace YY, Cook RJ. Weighted generalized estimating functions for longitudinal response and covariate data that are missing at random. Journal of the American Statistical Association 2010; 105(489): 336–353.
    • (2010) Journal of the American Statistical Association , vol.105 , Issue.489 , pp. 336-353
    • Chen, B.1    Grace, Y.Y.2    Cook, R.J.3
  • 14
    • 80052808295 scopus 로고    scopus 로고
    • Doubly robust estimates for binary longitudinal data analysis with missing response and missing covariates
    • Chen B, Zhou XH. Doubly robust estimates for binary longitudinal data analysis with missing response and missing covariates. Biometrics 2011; 67(3): 830–842.
    • (2011) Biometrics , vol.67 , Issue.3 , pp. 830-842
    • Chen, B.1    Zhou, X.H.2
  • 19
    • 84937894556 scopus 로고    scopus 로고
    • Multiple imputation of covariates by fully conditional specification: accommodating the substantive model
    • Bartlett JW, Seaman SR, White IR, Carpenter JR. Multiple imputation of covariates by fully conditional specification: accommodating the substantive model. Statistical Methods in Medical Research 2015; 24(4): 462–487.
    • (2015) Statistical Methods in Medical Research , vol.24 , Issue.4 , pp. 462-487
    • Bartlett, J.W.1    Seaman, S.R.2    White, I.R.3    Carpenter, J.R.4
  • 20
    • 0035102205 scopus 로고    scopus 로고
    • Maximum likelihood methods for cure rate models with missing covariates
    • Chen M-H, Ibrahim JG. Maximum likelihood methods for cure rate models with missing covariates. Biometrics 2001; 57(1): 43–52.
    • (2001) Biometrics , vol.57 , Issue.1 , pp. 43-52
    • Chen, M.-H.1    Ibrahim, J.G.2
  • 21
    • 84977491683 scopus 로고    scopus 로고
    • Analysis of Incomplete Multivariate Data, Chapman & Hall/CRC Monographs on Statistics & Applied Probability
    • Boca Raton, FL
    • Schafer J. Analysis of Incomplete Multivariate Data, Chapman & Hall/CRC Monographs on Statistics & Applied Probability. CRC Press Taylor & Francis Group: Boca Raton, FL, 1997.
    • (1997) CRC Press Taylor & Francis Group
    • Schafer, J.1
  • 22
    • 84946962849 scopus 로고    scopus 로고
    • Convergence properties of a sequential regression multiple imputation algorithm
    • Zhu J, Raghunathan TE. Convergence properties of a sequential regression multiple imputation algorithm. Journal of the American Statistical Association 2015; 110(511): 1112–1124.
    • (2015) Journal of the American Statistical Association , vol.110 , Issue.511 , pp. 1112-1124
    • Zhu, J.1    Raghunathan, T.E.2
  • 24
    • 84907095419 scopus 로고    scopus 로고
    • R: A Language and Environment for Statistical Computing
    • Vienna, Austria
    • R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria, 2013. http://www.R-project.org/.
    • (2013) R Foundation for Statistical Computing
  • 26
    • 0033636097 scopus 로고    scopus 로고
    • Latent class model diagnosis
    • Garrett ES, Zeger SL. Latent class model diagnosis. Biometrics 2000; 56(4): 1055–1067.
    • (2000) Biometrics , vol.56 , Issue.4 , pp. 1055-1067
    • Garrett, E.S.1    Zeger, S.L.2
  • 27
    • 25444484077 scopus 로고    scopus 로고
    • Posterior predictive assessment of model fitness via realized discrepancies
    • Gelman A, Meng XL, Stern H. Posterior predictive assessment of model fitness via realized discrepancies. Statistica Sinica 1996; 6(4): 733–760.
    • (1996) Statistica Sinica , vol.6 , Issue.4 , pp. 733-760
    • Gelman, A.1    Meng, X.L.2    Stern, H.3
  • 29
    • 78651256743 scopus 로고    scopus 로고
    • Multiple imputation using chained equations: issues and guidance for practice
    • White IR, Royston P, Wood AM. Multiple imputation using chained equations: issues and guidance for practice. Statistics in Medicine 2011; 30(4): 377–399.
    • (2011) Statistics in Medicine , vol.30 , Issue.4 , pp. 377-399
    • White, I.R.1    Royston, P.2    Wood, A.M.3
  • 30
    • 84856249157 scopus 로고    scopus 로고
    • State of the multiple imputation software
    • Yucel RM. State of the multiple imputation software. Journal of Statistical Software 2011; 45(1): 1–7.
    • (2011) Journal of Statistical Software , vol.45 , Issue.1 , pp. 1-7
    • Yucel, R.M.1
  • 34
    • 0006407254 scopus 로고    scopus 로고
    • WinBUGS-a Bayesian modelling framework: concepts, structure, and extensibility
    • Lunn DJ, Thomas A, Best N, Spiegelhalter D. WinBUGS-a Bayesian modelling framework: concepts, structure, and extensibility. Statistics and Computing 2000; 10(4): 325–337.
    • (2000) Statistics and Computing , vol.10 , Issue.4 , pp. 325-337
    • Lunn, D.J.1    Thomas, A.2    Best, N.3    Spiegelhalter, D.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.