메뉴 건너뛰기




Volumn 2017-December, Issue , 2017, Pages 6403-6414

Simple and scalable predictive uncertainty estimation using deep ensembles

Author keywords

[No Author keywords available]

Indexed keywords

DEEP NEURAL NETWORKS; REACTOR CORES; STATISTICAL TESTS;

EID: 85046740096     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (4831)

References (61)
  • 2
    • 84938888109 scopus 로고    scopus 로고
    • Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning
    • B. Alipanahi, A. Delong, M. T. Weirauch, and B. J. Frey. Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning. Nature biotechnology, 33(8): 831-838, 2015.
    • (2015) Nature Biotechnology , vol.33 , Issue.8 , pp. 831-838
    • Alipanahi, B.1    Delong, A.2    Weirauch, M.T.3    Frey, B.J.4
  • 7
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman. Bagging predictors. Machine learning, 24(2): 123-140, 1996.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 8
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman. Random forests. Machine learning, 45(1): 5-32, 2001.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 9
    • 0003010182 scopus 로고
    • Verification of forecasts expressed in terms of probability
    • G. W. Brier. Verification of forecasts expressed in terms of probability. Monthly weather review, 1950.
    • (1950) Monthly Weather Review
    • Brier, G.W.1
  • 11
    • 2542484580 scopus 로고    scopus 로고
    • Comparing bayes model averaging and stacking when model approximation error cannot be ignored
    • B. Clarke. Comparing Bayes model averaging and stacking when model approximation error cannot be ignored. J. Mach. Learn. Res. (JMLR), 4: 683-712, 2003.
    • (2003) J. Mach. Learn. Res. (JMLR) , vol.4 , pp. 683-712
    • Clarke, B.1
  • 15
    • 84998879817 scopus 로고    scopus 로고
    • Dropout as a Bayesian approximation: Representing model uncertainty in deep learning
    • Y. Gal and Z. Ghahramani. Dropout as a Bayesian approximation: Representing model uncertainty in deep learning. In ICML, 2016.
    • (2016) ICML
    • Gal, Y.1    Ghahramani, Z.2
  • 18
    • 85083951001 scopus 로고    scopus 로고
    • Explaining and harnessing adversarial examples
    • I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial examples. In ICLR, 2015.
    • (2015) ICLR
    • Goodfellow, I.J.1    Shlens, J.2    Szegedy, C.3
  • 19
    • 85162557101 scopus 로고    scopus 로고
    • Practical variational inference for neural networks
    • A. Graves. Practical variational inference for neural networks. In NIPS, 2011.
    • (2011) NIPS
    • Graves, A.1
  • 24
    • 84969909658 scopus 로고    scopus 로고
    • Probabilistic backpropagation for scalable learning of Bayesian neural networks
    • J. M. Hernández-Lobato and R. P. Adams. Probabilistic backpropagation for scalable learning of Bayesian neural networks. In ICML, 2015.
    • (2015) ICML
    • Hernández-Lobato, J.M.1    Adams, R.P.2
  • 29
    • 84965103544 scopus 로고    scopus 로고
    • Variational dropout and the local reparameterization trick
    • D. P. Kingma, T. Salimans, and M. Welling. Variational dropout and the local reparameterization trick. In NIPS, 2015.
    • (2015) NIPS
    • Kingma, D.P.1    Salimans, T.2    Welling, M.3
  • 32
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012.
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 35
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553): 436-444, 2015.
    • (2015) Nature , vol.521 , Issue.7553 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 45
    • 77956509090 scopus 로고    scopus 로고
    • Rectified linear units improve restricted boltzmann machines
    • V. Nair and G. E. Hinton. Rectified linear units improve restricted Boltzmann machines. In ICML, 2010.
    • (2010) ICML
    • Nair, V.1    Hinton, G.E.2
  • 50
    • 31844431858 scopus 로고    scopus 로고
    • Healing the relevance vector machine through augmentation
    • C. E. Rasmussen and J. Quinonero-Candela. Healing the relevance vector machine through augmentation. In ICML, 2005.
    • (2005) ICML
    • Rasmussen, C.E.1    Quinonero-Candela, J.2
  • 52
    • 85018925999 scopus 로고    scopus 로고
    • Swapout: Learning an ensemble of deep architectures
    • S. Singh, D. Hoiem, and D. Forsyth. Swapout: Learning an ensemble of deep architectures. In NIPS, 2016.
    • (2016) NIPS
    • Singh, S.1    Hoiem, D.2    Forsyth, D.3
  • 59
    • 80053452150 scopus 로고    scopus 로고
    • Bayesian learning via stochastic gradient langevin dynamics
    • M. Welling and Y. W. Teh. Bayesian learning via stochastic gradient Langevin dynamics. In ICML, 2011.
    • (2011) ICML
    • Welling, M.1    Teh, Y.W.2
  • 60
    • 0026692226 scopus 로고
    • Stacked generalization
    • D. H. Wolpert. Stacked generalization. Neural networks, 5(2): 241-259, 1992.
    • (1992) Neural Networks , vol.5 , Issue.2 , pp. 241-259
    • Wolpert, D.H.1
  • 61
    • 84958257565 scopus 로고    scopus 로고
    • Predicting effects of noncoding variants with deep learning-based sequence model
    • J. Zhou and O. G. Troyanskaya. Predicting effects of noncoding variants with deep learning-based sequence model. Nature methods, 12(10): 931-934, 2015.
    • (2015) Nature Methods , vol.12 , Issue.10 , pp. 931-934
    • Zhou, J.1    Troyanskaya, O.G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.