메뉴 건너뛰기




Volumn , Issue , 2011, Pages

Practical variational inference for neural networks

Author keywords

[No Author keywords available]

Indexed keywords

BAYESIAN NETWORKS; INFERENCE ENGINES; RECURRENT NEURAL NETWORKS; STOCHASTIC SYSTEMS;

EID: 85162557101     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (1701)

References (26)
  • 2
    • 84860620038 scopus 로고    scopus 로고
    • Radial basis functions: A Bayesian treatment
    • D. Barber and B. Schottky. Radial basis functions: A bayesian treatment. In NIPS, 1997.
    • (1997) NIPS
    • Barber, D.1    Schottky, B.2
  • 3
    • 85162069624 scopus 로고    scopus 로고
    • Phone recognition with the meancovariance restricted boltzmann machine
    • J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta, editors
    • G. E. Dahl, M. Ranzato, A. rahman Mohamed, and G. Hinton. Phone recognition with the meancovariance restricted boltzmann machine. In J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta, editors, Advances in Neural Information Processing Systems 23, pages 469-477. 2010.
    • (2010) Advances in Neural Information Processing Systems , vol.23 , pp. 469-477
    • Dahl, G.E.1    Ranzato, M.2    Mohamed, A.R.3    Hinton, G.4
  • 7
    • 0028495332 scopus 로고
    • Pruning recurrent neural networks for improved generalization performance
    • C. L. Giles and C.W. Omlin. Pruning recurrent neural networks for improved generalization performance. IEEE Transactions on Neural Networks, 5:848-851, 1994.
    • (1994) IEEE Transactions on Neural Networks , vol.5 , pp. 848-851
    • Giles, C.L.1    Omlin, C.W.2
  • 9
    • 71249112130 scopus 로고    scopus 로고
    • Offline handwriting recognition with multidimensional recurrent neural networks
    • A. Graves and J. Schmidhuber. Offline handwriting recognition with multidimensional recurrent neural networks. In NIPS, pages 545-552, 2008.
    • (2008) NIPS , pp. 545-552
    • Graves, A.1    Schmidhuber, J.2
  • 10
    • 0027803368 scopus 로고
    • Keeping the neural networks simple by minimizing the description length of the weights
    • G. E. Hinton and D. van Camp. Keeping the neural networks simple by minimizing the description length of the weights. In COLT, pages 5-13, 1993.
    • (1993) COLT , pp. 5-13
    • Hinton, G.E.1    Van Camp, D.2
  • 12
    • 3843073152 scopus 로고    scopus 로고
    • Variational learning and bits-back coding: An information-theoretic view to Bayesian learning
    • A. Honkela and H. Valpola. Variational learning and bits-back coding: An information-theoretic view to bayesian learning. IEEE Transactions on Neural Networks, 15:800-810, 2004.
    • (2004) IEEE Transactions on Neural Networks , vol.15 , pp. 800-810
    • Honkela, A.1    Valpola, H.2
  • 13
    • 0342990011 scopus 로고    scopus 로고
    • An analysis of noise in recurrent neural networks: Convergence and generalization
    • nov
    • K.-C. Jim, C. Giles, and B. Horne. An analysis of noise in recurrent neural networks: convergence and generalization. Neural Networks, IEEE Transactions on, 7(6):1424-1438, nov 1996.
    • (1996) Neural Networks, IEEE Transactions on , vol.7 , Issue.6 , pp. 1424-1438
    • Jim, K.-C.1    Giles, C.2    Horne, B.3
  • 15
    • 0000494466 scopus 로고
    • Optimal brain damage
    • D. S. Touretzky, editor, Morgan Kaufmann, San Mateo, CA
    • Y. Le Cun, J. Denker, and S. Solla. Optimal brain damage. In D. S. Touretzky, editor, Advances in Neural Information Processing Systems, volume 2, pages 598-605. Morgan Kaufmann, San Mateo, CA, 1990.
    • (1990) Advances in Neural Information Processing Systems , vol.2 , pp. 598-605
    • Le Cun, Y.1    Denker, J.2    Solla, S.3
  • 16
    • 0001441372 scopus 로고
    • Probable networks and plausible predictions - A review of practical Bayesian methods for supervised neural networks
    • D. J. C. MacKay. Probable networks and plausible predictions - a review of practical bayesian methods for supervised neural networks. Neural Computation, 1995.
    • (1995) Neural Computation
    • MacKay, D.J.C.1
  • 17
    • 0001765492 scopus 로고
    • Simplifying neural networks by soft weight sharing
    • S. J. Nowlan and G. E. Hinton. Simplifying neural networks by soft weight sharing. Neural Computation, 4:173-193, 1992.
    • (1992) Neural Computation , vol.4 , pp. 173-193
    • Nowlan, S.J.1    Hinton, G.E.2
  • 18
    • 63249135864 scopus 로고    scopus 로고
    • The variational Gaussian approximation revisited
    • M. Opper and C. Archambeau. The variational gaussian approximation revisited. Neural Computation, 21(3):786-792, 2009.
    • (2009) Neural Computation , vol.21 , Issue.3 , pp. 786-792
    • Opper, M.1    Archambeau, C.2
  • 20
    • 84943274699 scopus 로고
    • A direst adaptive method for faster backpropagation learning: The RPROP algorithm
    • M. Riedmiller and T. Braun. A direst adaptive method for faster backpropagation learning: The rprop algorithm. In International Symposium on Neural Networks, 1993.
    • (1993) International Symposium on Neural Networks
    • Riedmiller, M.1    Braun, T.2
  • 21
    • 0018015137 scopus 로고
    • Modeling by shortest data description
    • J. Rissanen. Modeling by shortest data description. Automatica, 14(5):465-471, 1978.
    • (1978) Automatica , vol.14 , Issue.5 , pp. 465-471
    • Rissanen, J.1
  • 26
    • 0023364261 scopus 로고
    • Arithmetic coding for data compression
    • June
    • I. H. Witten, R. M. Neal, and J. G. Cleary. Arithmetic coding for data compression. Commun. ACM, 30:520-540, June 1987.
    • (1987) Commun. ACM , vol.30 , pp. 520-540
    • Witten, I.H.1    Neal, R.M.2    Cleary, J.G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.