-
1
-
-
84904136037
-
Large-scale machine learning with stochastic gradient descent
-
Léon Bottou. Large-scale machine learning with stochastic gradient descent. In COMPSTAT. 2010.
-
(2010)
COMPSTAT
-
-
Bottou, L.1
-
5
-
-
84928534967
-
Identifying and attacking the saddle point problem in high-dimensional non-convex optimization
-
Yann N Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya Ganguli, and Yoshua Bengio. Identifying and attacking the saddle point problem in high-dimensional non-convex optimization. In NIPS, 2014.
-
(2014)
NIPS
-
-
Dauphin, Y.N.1
Pascanu, R.2
Gulcehre, C.3
Cho, K.4
Ganguli, S.5
Bengio, Y.6
-
6
-
-
85198028989
-
ImageNet: A large-scale hierarchical image database
-
Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image database. In CVPR, 2009.
-
(2009)
CVPR
-
-
Deng, J.1
Dong, W.2
Socher, R.3
Li, L.-J.4
Li, K.5
Fei-Fei, L.6
-
7
-
-
80052250414
-
Adaptive subgradient methods for online learning and stochastic optimization
-
Jul
-
John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and stochastic optimization. Journal of Machine Learning Research, 12(Jul):2121-2159, 2011.
-
(2011)
Journal of Machine Learning Research
, vol.12
, pp. 2121-2159
-
-
Duchi, J.1
Hazan, E.2
Singer, Y.3
-
8
-
-
84897543523
-
Maxout networks
-
Ian J Goodfellow, David Warde-Farley, Mehdi Mirza, Aaron Courville, and Yoshua Bengio. Maxout networks. In ICML, 2013.
-
(2013)
ICML
-
-
Goodfellow, I.J.1
Warde-Farley, D.2
Mirza, M.3
Courville, A.4
Bengio, Y.5
-
11
-
-
84986274465
-
Deep residual learning for image recognition
-
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In CVPR, 2016a.
-
(2016)
CVPR
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
12
-
-
84990068011
-
Identity mappings in deep residual networks
-
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual networks. In ECCV, 2016b.
-
(2016)
ECCV
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
15
-
-
84984824417
-
Deep networks with stochastic depth
-
Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Weinberger. Deep networks with stochastic depth. In ECCV, 2016b.
-
(2016)
ECCV
-
-
Huang, G.1
Sun, Y.2
Liu, Z.3
Sedra, D.4
Weinberger, K.5
-
16
-
-
84964923476
-
Batch normalization: Accelerating deep network training by reducing internal covariate shift
-
Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In ICCV, 2015.
-
(2015)
ICCV
-
-
Ioffe, S.1
Szegedy, C.2
-
19
-
-
85015249548
-
-
arXiv preprint
-
Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter Tang. On large-batch training for deep learning: Generalization gap and sharp minima. arXiv preprint arXiv:1609.04836, 2016.
-
(2016)
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
-
-
Keskar, N.S.1
Mudigere, D.2
Nocedal, J.3
Smelyanskiy, M.4
Tang, P.T.P.5
-
22
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012.
-
(2012)
NIPS
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
23
-
-
0000749354
-
Neural network ensembles, cross validation, and active learning
-
Anders Krogh, Jesper Vedelsby, et al. Neural network ensembles, cross validation, and active learning. In NIPS, volume 7, 1995.
-
(1995)
NIPS
, vol.7
-
-
Krogh, A.1
Vedelsby, J.2
-
24
-
-
85018911798
-
-
arXiv preprint
-
David Krueger, Tegan Maharaj, János Kramár, Mohammad Pezeshki, Nicolas Ballas, Nan Rosemary Ke, Anirudh Goyal, Yoshua Bengio, Hugo Larochelle, Aaron Courville, et al. Zoneout: Regularizing rnns by randomly preserving hidden activations. arXiv preprint arXiv:1606.01305, 2016.
-
(2016)
Zoneout: Regularizing Rnns by Randomly Preserving Hidden Activations
-
-
Krueger, D.1
Maharaj, T.2
Kramár, J.3
Pezeshki, M.4
Ballas, N.5
Ke, N.R.6
Goyal, A.7
Bengio, Y.8
Larochelle, H.9
Courville, A.10
-
27
-
-
85009928594
-
Deeply-supervised nets
-
Chen-Yu Lee, Saining Xie, Patrick Gallagher, Zhengyou Zhang, and Zhuowen Tu. Deeply-supervised nets. In AISTATS, 2015.
-
(2015)
AISTATS
-
-
Lee, C.-Y.1
Xie, S.2
Gallagher, P.3
Zhang, Z.4
Tu, Z.5
-
30
-
-
85057385638
-
-
Mohammad Moghimi, Mohammad Saberian, Jian Yang, Li-Jia Li, Nuno Vasconcelos, and Serge Belongie. Boosted convolutional neural networks. 2016.
-
(2016)
Boosted Convolutional Neural Networks
-
-
Moghimi, M.1
Saberian, M.2
Yang, J.3
Li, L.-J.4
Vasconcelos, N.5
Belongie, S.6
-
31
-
-
84865114495
-
Reading digits in natural images with unsupervised feature learning, 2011
-
Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading digits in natural images with unsupervised feature learning, 2011. In NIPS Workshop on Deep Learning and Unsupervised Feature Learning, 2011.
-
(2011)
NIPS Workshop on Deep Learning and Unsupervised Feature Learning
-
-
Netzer, Y.1
Wang, T.2
Coates, A.3
Bissacco, A.4
Wu, B.5
Ng, A.Y.6
-
32
-
-
84964544562
-
-
arXiv preprint
-
Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta, and Yoshua Bengio. Fitnets: Hints for thin deep nets. arXiv preprint arXiv:1412.6550, 2014.
-
(2014)
Fitnets: Hints for Thin Deep Nets
-
-
Romero, A.1
Ballas, N.2
Kahou, S.E.3
Chassang, A.4
Gatta, C.5
Bengio, Y.6
-
34
-
-
84874575248
-
Convolutional neural networks applied to house numbers digit classification
-
Pierre Sermanet, Soumith Chintala, and Yann LeCun. Convolutional neural networks applied to house numbers digit classification. In ICPR, 2012.
-
(2012)
ICPR
-
-
Sermanet, P.1
Chintala, S.2
LeCun, Y.3
-
38
-
-
84904163933
-
Dropout: A simple way to prevent neural networks from overfitting
-
Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15(1):1929-1958, 2014.
-
(2014)
Journal of Machine Learning Research
, vol.15
, Issue.1
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.E.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
40
-
-
0032120796
-
Fast committee learning: Preliminary results
-
A Swann and N Allinson. Fast committee learning: Preliminary results. Electronics Letters, 34(14): 1408-1410, 1998.
-
(1998)
Electronics Letters
, vol.34
, Issue.14
, pp. 1408-1410
-
-
Swann, A.1
Allinson, N.2
-
41
-
-
84897550107
-
Regularization of neural networks using dropconnect
-
Li Wan, Matthew Zeiler, Sixin Zhang, Yann L Cun, and Rob Fergus. Regularization of neural networks using dropconnect. In ICML, 2013.
-
(2013)
ICML
-
-
Wan, L.1
Zeiler, M.2
Zhang, S.3
Cun, Y.L.4
Fergus, R.5
|