-
1
-
-
84867125855
-
Bayesian posterior sampling via stochastic gradient fisher scoring
-
[AKW12] S. Ahn, A. Korattikara, and M. Welling. Bayesian Posterior Sampling via Stochastic Gradient Fisher Scoring. In ICML, 2012.
-
(2012)
ICML
-
-
Ahn, S.1
Korattikara, A.2
Welling, M.3
-
2
-
-
84919919193
-
Distributed stochastic gradient MCMC
-
[ASW14] Sungjin Ahn, Babak Shahbaba, and Max Welling. Distributed stochastic gradient MCMC. In ICML, 2014.
-
(2014)
ICML
-
-
Ahn, S.1
Shahbaba, B.2
Welling, M.3
-
5
-
-
61449167850
-
Some comparisons among quadratic, spherical, and logarithmic scoring rules
-
[Bic07] J Eric Bickel. Some comparisons among quadratic, spherical, and logarithmic scoring rules. Decision Analysis, 4(2):49-65, 2007.
-
(2007)
Decision Analysis
, vol.4
, Issue.2
, pp. 49-65
-
-
Eric Bickel, J.1
-
6
-
-
84919787787
-
Stochastic gradient hamiltonian Monte Carlo
-
[CFG14] Tianqi Chen, Emily B Fox, and Carlos Guestrin. Stochastic Gradient Hamiltonian Monte Carlo. In ICML, 2014.
-
(2014)
ICML
-
-
Chen, T.1
Fox, E.B.2
Guestrin, C.3
-
7
-
-
84937959155
-
Bayesian sampling using stochastic gradient thermostats
-
[DFB+14] N Ding, Y Fang, R Babbush, C Chen, R Skeel, and H Neven. Bayesian sampling using stochastic gradient thermostats. In NIPS, 2014.
-
(2014)
NIPS
-
-
Ding, N.1
Fang, Y.2
Babbush, R.3
Chen, C.4
Skeel, R.5
Neven, H.6
-
9
-
-
85162557101
-
Practical variational inference for neural networks
-
[Gra11] Alex Graves. Practical variational inference for neural networks. In NIPS, 2011.
-
(2011)
NIPS
-
-
Graves, A.1
-
10
-
-
84969909658
-
Probabilistic backpropagation for scalable learning of Bayesian neural networks
-
[HLA15] J. Hernández-Lobato and R. Adams. Probabilistic backpropagation for scalable learning of bayesian neural networks. In ICML, 2015.
-
(2015)
ICML
-
-
Hernández-Lobato, J.1
Adams, R.2
-
12
-
-
84919810317
-
Stochastic gradient VB and the variational auto-encoder
-
[KW14] Diederik P Kingma and Max Welling. Stochastic gradient VB and the variational auto-encoder. In ICLR, 2014.
-
(2014)
ICLR
-
-
Kingma, D.P.1
Welling, M.2
-
14
-
-
84898939739
-
Stochastic gradient riemannian langevin dynamics on the probability simplex
-
[PT13] Sam Patterson and Yee Whye Teh. Stochastic gradient riemannian langevin dynamics on the probability simplex. In NIPS, 2013.
-
(2013)
NIPS
-
-
Patterson, S.1
Teh, Y.W.2
-
15
-
-
84964544562
-
-
Arxiv, 19
-
[RBK+14] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta, and Yoshua Bengio. FitNets: Hints for thin deep nets. Arxiv, 19 2014.
-
(2014)
FitNets: Hints for Thin Deep Nets
-
-
Romero, A.1
Ballas, N.2
Kahou, S.E.3
Chassang, A.4
Gatta, C.5
Bengio, Y.6
-
16
-
-
84919796093
-
Stochastic backpropagation and approximate inference in deep generative models
-
[RMW14] D. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and approximate inference in deep generative models. In ICML, 2014.
-
(2014)
ICML
-
-
Rezende, D.1
Mohamed, S.2
Wierstra, D.3
-
17
-
-
31844439545
-
Compact approximations to Bayesian predictive distributions
-
[SG05] Edward Snelson and Zoubin Ghahramani. Compact approximations to bayesian predictive distributions. In ICML, 2005.
-
(2005)
ICML
-
-
Snelson, E.1
Ghahramani, Z.2
-
18
-
-
85083953343
-
Intriguing properties of neural networks
-
[SZS+14] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus. Intriguing properties of neural networks. In ICLR, 2014.
-
(2014)
ICLR
-
-
Szegedy, C.1
Zaremba, W.2
Sutskever, I.3
Bruna, J.4
Erhan, D.5
Goodfellow, I.6
Fergus, R.7
-
19
-
-
80053452150
-
Bayesian learning via stochastic gradient Langevin dynamics
-
[WT11] Max Welling and Yee W Teh. Bayesian learning via stochastic gradient Langevin dynamics. In ICML, 2011.
-
(2011)
ICML
-
-
Welling, M.1
Teh, Y.W.2
|