-
1
-
-
84919386098
-
Neural networks applied to discriminate botanical origin of honeys
-
Anjos, O, Iglesias, C, Peres, F, Martinez, J, Garcia, A, and Taboada, J. Neural networks applied to discriminate botanical origin of honeys. Food chemistry, 175:128-136, 2015.
-
(2015)
Food Chemistry
, vol.175
, pp. 128-136
-
-
Anjos, O.1
Iglesias, C.2
Peres, F.3
Martinez, J.4
Garcia, A.5
Taboada, J.6
-
2
-
-
84903779279
-
Searching for exotic particles in high-energy physics with deep learning
-
Baldi, P, Sadowski, P, and Whiteson, D. Searching for exotic particles in high-energy physics with deep learning. Nature communications, 5, 2014.
-
(2014)
Nature Communications
, pp. 5
-
-
Baldi, P.1
Sadowski, P.2
Whiteson, D.3
-
4
-
-
84891864359
-
On the use of artificial neural networks in simulation-based manufacturing control
-
Bergmann, S, Stelzer, S, and Strassburger, S. On the use of artificial neural networks in simulation-based manufacturing control. Journal of Simulation, 8(1):76-90, 2014.
-
(2014)
Journal of Simulation
, vol.8
, Issue.1
, pp. 76-90
-
-
Bergmann, S.1
Stelzer, S.2
Strassburger, S.3
-
5
-
-
84857819132
-
Theano: A CPU and GPU math expression compiler
-
June, Oral Presentation
-
Bergstra, James, Breuleux, Olivier, Bastien, Frédéric, Lamblin, Pascal, Pascanu, Razvan, Desjardins, Guillaume, Turian, Joseph, Warde-Farley, David, and Bengio, Yoshua. Theano: a CPU and GPU math expression compiler. In Proceedings of the Python for Scientific Computing Conference (SciPy), June 2010. Oral Presentation.
-
(2010)
Proceedings of the Python for Scientific Computing Conference (SciPy)
-
-
Bergstra, J.1
Breuleux, O.2
Bastien, F.3
Lamblin, P.4
Pascanu, R.5
Desjardins, G.6
Turian, J.7
Warde-Farley, D.8
Bengio, Y.9
-
6
-
-
84867133463
-
Variational Bayesian inference with stochastic search
-
Blei, D M, Jordan, M I, and Paisley, J W. Variational Bayesian inference with stochastic search. In ICML, 2012.
-
(2012)
ICML
-
-
Blei, D.M.1
Jordan, M.I.2
Paisley, J.W.3
-
7
-
-
84969752808
-
Weight uncertainty in neural networks
-
Blundell, C, Cornebise, J, Kavukcuoglu, K, and Wierstra, D. Weight uncertainty in neural networks. ICML, 2015.
-
(2015)
ICML
-
-
Blundell, C.1
Cornebise, J.2
Kavukcuoglu, K.3
Wierstra, D.4
-
8
-
-
84969930652
-
Compressing neural networks with the hashing trick
-
Chen, W, Wilson, J T, Tyree, S, Weinberger, K Q, and Chen, Y. Compressing neural networks with the hashing trick. In ICML-15, 2015.
-
(2015)
ICML-15
-
-
Chen, W.1
Wilson, J.T.2
Tyree, S.3
Weinberger, K.Q.4
Chen, Y.5
-
9
-
-
84971640658
-
-
Chollet, François. Keras. https://github.com/fchollet/keras, 2015.
-
(2015)
Keras
-
-
Chollet, F.1
-
11
-
-
84930631638
-
Probabilistic machine learning and artificial intelligence
-
Ghahramani, Z. Probabilistic machine learning and artificial intelligence. Nature, 521(7553), 2015.
-
(2015)
Nature
, vol.521
, Issue.7553
-
-
Ghahramani, Z.1
-
12
-
-
85162557101
-
Practical variational inference for neural networks
-
Graves, A. Practical variational inference for neural networks. In NIPS, 2011.
-
(2011)
NIPS
-
-
Graves, A.1
-
13
-
-
84969909658
-
Probabilistic backpropagation for scalable learning of Bayesian neural networks
-
Hernandez-Lobato, J M and Adams, R P. Probabilistic backpropagation for scalable learning of bayesian neural networks. In ICML-15, 2015.
-
(2015)
ICML-15
-
-
Hernandez-Lobato, J.M.1
Adams, R.P.2
-
14
-
-
84874675200
-
Experimental biology: Sometimes Bayesian statistics are better
-
Herzog, S and Ostwald, D. Experimental biology: Sometimes Bayesian statistics are better. Nature, 494, 2013.
-
(2013)
Nature
, pp. 494
-
-
Herzog, S.1
Ostwald, D.2
-
16
-
-
84878919168
-
Stochastic variational inference
-
Hoffman, M D, Blei, D M, Wang, C, and Paisley, J. Stochastic variational inference. The Journal of Machine Learning Research, 14(1):1303-1347, 2013.
-
(2013)
The Journal of Machine Learning Research
, vol.14
, Issue.1
, pp. 1303-1347
-
-
Hoffman, M.D.1
Blei, D.M.2
Wang, C.3
Paisley, J.4
-
17
-
-
84913555165
-
-
arXiv preprint arXiv: 1408.5093
-
Jia, Y, Shelhamer, E, Donahue, J, Karayev, S, Long, J, Girshick, R, Guadarrama, S, and Darrell, T. Caffe: Convolutional architecture for fast feature embedding. arXiv preprint arXiv: 1408.5093, 2014.
-
(2014)
Caffe: Convolutional Architecture for Fast Feature Embedding
-
-
Jia, Y.1
Shelhamer, E.2
Donahue, J.3
Karayev, S.4
Long, J.5
Girshick, R.6
Guadarrama, S.7
Darrell, T.8
-
22
-
-
84883315249
-
Points of significance: Importance of being uncertain
-
Krzywinski, M and Altman, N. Points of significance: Importance of being uncertain. Nature methods, 10(9), 2013.
-
(2013)
Nature Methods
, vol.10
, Issue.9
-
-
Krzywinski, M.1
Altman, N.2
-
25
-
-
0032203257
-
Gradientbased learning applied to document recognition
-
LeCun, Y, Bottou, L, Bengio, Y, and Haffner, P. Gradientbased learning applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.
-
(1998)
Proceedings of the IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
26
-
-
70449371464
-
Neural network based intrusion detection system for critical infrastructures
-
IEEE
-
Linda, O, Vollmer, T, and Manic, M. Neural network based intrusion detection system for critical infrastructures. In Neural Networks, 2009. IJCNN2009. International Joint Conference on. IEEE, 2009.
-
(2009)
Neural Networks, 2009. IJCNN2009. International Joint Conference on
-
-
Linda, O.1
Vollmer, T.2
Manic, M.3
-
27
-
-
0002704818
-
A practical Bayesian framework for backpropagation networks
-
MacKay, D J C. A practical Bayesian framework for backpropagation networks. Neural computation, 4(3), 1992.
-
(1992)
Neural Computation
, vol.4
, Issue.3
-
-
MacKay, D.J.C.1
-
29
-
-
84924051598
-
Human-level control through deep reinforcement learning
-
Mnih, V, Kavukcuoglu, K, Silver, D, Rusu, A A, Veness, J, et al. Human-level control through deep reinforcement learning. Nature, 518(7540):529-533, 2015.
-
(2015)
Nature
, vol.518
, Issue.7540
, pp. 529-533
-
-
Mnih, V.1
Kavukcuoglu, K.2
Silver, D.3
Rusu, A.A.4
Veness, J.5
-
31
-
-
84894384066
-
Statistical errors
-
Nuzzo, Regina. Statistical errors. Nature, 506(13):150-152, 2014.
-
(2014)
Nature
, vol.506
, Issue.13
, pp. 150-152
-
-
Nuzzo, R.1
-
33
-
-
84919796093
-
Stochastic backpropagation and approximate inference in deep generative models
-
Rezende, D J, Mohamed, S, and Wierstra, D. Stochastic backpropagation and approximate inference in deep generative models. In ICML, 2014.
-
(2014)
ICML
-
-
Rezende, D.J.1
Mohamed, S.2
Wierstra, D.3
-
34
-
-
84998543836
-
-
Snoek, Jasper and authors. Spearmint, https ://github.com/JasperSnoek/spearmint, 2015.
-
(2015)
Spearmint
-
-
Snoek, J.1
-
35
-
-
84869201485
-
Practical Bayesian optimization of machine learning algorithms
-
Snoek, Jasper, Larochelle, Hugo, and Adams, Ryan P. Practical Bayesian optimization of machine learning algorithms. In Advances in neural information processing systems, pp. 2951-2959, 2012.
-
(2012)
Advances in Neural Information Processing Systems
, pp. 2951-2959
-
-
Snoek, J.1
Larochelle, H.2
Adams, R.P.3
-
36
-
-
84904163933
-
Dropout: A simple way to prevent neural networks from overfitting
-
Srivastava, N, Hinton, G, Krizhevsky, A, Sutskever, I, and Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research, 15(1), 2014.
-
(2014)
The Journal of Machine Learning Research
, vol.15
, Issue.1
-
-
Srivastava, N.1
Hinton, G.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
38
-
-
0001395850
-
On the likelihood that one unknown probability exceeds another in view of the evidence of two samples
-
Thompson, W R. On the likelihood that one unknown probability exceeds another in view of the evidence of two samples. Biometrika, 1933.
-
(1933)
Biometrika
-
-
Thompson, W.R.1
-
39
-
-
84919786928
-
Doubly stochastic variational Bayes for non-conjugate inference
-
Titsias, M and Lazaro-Gredilla, M. Doubly stochastic variational Bayes for non-conjugate inference. In ICML, 2014.
-
(2014)
ICML
-
-
Titsias, M.1
Lazaro-Gredilla, M.2
-
41
-
-
84897550107
-
Regularization of neural networks using dropconnect
-
Wan, L, Zeiler, M, Zhang, S, LeCun, Y, and Fergus, R. Regularization of neural networks using dropconnect. In ICML-13, 2013.
-
(2013)
ICML-13
-
-
Wan, L.1
Zeiler, M.2
Zhang, S.3
LeCun, Y.4
Fergus, R.5
-
42
-
-
84897495440
-
Fast dropout training
-
Wang, S and Manning, C. Fast dropout training. ICML, 2013.
-
(2013)
ICML
-
-
Wang, S.1
Manning, C.2
-
43
-
-
84898974226
-
Computing with infinite networks
-
Williams, C K I. Computing with infinite networks. NIPS, 1997.
-
(1997)
NIPS
-
-
Williams, C.K.I.1
|