메뉴 건너뛰기




Volumn 3, Issue , 2016, Pages 1651-1660

Dropout as a Bayesian approximation: Representing model uncertainty in deep learning

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; COMPLEX NETWORKS; INFERENCE ENGINES; LEARNING SYSTEMS; NETWORK ARCHITECTURE; REINFORCEMENT LEARNING; UNCERTAINTY ANALYSIS;

EID: 84998879817     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (2868)

References (43)
  • 2
    • 84903779279 scopus 로고    scopus 로고
    • Searching for exotic particles in high-energy physics with deep learning
    • Baldi, P, Sadowski, P, and Whiteson, D. Searching for exotic particles in high-energy physics with deep learning. Nature communications, 5, 2014.
    • (2014) Nature Communications , pp. 5
    • Baldi, P.1    Sadowski, P.2    Whiteson, D.3
  • 4
    • 84891864359 scopus 로고    scopus 로고
    • On the use of artificial neural networks in simulation-based manufacturing control
    • Bergmann, S, Stelzer, S, and Strassburger, S. On the use of artificial neural networks in simulation-based manufacturing control. Journal of Simulation, 8(1):76-90, 2014.
    • (2014) Journal of Simulation , vol.8 , Issue.1 , pp. 76-90
    • Bergmann, S.1    Stelzer, S.2    Strassburger, S.3
  • 6
    • 84867133463 scopus 로고    scopus 로고
    • Variational Bayesian inference with stochastic search
    • Blei, D M, Jordan, M I, and Paisley, J W. Variational Bayesian inference with stochastic search. In ICML, 2012.
    • (2012) ICML
    • Blei, D.M.1    Jordan, M.I.2    Paisley, J.W.3
  • 9
    • 84971640658 scopus 로고    scopus 로고
    • Chollet, François. Keras. https://github.com/fchollet/keras, 2015.
    • (2015) Keras
    • Chollet, F.1
  • 11
    • 84930631638 scopus 로고    scopus 로고
    • Probabilistic machine learning and artificial intelligence
    • Ghahramani, Z. Probabilistic machine learning and artificial intelligence. Nature, 521(7553), 2015.
    • (2015) Nature , vol.521 , Issue.7553
    • Ghahramani, Z.1
  • 12
    • 85162557101 scopus 로고    scopus 로고
    • Practical variational inference for neural networks
    • Graves, A. Practical variational inference for neural networks. In NIPS, 2011.
    • (2011) NIPS
    • Graves, A.1
  • 13
    • 84969909658 scopus 로고    scopus 로고
    • Probabilistic backpropagation for scalable learning of Bayesian neural networks
    • Hernandez-Lobato, J M and Adams, R P. Probabilistic backpropagation for scalable learning of bayesian neural networks. In ICML-15, 2015.
    • (2015) ICML-15
    • Hernandez-Lobato, J.M.1    Adams, R.P.2
  • 14
    • 84874675200 scopus 로고    scopus 로고
    • Experimental biology: Sometimes Bayesian statistics are better
    • Herzog, S and Ostwald, D. Experimental biology: Sometimes Bayesian statistics are better. Nature, 494, 2013.
    • (2013) Nature , pp. 494
    • Herzog, S.1    Ostwald, D.2
  • 22
    • 84883315249 scopus 로고    scopus 로고
    • Points of significance: Importance of being uncertain
    • Krzywinski, M and Altman, N. Points of significance: Importance of being uncertain. Nature methods, 10(9), 2013.
    • (2013) Nature Methods , vol.10 , Issue.9
    • Krzywinski, M.1    Altman, N.2
  • 25
    • 0032203257 scopus 로고    scopus 로고
    • Gradientbased learning applied to document recognition
    • LeCun, Y, Bottou, L, Bengio, Y, and Haffner, P. Gradientbased learning applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.
    • (1998) Proceedings of the IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 27
    • 0002704818 scopus 로고
    • A practical Bayesian framework for backpropagation networks
    • MacKay, D J C. A practical Bayesian framework for backpropagation networks. Neural computation, 4(3), 1992.
    • (1992) Neural Computation , vol.4 , Issue.3
    • MacKay, D.J.C.1
  • 29
    • 84924051598 scopus 로고    scopus 로고
    • Human-level control through deep reinforcement learning
    • Mnih, V, Kavukcuoglu, K, Silver, D, Rusu, A A, Veness, J, et al. Human-level control through deep reinforcement learning. Nature, 518(7540):529-533, 2015.
    • (2015) Nature , vol.518 , Issue.7540 , pp. 529-533
    • Mnih, V.1    Kavukcuoglu, K.2    Silver, D.3    Rusu, A.A.4    Veness, J.5
  • 31
    • 84894384066 scopus 로고    scopus 로고
    • Statistical errors
    • Nuzzo, Regina. Statistical errors. Nature, 506(13):150-152, 2014.
    • (2014) Nature , vol.506 , Issue.13 , pp. 150-152
    • Nuzzo, R.1
  • 33
    • 84919796093 scopus 로고    scopus 로고
    • Stochastic backpropagation and approximate inference in deep generative models
    • Rezende, D J, Mohamed, S, and Wierstra, D. Stochastic backpropagation and approximate inference in deep generative models. In ICML, 2014.
    • (2014) ICML
    • Rezende, D.J.1    Mohamed, S.2    Wierstra, D.3
  • 34
    • 84998543836 scopus 로고    scopus 로고
    • Snoek, Jasper and authors. Spearmint, https ://github.com/JasperSnoek/spearmint, 2015.
    • (2015) Spearmint
    • Snoek, J.1
  • 38
    • 0001395850 scopus 로고
    • On the likelihood that one unknown probability exceeds another in view of the evidence of two samples
    • Thompson, W R. On the likelihood that one unknown probability exceeds another in view of the evidence of two samples. Biometrika, 1933.
    • (1933) Biometrika
    • Thompson, W.R.1
  • 39
    • 84919786928 scopus 로고    scopus 로고
    • Doubly stochastic variational Bayes for non-conjugate inference
    • Titsias, M and Lazaro-Gredilla, M. Doubly stochastic variational Bayes for non-conjugate inference. In ICML, 2014.
    • (2014) ICML
    • Titsias, M.1    Lazaro-Gredilla, M.2
  • 42
    • 84897495440 scopus 로고    scopus 로고
    • Fast dropout training
    • Wang, S and Manning, C. Fast dropout training. ICML, 2013.
    • (2013) ICML
    • Wang, S.1    Manning, C.2
  • 43
    • 84898974226 scopus 로고    scopus 로고
    • Computing with infinite networks
    • Williams, C K I. Computing with infinite networks. NIPS, 1997.
    • (1997) NIPS
    • Williams, C.K.I.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.