-
3
-
-
84878919168
-
Stochastic variational inference
-
Matthew D. Hoffman, David M. Blei, Chong Wang, and John William Paisley. Stochastic variational inference. Journal of Machine Learning Research, 14(1):1303-1347, 2013.
-
(2013)
Journal of Machine Learning Research
, vol.14
, Issue.1
, pp. 1303-1347
-
-
Hoffman, M.D.1
Blei, D.M.2
Wang, C.3
Paisley, J.W.4
-
5
-
-
84954343597
-
-
arXiv:1412.4869
-
Andrew Gelman, Aki Vehtari, Pasi Jylnki, Christian Robert, Nicolas Chopin, and John P. Cunningham. Expectation propagation as a way of life. arXiv:1412.4869, 2014.
-
(2014)
Expectation Propagation as a Way of Life
-
-
Gelman, A.1
Vehtari, A.2
Jylnki, P.3
Robert, C.4
Chopin, N.5
Cunningham, J.P.6
-
6
-
-
84937917638
-
Distributed Bayesian posterior sampling via moment sharing
-
Minjie Xu, Balaji Lakshminarayanan, Yee Whye Teh, Jun. Zhu, and Bo Zhang. Distributed bayesian posterior sampling via moment sharing. In NIPS, 2014.
-
(2014)
NIPS
-
-
Xu, M.1
Lakshminarayanan, B.2
Teh, Y.W.3
Zhu, J.4
Zhang, B.5
-
7
-
-
0345978970
-
Expectation propagation for approximate Bayesian inference
-
Thomas P. Minka. Expectation propagation for approximate Bayesian inference. In Uncertainty in Artificial Intelligence, volume 17, pages 362-369, 2001.
-
(2001)
Uncertainty in Artificial Intelligence
, vol.17
, pp. 362-369
-
-
Minka, T.P.1
-
9
-
-
25444528713
-
Assessing approximate inference for binary Gaussian process classification
-
Malte Kuss and Carl Edward Rasmussen. Assessing approximate inference for binary gaussian process classification. The Journal of Machine Learning Research, 6:1679-1704, 2005.
-
(2005)
The Journal of Machine Learning Research
, vol.6
, pp. 1679-1704
-
-
Kuss, M.1
Rasmussen, C.E.2
-
14
-
-
0033225865
-
An introduction to variational methods for graphical models
-
Michael I Jordan, Zoubin Ghahramani, Tommi S Jaakkola, and Lawrence K Saul. An introduction to variational methods for graphical models. Machine learning, 37(2):183-233, 1999.
-
(1999)
Machine Learning
, vol.37
, Issue.2
, pp. 183-233
-
-
Jordan, M.I.1
Ghahramani, Z.2
Jaakkola, T.S.3
Saul, L.K.4
-
16
-
-
84923421297
-
Turner and Maneesh Sahani. Two problems with variational expectation maximisation for time-series models
-
D. Barber, T. Cemgil, and S. Chiappa, editors, chapter 5, Cambridge University Press
-
Richard E. Turner and Maneesh Sahani. Two problems with variational expectation maximisation for time-series models. In D. Barber, T. Cemgil, and S. Chiappa, editors, Bayesian Time series models, chapter 5, pages 109-130. Cambridge University Press, 2011.
-
(2011)
Bayesian Time Series Models
, pp. 109-130
-
-
Richard, E.1
-
17
-
-
85162342944
-
Probabilistic amplitude and frequency demodulation
-
J. Shawe-Taylor, R. S. Zemel, P. Bartlett, F. C. N. Pereira, and K. Q. Weinberger, editors
-
Richard E. Turner and Maneesh Sahani. Probabilistic amplitude and frequency demodulation. In J. Shawe-Taylor, R. S. Zemel, P. Bartlett, F. C. N. Pereira, and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 24, pages 981-989. 2011.
-
(2011)
Advances in Neural Information Processing Systems 24
, pp. 981-989
-
-
Turner, R.E.1
Sahani, M.2
-
24
-
-
33947651485
-
-
Technical Report MSR-TR-2005-173, Microsoft Research, Cambridge
-
Thomas Minka. Divergence measures and message passing. Technical Report MSR-TR-2005-173, Microsoft Research, Cambridge, 2005.
-
(2005)
Divergence Measures and Message Passing
-
-
Minka, T.1
-
25
-
-
84901687683
-
The no-u-turn sampler: Adaptively setting path lengths in hamiltonian monte carlo
-
Matthew D Hoffman and Andrew Gelman. The no-u-turn sampler: Adaptively setting path lengths in hamiltonian monte carlo. The Journal of Machine Learning Research, 15(1):1593-1623, 2014.
-
(2014)
The Journal of Machine Learning Research
, vol.15
, Issue.1
, pp. 1593-1623
-
-
Hoffman, M.D.1
Gelman, A.2
|