메뉴 건너뛰기




Volumn 2015-January, Issue , 2015, Pages 2323-2331

Stochastic expectation propagation

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; INFORMATION SCIENCE; ITERATIVE METHODS; STOCHASTIC SYSTEMS;

EID: 84965104740     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (113)

References (25)
  • 6
    • 84937917638 scopus 로고    scopus 로고
    • Distributed Bayesian posterior sampling via moment sharing
    • Minjie Xu, Balaji Lakshminarayanan, Yee Whye Teh, Jun. Zhu, and Bo Zhang. Distributed bayesian posterior sampling via moment sharing. In NIPS, 2014.
    • (2014) NIPS
    • Xu, M.1    Lakshminarayanan, B.2    Teh, Y.W.3    Zhu, J.4    Zhang, B.5
  • 7
    • 0345978970 scopus 로고    scopus 로고
    • Expectation propagation for approximate Bayesian inference
    • Thomas P. Minka. Expectation propagation for approximate Bayesian inference. In Uncertainty in Artificial Intelligence, volume 17, pages 362-369, 2001.
    • (2001) Uncertainty in Artificial Intelligence , vol.17 , pp. 362-369
    • Minka, T.P.1
  • 9
    • 25444528713 scopus 로고    scopus 로고
    • Assessing approximate inference for binary Gaussian process classification
    • Malte Kuss and Carl Edward Rasmussen. Assessing approximate inference for binary gaussian process classification. The Journal of Machine Learning Research, 6:1679-1704, 2005.
    • (2005) The Journal of Machine Learning Research , vol.6 , pp. 1679-1704
    • Kuss, M.1    Rasmussen, C.E.2
  • 12
  • 14
    • 0033225865 scopus 로고    scopus 로고
    • An introduction to variational methods for graphical models
    • Michael I Jordan, Zoubin Ghahramani, Tommi S Jaakkola, and Lawrence K Saul. An introduction to variational methods for graphical models. Machine learning, 37(2):183-233, 1999.
    • (1999) Machine Learning , vol.37 , Issue.2 , pp. 183-233
    • Jordan, M.I.1    Ghahramani, Z.2    Jaakkola, T.S.3    Saul, L.K.4
  • 16
    • 84923421297 scopus 로고    scopus 로고
    • Turner and Maneesh Sahani. Two problems with variational expectation maximisation for time-series models
    • D. Barber, T. Cemgil, and S. Chiappa, editors, chapter 5, Cambridge University Press
    • Richard E. Turner and Maneesh Sahani. Two problems with variational expectation maximisation for time-series models. In D. Barber, T. Cemgil, and S. Chiappa, editors, Bayesian Time series models, chapter 5, pages 109-130. Cambridge University Press, 2011.
    • (2011) Bayesian Time Series Models , pp. 109-130
    • Richard, E.1
  • 17
    • 85162342944 scopus 로고    scopus 로고
    • Probabilistic amplitude and frequency demodulation
    • J. Shawe-Taylor, R. S. Zemel, P. Bartlett, F. C. N. Pereira, and K. Q. Weinberger, editors
    • Richard E. Turner and Maneesh Sahani. Probabilistic amplitude and frequency demodulation. In J. Shawe-Taylor, R. S. Zemel, P. Bartlett, F. C. N. Pereira, and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 24, pages 981-989. 2011.
    • (2011) Advances in Neural Information Processing Systems 24 , pp. 981-989
    • Turner, R.E.1    Sahani, M.2
  • 24
    • 33947651485 scopus 로고    scopus 로고
    • Technical Report MSR-TR-2005-173, Microsoft Research, Cambridge
    • Thomas Minka. Divergence measures and message passing. Technical Report MSR-TR-2005-173, Microsoft Research, Cambridge, 2005.
    • (2005) Divergence Measures and Message Passing
    • Minka, T.1
  • 25
    • 84901687683 scopus 로고    scopus 로고
    • The no-u-turn sampler: Adaptively setting path lengths in hamiltonian monte carlo
    • Matthew D Hoffman and Andrew Gelman. The no-u-turn sampler: Adaptively setting path lengths in hamiltonian monte carlo. The Journal of Machine Learning Research, 15(1):1593-1623, 2014.
    • (2014) The Journal of Machine Learning Research , vol.15 , Issue.1 , pp. 1593-1623
    • Hoffman, M.D.1    Gelman, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.