-
1
-
-
85034831352
-
The most popular genes in the human genome
-
Dolgin E. The most popular genes in the human genome. Nature (2017) 551(7681):427-31. doi:10.1038/d41586-017-07291-9
-
(2017)
Nature
, vol.551
, Issue.7681
, pp. 427-431
-
-
Dolgin, E.1
-
2
-
-
85037162455
-
Deciphering p53 signaling in tumor suppression
-
Mello SS, Attardi LD. Deciphering p53 signaling in tumor suppression. Curr Opin Cell Biol (2017) 51:65-72. doi:10.1016/j.ceb.2017.11.005
-
(2017)
Curr Opin Cell Biol
, vol.51
, pp. 65-72
-
-
Mello, S.S.1
Attardi, L.D.2
-
3
-
-
84977558184
-
Regulation of cellular metabolism and hypoxia by p53
-
Humpton TJ, Vousden KH. Regulation of cellular metabolism and hypoxia by p53. Cold Spring Harb Perspect Med (2016) 6(7):211-30. doi:10.1101/cshperspect.a026146
-
(2016)
Cold Spring Harb Perspect Med
, vol.6
, Issue.7
, pp. 211-230
-
-
Humpton, T.J.1
Vousden, K.H.2
-
4
-
-
84861541814
-
Ferroptosis: an iron-dependent form of nonapoptotic cell death
-
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell (2012) 149(5):1060-72. doi:10.1016/j.cell.2012.03.042
-
(2012)
Cell
, vol.149
, Issue.5
, pp. 1060-1072
-
-
Dixon, S.J.1
Lemberg, K.M.2
Lamprecht, M.R.3
Skouta, R.4
Zaitsev, E.M.5
Gleason, C.E.6
-
5
-
-
84926387317
-
Ferroptosis as a p53-mediated activity during tumour suppression
-
Jiang L, Kon N, Li T, Wang SJ, Su T, Hibshoosh H, et al. Ferroptosis as a p53-mediated activity during tumour suppression. Nature (2015) 520(7545):57-62. doi:10.1038/nature14344
-
(2015)
Nature
, vol.520
, Issue.7545
, pp. 57-62
-
-
Jiang, L.1
Kon, N.2
Li, T.3
Wang, S.J.4
Su, T.5
Hibshoosh, H.6
-
6
-
-
79955795151
-
Distinct p53 transcriptional programs dictate acute DNA-damage responses and tumor suppression
-
Brady CA, Jiang D, Mello SS, Johnson TM, Jarvis LA, Kozak MM, et al. Distinct p53 transcriptional programs dictate acute DNA-damage responses and tumor suppression. Cell (2011) 145(4):571-83. doi:10.1016/j.cell.2011.03.035
-
(2011)
Cell
, vol.145
, Issue.4
, pp. 571-583
-
-
Brady, C.A.1
Jiang, D.2
Mello, S.S.3
Johnson, T.M.4
Jarvis, L.A.5
Kozak, M.M.6
-
7
-
-
33745149291
-
p53 regulates mitochondrial respiration
-
Matoba S, Kang JG, Patino WD, Wragg A, Boehm M, Gavrilova O, et al. p53 regulates mitochondrial respiration. Science (2006) 312(5780):1650-3. doi:10.1126/science.1126863
-
(2006)
Science
, vol.312
, Issue.5780
, pp. 1650-1653
-
-
Matoba, S.1
Kang, J.G.2
Patino, W.D.3
Wragg, A.4
Boehm, M.5
Gavrilova, O.6
-
8
-
-
77952212178
-
Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function
-
Hu W, Zhang C, Wu R, Sun Y, Levine A, Feng Z. Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function. Proc Natl Acad Sci U S A (2010) 107(16):7455-60. doi:10.1073/pnas.1001006107
-
(2010)
Proc Natl Acad Sci U S A
, vol.107
, Issue.16
, pp. 7455-7460
-
-
Hu, W.1
Zhang, C.2
Wu, R.3
Sun, Y.4
Levine, A.5
Feng, Z.6
-
9
-
-
1942506067
-
The tumor suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression
-
Schwartzenberg-Bar-Yoseph F, Armoni M, Karnieli E. The tumor suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression. Cancer Res (2004) 64(7):2627-33. doi:10.1158/0008-5472.CAN-03-0846
-
(2004)
Cancer Res
, vol.64
, Issue.7
, pp. 2627-2633
-
-
Schwartzenberg-Bar-Yoseph, F.1
Armoni, M.2
Karnieli, E.3
-
10
-
-
84906237532
-
Tumor suppressor p53 negatively regulates glycolysis stimulated by hypoxia through its target RRAD
-
Zhang C, Liu J, Wu R, Liang Y, Lin M, Liu J, et al. Tumor suppressor p53 negatively regulates glycolysis stimulated by hypoxia through its target RRAD. Oncotarget (2014) 5(14):5535-46. doi:10.18632/oncotarget.2137
-
(2014)
Oncotarget
, vol.5
, Issue.14
, pp. 5535-5546
-
-
Zhang, C.1
Liu, J.2
Wu, R.3
Liang, Y.4
Lin, M.5
Liu, J.6
-
11
-
-
33745918951
-
TIGAR, a p53-inducible regulator of glycolysis and apoptosis
-
Bensaad K, Tsuruta A, Selak MA, Vidal MN, Nakano K, Bartrons R, et al. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell (2006) 126(1):107-20. doi:10.1016/j.cell.2006.05.036
-
(2006)
Cell
, vol.126
, Issue.1
, pp. 107-120
-
-
Bensaad, K.1
Tsuruta, A.2
Selak, M.A.3
Vidal, M.N.4
Nakano, K.5
Bartrons, R.6
-
12
-
-
79952280229
-
p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase
-
Jiang P, Du W, Wang X, Mancuso A, Gao X, Wu M, et al. p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase. Nat Cell Biol (2011) 13(3):310-6. doi:10.1038/ncb2172
-
(2011)
Nat Cell Biol
, vol.13
, Issue.3
, pp. 310-316
-
-
Jiang, P.1
Du, W.2
Wang, X.3
Mancuso, A.4
Gao, X.5
Wu, M.6
-
13
-
-
85006001577
-
The role of the p53 tumor suppressor in metabolism and diabetes
-
Kung CP, Murphy ME. The role of the p53 tumor suppressor in metabolism and diabetes. J Endocrinol (2016) 231(2):R61-75. doi:10.1530/JOE-16-0324
-
(2016)
J Endocrinol
, vol.231
, Issue.2
, pp. R61-R75
-
-
Kung, C.P.1
Murphy, M.E.2
-
14
-
-
85035762472
-
Effect of mutant p53 proteins on glycolysis and mitochondrial metabolism
-
Eriksson M, Ambroise G, Ouchida AT, Lima Queiroz A, Smith D, Gimenez-Cassina A, et al. Effect of mutant p53 proteins on glycolysis and mitochondrial metabolism. Mol Cell Biol (2017) 37(24):1-17. doi:10.1128/MCB.00328-17
-
(2017)
Mol Cell Biol
, vol.37
, Issue.24
, pp. 1-17
-
-
Eriksson, M.1
Ambroise, G.2
Ouchida, A.T.3
Lima Queiroz, A.4
Smith, D.5
Gimenez-Cassina, A.6
-
15
-
-
84890695935
-
Tumour-associated mutant p53 drives the Warburg effect
-
Zhang C, Liu J, Liang Y, Wu R, Zhao Y, Hong X, et al. Tumour-associated mutant p53 drives the Warburg effect. Nat Commun (2013) 4:2935. doi:10.1038/ncomms3935
-
(2013)
Nat Commun
, vol.4
, pp. 2935
-
-
Zhang, C.1
Liu, J.2
Liang, Y.3
Wu, R.4
Zhao, Y.5
Hong, X.6
-
16
-
-
79952284127
-
Hallmarks of cancer: the next generation
-
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell (2011) 144(5):646-74. doi:10.1016/j.cell.2011.02.013
-
(2011)
Cell
, vol.144
, Issue.5
, pp. 646-674
-
-
Hanahan, D.1
Weinberg, R.A.2
-
17
-
-
84977743422
-
Metabolic interplay between glycolysis and mitochondrial oxidation: the reverse Warburg effect and its therapeutic implication
-
Lee M, Yoon JH. Metabolic interplay between glycolysis and mitochondrial oxidation: the reverse Warburg effect and its therapeutic implication. World J Biol Chem (2015) 6(3):148-61. doi:10.4331/wjbc.v6.i3.148
-
(2015)
World J Biol Chem
, vol.6
, Issue.3
, pp. 148-161
-
-
Lee, M.1
Yoon, J.H.2
-
18
-
-
0037372005
-
The codon 72 polymorphic variants of p53 have markedly different apoptotic potential
-
Dumont P, Leu JI, Della Pietra AC III, George DL, Murphy M. The codon 72 polymorphic variants of p53 have markedly different apoptotic potential. Nat Genet (2003) 33(3):357-65. doi:10.1038/ng1093
-
(2003)
Nat Genet
, vol.33
, Issue.3
, pp. 357-365
-
-
Dumont, P.1
Leu, J.I.2
Della Pietra, A.C.3
George, D.L.4
Murphy, M.5
-
19
-
-
84923861307
-
Identification of TRIML2, a novel p53 target, that enhances p53 SUMOylation and regulates the transactivation of proapoptotic genes
-
Kung CP, Khaku S, Jennis M, Zhou Y, Murphy ME. Identification of TRIML2, a novel p53 target, that enhances p53 SUMOylation and regulates the transactivation of proapoptotic genes. Mol Cancer Res (2015) 13(2):250-62. doi:10.1158/1541-7786.MCR-14-0385
-
(2015)
Mol Cancer Res
, vol.13
, Issue.2
, pp. 250-262
-
-
Kung, C.P.1
Khaku, S.2
Jennis, M.3
Zhou, Y.4
Murphy, M.E.5
-
20
-
-
79955591120
-
Tissue-specific apoptotic effects of the p53 codon 72 polymorphism in a mouse model
-
Azzam GA, Frank AK, Hollstein M, Murphy ME. Tissue-specific apoptotic effects of the p53 codon 72 polymorphism in a mouse model. Cell Cycle (2011) 10(9):1352-5. doi:10.4161/cc.10.9.15344
-
(2011)
Cell Cycle
, vol.10
, Issue.9
, pp. 1352-1355
-
-
Azzam, G.A.1
Frank, A.K.2
Hollstein, M.3
Murphy, M.E.4
-
21
-
-
80051975909
-
Genotypes of p53 codon 72 correlate with age at onset of type 1 diabetes in a sex-specific manner
-
Bitti ML, Saccucci P, Capasso F, Piccinini S, Angelini F, Rapini N, et al. Genotypes of p53 codon 72 correlate with age at onset of type 1 diabetes in a sex-specific manner. J Pediatr Endocrinol Metab (2011) 24(7-8):437-9. doi:10.1515/jpem.2011.058
-
(2011)
J Pediatr Endocrinol Metab
, vol.24
, Issue.7-8
, pp. 437-439
-
-
Bitti, M.L.1
Saccucci, P.2
Capasso, F.3
Piccinini, S.4
Angelini, F.5
Rapini, N.6
-
22
-
-
84879199886
-
The p53 codon 72 (Arg72Pro) polymorphism is associated with the degree of insulin resistance in type 2 diabetic subjects: a cross-sectional study
-
Bonfigli AR, Sirolla C, Testa R, Cucchi M, Spazzafumo L, Salvioli S, et al. The p53 codon 72 (Arg72Pro) polymorphism is associated with the degree of insulin resistance in type 2 diabetic subjects: a cross-sectional study. Acta Diabetol (2013) 50(3):429-36. doi:10.1007/s00592-012-0450-x
-
(2013)
Acta Diabetol
, vol.50
, Issue.3
, pp. 429-436
-
-
Bonfigli, A.R.1
Sirolla, C.2
Testa, R.3
Cucchi, M.4
Spazzafumo, L.5
Salvioli, S.6
-
23
-
-
84960387270
-
The P72R polymorphism of p53 predisposes to obesity and metabolic dysfunction
-
Kung CP, Leu JI, Basu S, Khaku S, Anokye-Danso F, Liu Q, et al. The P72R polymorphism of p53 predisposes to obesity and metabolic dysfunction. Cell Rep (2016) 14(10):2413-25. doi:10.1016/j.celrep.2016.02.037
-
(2016)
Cell Rep
, vol.14
, Issue.10
, pp. 2413-2425
-
-
Kung, C.P.1
Leu, J.I.2
Basu, S.3
Khaku, S.4
Anokye-Danso, F.5
Liu, Q.6
-
24
-
-
85020751745
-
The codon 72 polymorphism of p53 influences cell fate following nutrient deprivation
-
Kung CP, Liu Q, Murphy ME. The codon 72 polymorphism of p53 influences cell fate following nutrient deprivation. Cancer Biol Ther (2017) 18(7):484-91. doi:10.1080/15384047.2017.1323595
-
(2017)
Cancer Biol Ther
, vol.18
, Issue.7
, pp. 484-491
-
-
Kung, C.P.1
Liu, Q.2
Murphy, M.E.3
-
25
-
-
84887430076
-
Metabolic regulation by p53 family members
-
Berkers CR, Maddocks OD, Cheung EC, Mor I, Vousden KH. Metabolic regulation by p53 family members. Cell Metab (2013) 18(5):617-33. doi:10.1016/j.cmet.2013.06.019
-
(2013)
Cell Metab
, vol.18
, Issue.5
, pp. 617-633
-
-
Berkers, C.R.1
Maddocks, O.D.2
Cheung, E.C.3
Mor, I.4
Vousden, K.H.5
-
26
-
-
84874947662
-
Depletion of the novel p53-target gene carnitine palmitoyltransferase 1C delays tumor growth in the neurofibromatosis type I tumor model
-
Sanchez-Macedo N, Feng J, Faubert B, Chang N, Elia A, Rushing EJ, et al. Depletion of the novel p53-target gene carnitine palmitoyltransferase 1C delays tumor growth in the neurofibromatosis type I tumor model. Cell Death Differ (2013) 20(4):659-68. doi:10.1038/cdd.2012.168
-
(2013)
Cell Death Differ
, vol.20
, Issue.4
, pp. 659-668
-
-
Sanchez-Macedo, N.1
Feng, J.2
Faubert, B.3
Chang, N.4
Elia, A.5
Rushing, E.J.6
-
27
-
-
80555135898
-
ROS-mediated p53 induction of Lpin1 regulates fatty acid oxidation in response to nutritional stress
-
Assaily W, Rubinger DA, Wheaton K, Lin Y, Ma W, Xuan W, et al. ROS-mediated p53 induction of Lpin1 regulates fatty acid oxidation in response to nutritional stress. Mol Cell (2011) 44(3):491-501. doi:10.1016/j.molcel.2011.08.038
-
(2011)
Mol Cell
, vol.44
, Issue.3
, pp. 491-501
-
-
Assaily, W.1
Rubinger, D.A.2
Wheaton, K.3
Lin, Y.4
Ma, W.5
Xuan, W.6
-
28
-
-
33747853190
-
Lipin 1 is an inducible amplifier of the hepatic PGC-1alpha/PPARalpha regulatory pathway
-
Finck BN, Gropler MC, Chen Z, Leone TC, Croce MA, Harris TE, et al. Lipin 1 is an inducible amplifier of the hepatic PGC-1alpha/PPARalpha regulatory pathway. Cell Metab (2006) 4(3):199-210. doi:10.1016/j.cmet.2006.08.005
-
(2006)
Cell Metab
, vol.4
, Issue.3
, pp. 199-210
-
-
Finck, B.N.1
Gropler, M.C.2
Chen, Z.3
Leone, T.C.4
Croce, M.A.5
Harris, T.E.6
-
29
-
-
77649216053
-
EGFR signaling through an Akt-SREBP-1-dependent, rapamycin-resistant pathway sensitizes glioblastomas to antilipogenic therapy
-
Guo D, Prins RM, Dang J, Kuga D, Iwanami A, Soto H, et al. EGFR signaling through an Akt-SREBP-1-dependent, rapamycin-resistant pathway sensitizes glioblastomas to antilipogenic therapy. Sci Signal (2009) 2(101):ra82. doi:10.1126/scisignal.2000446
-
(2009)
Sci Signal
, vol.2
, Issue.101
-
-
Guo, D.1
Prins, R.M.2
Dang, J.3
Kuga, D.4
Iwanami, A.5
Soto, H.6
-
30
-
-
1542615071
-
Dysregulation of sterol response element-binding proteins and downstream effectors in prostate cancer during progression to androgen independence
-
Ettinger SL, Sobel R, Whitmore TG, Akbari M, Bradley DR, Gleave ME, et al. Dysregulation of sterol response element-binding proteins and downstream effectors in prostate cancer during progression to androgen independence. Cancer Res (2004) 64(6):2212-21. doi:10.1158/0008-5472.CAN-2148-2
-
(2004)
Cancer Res
, vol.64
, Issue.6
, pp. 2212-2221
-
-
Ettinger, S.L.1
Sobel, R.2
Whitmore, T.G.3
Akbari, M.4
Bradley, D.R.5
Gleave, M.E.6
-
31
-
-
85006091069
-
p53 as a regulator of lipid metabolism in cancer
-
Parrales A, Iwakuma T. p53 as a regulator of lipid metabolism in cancer. Int J Mol Sci (2016) 17(12):1-17. doi:10.3390/ijms17122074
-
(2016)
Int J Mol Sci
, vol.17
, Issue.12
, pp. 1-17
-
-
Parrales, A.1
Iwakuma, T.2
-
32
-
-
0038491561
-
p53 activation in adipocytes of obese mice
-
Yahagi N, Shimano H, Matsuzaka T, Najima Y, Sekiya M, Nakagawa Y, et al. p53 activation in adipocytes of obese mice. J Biol Chem (2003) 278(28):25395-400. doi:10.1074/jbc.M302364200
-
(2003)
J Biol Chem
, vol.278
, Issue.28
, pp. 25395-25400
-
-
Yahagi, N.1
Shimano, H.2
Matsuzaka, T.3
Najima, Y.4
Sekiya, M.5
Nakagawa, Y.6
-
33
-
-
84903627732
-
Gain-of-function mutant p53 promotes cell growth and cancer cell metabolism via inhibition of AMPK activation
-
Zhou G, Wang J, Zhao M, Xie TX, Tanaka N, Sano D, et al. Gain-of-function mutant p53 promotes cell growth and cancer cell metabolism via inhibition of AMPK activation. Mol Cell (2014) 54(6):960-74. doi:10.1016/j.molcel.2014.04.024
-
(2014)
Mol Cell
, vol.54
, Issue.6
, pp. 960-974
-
-
Zhou, G.1
Wang, J.2
Zhao, M.3
Xie, T.X.4
Tanaka, N.5
Sano, D.6
-
34
-
-
84862908644
-
Mutant p53 disrupts mammary tissue architecture via the mevalonate pathway
-
Freed-Pastor WA, Mizuno H, Zhao X, Langerod A, Moon SH, Rodriguez-Barrueco R, et al. Mutant p53 disrupts mammary tissue architecture via the mevalonate pathway. Cell (2012) 148(1-2):244-58. doi:10.1016/j.cell.2011.12.017
-
(2012)
Cell
, vol.148
, Issue.1-2
, pp. 244-258
-
-
Freed-Pastor, W.A.1
Mizuno, H.2
Zhao, X.3
Langerod, A.4
Moon, S.H.5
Rodriguez-Barrueco, R.6
-
35
-
-
77956989082
-
Dysregulation of the mevalonate pathway promotes transformation
-
Clendening JW, Pandyra A, Boutros PC, El Ghamrasni S, Khosravi F, Trentin GA, et al. Dysregulation of the mevalonate pathway promotes transformation. Proc Natl Acad Sci U S A (2010) 107(34):15051-6. doi:10.1073/pnas.0910258107
-
(2010)
Proc Natl Acad Sci U S A
, vol.107
, Issue.34
, pp. 15051-15056
-
-
Clendening, J.W.1
Pandyra, A.2
Boutros, P.C.3
El Ghamrasni, S.4
Khosravi, F.5
Trentin, G.A.6
-
36
-
-
0036087776
-
Phosphorylation-activity relationships of AMPK and acetyl-CoA carboxylase in muscle
-
Park SH, Gammon SR, Knippers JD, Paulsen SR, Rubink DS, Winder WW. Phosphorylation-activity relationships of AMPK and acetyl-CoA carboxylase in muscle. J Appl Physiol (1985) (2002) 92(6):2475-82. doi:10.1152/japplphysiol.00071.2002
-
(1985)
J Appl Physiol
, vol.92
, Issue.6
, pp. 2475-2482
-
-
Park, S.H.1
Gammon, S.R.2
Knippers, J.D.3
Paulsen, S.R.4
Rubink, D.S.5
Winder, W.W.6
-
37
-
-
79953755370
-
AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice
-
Li Y, Xu S, Mihaylova MM, Zheng B, Hou X, Jiang B, et al. AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab (2011) 13(4):376-88. doi:10.1016/j.cmet.2011.03.009
-
(2011)
Cell Metab
, vol.13
, Issue.4
, pp. 376-388
-
-
Li, Y.1
Xu, S.2
Mihaylova, M.M.3
Zheng, B.4
Hou, X.5
Jiang, B.6
-
38
-
-
77957009531
-
apoB and apobec1, two genes key to lipid metabolism, are transcriptionally regulated by p53
-
Ashur-Fabian O, Har-Zahav A, Shaish A, Wiener Amram H, Margalit O, Weizer-Stern O, et al. apoB and apobec1, two genes key to lipid metabolism, are transcriptionally regulated by p53. Cell Cycle (2010) 9(18):3761-70. doi:10.4161/cc.9.18.12993
-
(2010)
Cell Cycle
, vol.9
, Issue.18
, pp. 3761-3770
-
-
Ashur-Fabian, O.1
Har-Zahav, A.2
Shaish, A.3
Wiener Amram, H.4
Margalit, O.5
Weizer-Stern, O.6
-
39
-
-
84857372561
-
p53, a novel regulator of lipid metabolism pathways
-
Goldstein I, Ezra O, Rivlin N, Molchadsky A, Madar S, Goldfinger N, et al. p53, a novel regulator of lipid metabolism pathways. J Hepatol (2012) 56(3):656-62. doi:10.1016/j.jhep.2011.08.022
-
(2012)
J Hepatol
, vol.56
, Issue.3
, pp. 656-662
-
-
Goldstein, I.1
Ezra, O.2
Rivlin, N.3
Molchadsky, A.4
Madar, S.5
Goldfinger, N.6
-
40
-
-
84867142011
-
Regulation of lipid metabolism by p53-fighting two villains with one sword
-
Goldstein I, Rotter V. Regulation of lipid metabolism by p53-fighting two villains with one sword. Trends Endocrinol Metab (2012) 23(11):567-75. doi:10.1016/j.tem.2012.06.007
-
(2012)
Trends Endocrinol Metab
, vol.23
, Issue.11
, pp. 567-575
-
-
Goldstein, I.1
Rotter, V.2
-
41
-
-
84892685001
-
Regulation of ferroptotic cancer cell death by GPX4
-
Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, et al. Regulation of ferroptotic cancer cell death by GPX4. Cell (2014) 156(1-2):317-31. doi:10.1016/j.cell.2013.12.010
-
(2014)
Cell
, vol.156
, Issue.1-2
, pp. 317-331
-
-
Yang, W.S.1
SriRamaratnam, R.2
Welsch, M.E.3
Shimada, K.4
Skouta, R.5
Viswanathan, V.S.6
-
42
-
-
84983666736
-
Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis
-
Yang WS, Kim KJ, Gaschler MM, Patel M, Shchepinov MS, Stockwell BR. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc Natl Acad Sci U S A (2016) 113(34):E4966-75. doi:10.1073/pnas.1603244113
-
(2016)
Proc Natl Acad Sci U S A
, vol.113
, Issue.34
, pp. E4966-E4975
-
-
Yang, W.S.1
Kim, K.J.2
Gaschler, M.M.3
Patel, M.4
Shchepinov, M.S.5
Stockwell, B.R.6
-
43
-
-
84960429987
-
Emerging roles for lipids in non-apoptotic cell death
-
Magtanong L, Ko PJ, Dixon SJ. Emerging roles for lipids in non-apoptotic cell death. Cell Death Differ (2016) 23(7):1099-109. doi:10.1038/cdd.2016.25
-
(2016)
Cell Death Differ
, vol.23
, Issue.7
, pp. 1099-1109
-
-
Magtanong, L.1
Ko, P.J.2
Dixon, S.J.3
-
44
-
-
85030552365
-
Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease
-
Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell (2017) 171(2):273-85. doi:10.1016/j.cell.2017.09.021
-
(2017)
Cell
, vol.171
, Issue.2
, pp. 273-285
-
-
Stockwell, B.R.1
Friedmann Angeli, J.P.2
Bayir, H.3
Bush, A.I.4
Conrad, M.5
Dixon, S.J.6
-
45
-
-
84861973567
-
Tumor suppression in the absence of p53-mediated cell-cycle arrest, apoptosis, and senescence
-
Li T, Kon N, Jiang L, Tan M, Ludwig T, Zhao Y, et al. Tumor suppression in the absence of p53-mediated cell-cycle arrest, apoptosis, and senescence. Cell (2012) 149(6):1269-83. doi:10.1016/j.cell.2012.04.026
-
(2012)
Cell
, vol.149
, Issue.6
, pp. 1269-1283
-
-
Li, T.1
Kon, N.2
Jiang, L.3
Tan, M.4
Ludwig, T.5
Zhao, Y.6
-
46
-
-
85004093132
-
Acetylation is crucial for p53-mediated ferroptosis and tumor suppression
-
Wang SJ, Li D, Ou Y, Jiang L, Chen Y, Zhao Y, et al. Acetylation is crucial for p53-mediated ferroptosis and tumor suppression. Cell Rep (2016) 17(2):366-73. doi:10.1016/j.celrep.2016.09.022
-
(2016)
Cell Rep
, vol.17
, Issue.2
, pp. 366-373
-
-
Wang, S.J.1
Li, D.2
Ou, Y.3
Jiang, L.4
Chen, Y.5
Zhao, Y.6
-
47
-
-
84937525519
-
Glutaminolysis and transferrin regulate ferroptosis
-
Gao M, Monian P, Quadri N, Ramasamy R, Jiang X. Glutaminolysis and transferrin regulate ferroptosis. Mol Cell (2015) 59(2):298-308. doi:10.1016/j.molcel.2015.06.011
-
(2015)
Mol Cell
, vol.59
, Issue.2
, pp. 298-308
-
-
Gao, M.1
Monian, P.2
Quadri, N.3
Ramasamy, R.4
Jiang, X.5
-
48
-
-
84963814113
-
An African-specific polymorphism in the TP53 gene impairs p53 tumor suppressor function in a mouse model
-
Jennis M, Kung CP, Basu S, Budina-Kolomets A, Leu JI, Khaku S, et al. An African-specific polymorphism in the TP53 gene impairs p53 tumor suppressor function in a mouse model. Genes Dev (2016) 30(8):918-30. doi:10.1101/gad.275891.115
-
(2016)
Genes Dev
, vol.30
, Issue.8
, pp. 918-930
-
-
Jennis, M.1
Kung, C.P.2
Basu, S.3
Budina-Kolomets, A.4
Leu, J.I.5
Khaku, S.6
-
49
-
-
84994059408
-
Activation of SAT1 engages polyamine metabolism with p53-mediated ferroptotic responses
-
Ou Y, Wang SJ, Li D, Chu B, Gu W. Activation of SAT1 engages polyamine metabolism with p53-mediated ferroptotic responses. Proc Natl Acad Sci U S A (2016) 113(44):E6806-12. doi:10.1073/pnas.1607152113
-
(2016)
Proc Natl Acad Sci U S A
, vol.113
, Issue.44
, pp. E6806-E6812
-
-
Ou, Y.1
Wang, S.J.2
Li, D.3
Chu, B.4
Gu, W.5
-
50
-
-
85041647871
-
p53 suppresses metabolic stress-induced ferroptosis in cancer cells
-
Tarangelo A, Magtanong L, Bieging-Rolett KT, Li Y, Ye J, Attardi LD, et al. p53 suppresses metabolic stress-induced ferroptosis in cancer cells. Cell Rep (2018) 22(3):569-75. doi:10.1016/j.celrep.2017.12.077
-
(2018)
Cell Rep
, vol.22
, Issue.3
, pp. 569-575
-
-
Tarangelo, A.1
Magtanong, L.2
Bieging-Rolett, K.T.3
Li, Y.4
Ye, J.5
Attardi, L.D.6
-
51
-
-
85027880924
-
The tumor suppressor p53 limits ferroptosis by blocking DPP4 activity
-
Xie Y, Zhu S, Song X, Sun X, Fan Y, Liu J, et al. The tumor suppressor p53 limits ferroptosis by blocking DPP4 activity. Cell Rep (2017) 20(7):1692-704. doi:10.1016/j.celrep.2017.07.055
-
(2017)
Cell Rep
, vol.20
, Issue.7
, pp. 1692-1704
-
-
Xie, Y.1
Zhu, S.2
Song, X.3
Sun, X.4
Fan, Y.5
Liu, J.6
-
52
-
-
33845433364
-
Ser46 phosphorylation regulates p53-dependent apoptosis and replicative senescence
-
Feng L, Hollstein M, Xu Y. Ser46 phosphorylation regulates p53-dependent apoptosis and replicative senescence. Cell Cycle (2006) 5(23):2812-9. doi:10.4161/cc.5.23.3526
-
(2006)
Cell Cycle
, vol.5
, Issue.23
, pp. 2812-2819
-
-
Feng, L.1
Hollstein, M.2
Xu, Y.3
-
53
-
-
79952275158
-
The codon 72 polymorphism of p53 regulates interaction with NF-(kappa)B and transactivation of genes involved in immunity and inflammation
-
Frank AK, Leu JI, Zhou Y, Devarajan K, Nedelko T, Klein-Szanto A, et al. The codon 72 polymorphism of p53 regulates interaction with NF-(kappa)B and transactivation of genes involved in immunity and inflammation. Mol Cell Biol (2011) 31(6):1201-13. doi:10.1128/MCB.01136-10
-
(2011)
Mol Cell Biol
, vol.31
, Issue.6
, pp. 1201-1213
-
-
Frank, A.K.1
Leu, J.I.2
Zhou, Y.3
Devarajan, K.4
Nedelko, T.5
Klein-Szanto, A.6
-
54
-
-
0035905749
-
Knock-in mice with a chimeric human/murine p53 gene develop normally and show wild-type p53 responses to DNA damaging agents: a new biomedical research tool
-
Luo JL, Yang Q, Tong WM, Hergenhahn M, Wang ZQ, Hollstein M. Knock-in mice with a chimeric human/murine p53 gene develop normally and show wild-type p53 responses to DNA damaging agents: a new biomedical research tool. Oncogene (2001) 20(3):320-8. doi:10.1038/sj.onc.1204080
-
(2001)
Oncogene
, vol.20
, Issue.3
, pp. 320-328
-
-
Luo, J.L.1
Yang, Q.2
Tong, W.M.3
Hergenhahn, M.4
Wang, Z.Q.5
Hollstein, M.6
-
55
-
-
42549126097
-
Common tumour p53 mutations in immortalized cells from Hupki mice heterozygous at codon 72
-
Reinbold M, Luo JL, Nedelko T, Jerchow B, Murphy ME, Whibley C, et al. Common tumour p53 mutations in immortalized cells from Hupki mice heterozygous at codon 72. Oncogene (2008) 27(19):2788-94. doi:10.1038/sj.onc.1210932
-
(2008)
Oncogene
, vol.27
, Issue.19
, pp. 2788-2794
-
-
Reinbold, M.1
Luo, J.L.2
Nedelko, T.3
Jerchow, B.4
Murphy, M.E.5
Whibley, C.6
-
56
-
-
84952639010
-
Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells
-
Sun X, Ou Z, Chen R, Niu X, Chen D, Kang R, et al. Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology (2016) 63(1):173-84. doi:10.1002/hep.28251
-
(2016)
Hepatology
, vol.63
, Issue.1
, pp. 173-184
-
-
Sun, X.1
Ou, Z.2
Chen, R.3
Niu, X.4
Chen, D.5
Kang, R.6
-
57
-
-
85016394935
-
Inhibiting the system xC-/glutathione axis selectively targets cancers with mutant-p53 accumulation
-
Liu DS, Duong CP, Haupt S, Montgomery KG, House CM, Azar WJ, et al. Inhibiting the system xC-/glutathione axis selectively targets cancers with mutant-p53 accumulation. Nat Commun (2017) 8:14844. doi:10.1038/ncomms14844
-
(2017)
Nat Commun
, vol.8
, pp. 14844
-
-
Liu, D.S.1
Duong, C.P.2
Haupt, S.3
Montgomery, K.G.4
House, C.M.5
Azar, W.J.6
|