-
1
-
-
0027283368
-
p53 gene mutations and protein accumulation in human ovarian cancer
-
Kupryjanczyk J, Thor AD, Beauchamp R, Merritt V, Edgerton SM, Bell DA, Yandell DW. 1993. p53 gene mutations and protein accumulation in human ovarian cancer. Proc Natl Acad Sci U S A 90:4961-4965. https://doi.org/10.1073/pnas.90.11.4961
-
(1993)
Proc Natl Acad Sci U S A
, vol.90
, pp. 4961-4965
-
-
Kupryjanczyk, J.1
Thor, A.D.2
Beauchamp, R.3
Merritt, V.4
Edgerton, S.M.5
Bell, D.A.6
Yandell, D.W.7
-
2
-
-
10944236962
-
Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome
-
Olive KP, Tuveson DA, Ruhe ZC, Yin B, Willis NA, Bronson RT, Crowley D, Jacks T. 2004. Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome. Cell 119:847-860. https://doi.org/10.1016/j.cell.2004.11.004
-
(2004)
Cell
, vol.119
, pp. 847-860
-
-
Olive, K.P.1
Tuveson, D.A.2
Ruhe, Z.C.3
Yin, B.4
Willis, N.A.5
Bronson, R.T.6
Crowley, D.7
Jacks, T.8
-
3
-
-
0028118111
-
Tumor spectrum analysis in p53-mutant mice
-
Jacks T, Remington L, Williams BO, Schmitt EM, Halachmi S, Bronson RT, Weinberg RA. 1994. Tumor spectrum analysis in p53-mutant mice. Curr Biol 4:1-7
-
(1994)
Curr Biol
, vol.4
, pp. 1-7
-
-
Jacks, T.1
Remington, L.2
Williams, B.O.3
Schmitt, E.M.4
Halachmi, S.5
Bronson, R.T.6
Weinberg, R.A.7
-
4
-
-
77950521214
-
Mutant p53 gain-of-function in cancer
-
Oren M, Rotter V. 2010. Mutant p53 gain-of-function in cancer. Cold Spring Harb Perspect Biol 2:a001107. https://doi.org/10.1101/cshperspect.a001107
-
(2010)
Cold Spring Harb Perspect Biol
, vol.2
-
-
Oren, M.1
Rotter, V.2
-
5
-
-
72249100428
-
Mutant p53 drives invasion by promoting integrin recycling
-
Muller PA, Caswell PT, Doyle B, Iwanicki MP, Tan EH, Karim S, Lukashchuk N, Gillespie DA, Ludwig RL, Gosselin P, Cromer A, Brugge JS, Sansom OJ, Norman JC, Vousden KH. 2009. Mutant p53 drives invasion by promoting integrin recycling. Cell 139:1327-1341. https://doi.org/10.1016/j.cell.2009.11.026
-
(2009)
Cell
, vol.139
, pp. 1327-1341
-
-
Muller, P.A.1
Caswell, P.T.2
Doyle, B.3
Iwanicki, M.P.4
Tan, E.H.5
Karim, S.6
Lukashchuk, N.7
Gillespie, D.A.8
Ludwig, R.L.9
Gosselin, P.10
Cromer, A.11
Brugge, J.S.12
Sansom, O.J.13
Norman, J.C.14
Vousden, K.H.15
-
6
-
-
84896098750
-
Mutant p53 in cancer: new functions and therapeutic opportunities
-
Muller PA, Vousden KH. 2014. Mutant p53 in cancer: new functions and therapeutic opportunities. Cancer Cell 25:304-317. https://doi.org/10.1016/j.ccr.2014.01.021
-
(2014)
Cancer Cell
, vol.25
, pp. 304-317
-
-
Muller, P.A.1
Vousden, K.H.2
-
7
-
-
79955398591
-
Otto Warburg's contributions to current concepts of cancer metabolism
-
Koppenol WH, Bounds PL, Dang CV. 2011. Otto Warburg's contributions to current concepts of cancer metabolism. Nat Rev Cancer 11:325-337. https://doi.org/10.1038/nrc3038
-
(2011)
Nat Rev Cancer
, vol.11
, pp. 325-337
-
-
Koppenol, W.H.1
Bounds, P.L.2
Dang, C.V.3
-
8
-
-
84990224053
-
Fundamentals of cancer metabolism
-
DeBerardinis RJ, Chandel NS. 2016. Fundamentals of cancer metabolism. Sci Adv 2:e1600200. https://doi.org/10.1126/sciadv.1600200
-
(2016)
Sci Adv
, vol.2
-
-
DeBerardinis, R.J.1
Chandel, N.S.2
-
9
-
-
79952284127
-
Hallmarks of cancer: the next generation
-
Hanahan D, Weinberg RA. 2011. Hallmarks of cancer: the next generation. Cell 144:646-674. https://doi.org/10.1016/j.cell.2011.02.013
-
(2011)
Cell
, vol.144
, pp. 646-674
-
-
Hanahan, D.1
Weinberg, R.A.2
-
10
-
-
80054046029
-
Aerobic glycolysis: meeting the metabolic requirements of cell proliferation
-
Lunt SY, Vander Heiden MG. 2011. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol 27:441-464. https://doi.org/10.1146/annurev-cellbio-092910-154237
-
(2011)
Annu Rev Cell Dev Biol
, vol.27
, pp. 441-464
-
-
Lunt, S.Y.1
Vander Heiden, M.G.2
-
11
-
-
84935901131
-
Regulation of nucleotide metabolism by mutant p53 contributes to its gain-of-function activities
-
Kollareddy M, Dimitrova E, Vallabhaneni KC, Chan A, Le T, Chauhan KM, Carrero ZI, Ramakrishnan G, Watabe K, Haupt Y, Haupt S, Pochampally R, Boss GR, Romero DG, Radu CG, Martinez LA. 2015. Regulation of nucleotide metabolism by mutant p53 contributes to its gain-of-function activities. Nat Commun 6:7389. https://doi.org/10.1038/ncomms8389
-
(2015)
Nat Commun
, vol.6
, pp. 7389
-
-
Kollareddy, M.1
Dimitrova, E.2
Vallabhaneni, K.C.3
Chan, A.4
Le, T.5
Chauhan, K.M.6
Carrero, Z.I.7
Ramakrishnan, G.8
Watabe, K.9
Haupt, Y.10
Haupt, S.11
Pochampally, R.12
Boss, G.R.13
Romero, D.G.14
Radu, C.G.15
Martinez, L.A.16
-
12
-
-
84890695935
-
Tumour-associated mutant p53 drives the Warburg effect
-
Zhang C, Liu J, Liang Y, Wu R, Zhao Y, Hong X, Lin M, Yu H, Liu L, Levine AJ, Hu W, Feng Z. 2013. Tumour-associated mutant p53 drives the Warburg effect. Nat Commun 4:2935. https://doi.org/10.1038/ncomms3935
-
(2013)
Nat Commun
, vol.4
, pp. 2935
-
-
Zhang, C.1
Liu, J.2
Liang, Y.3
Wu, R.4
Zhao, Y.5
Hong, X.6
Lin, M.7
Yu, H.8
Liu, L.9
Levine, A.J.10
Hu, W.11
Feng, Z.12
-
13
-
-
84903627732
-
Gain-of-function mutant p53 promotes cell growth and cancer cell metabolism via inhibition of AMPK activation
-
Zhou G, Wang J, Zhao M, Xie TX, Tanaka N, Sano D, Patel AA, Ward AM, Sandulache VC, Jasser SA, Skinner HD, Fitzgerald AL, Osman AA, Wei Y, Xia X, Songyang Z, Mills GB, Hung MC, Caulin C, Liang J, Myers JN. 2014. Gain-of-function mutant p53 promotes cell growth and cancer cell metabolism via inhibition of AMPK activation. Mol Cell 54:960-974. https://doi.org/10.1016/j.molcel.2014.04.024
-
(2014)
Mol Cell
, vol.54
, pp. 960-974
-
-
Zhou, G.1
Wang, J.2
Zhao, M.3
Xie, T.X.4
Tanaka, N.5
Sano, D.6
Patel, A.A.7
Ward, A.M.8
Sandulache, V.C.9
Jasser, S.A.10
Skinner, H.D.11
Fitzgerald, A.L.12
Osman, A.A.13
Wei, Y.14
Xia, X.15
Songyang, Z.16
Mills, G.B.17
Hung, M.C.18
Caulin, C.19
Liang, J.20
Myers, J.N.21
more..
-
14
-
-
80053404569
-
Metabolic utilization of exogenous pyruvate by mutant p53 (R175H) human melanoma cells promotes survival under glucose depletion
-
Chavez-Perez VA, Strasberg-Rieber M, Rieber M. 2011. Metabolic utilization of exogenous pyruvate by mutant p53 (R175H) human melanoma cells promotes survival under glucose depletion. Cancer Biol Ther 12: 647-656. https://doi.org/10.4161/cbt.12.7.16566
-
(2011)
Cancer Biol Ther
, vol.12
, pp. 647-656
-
-
Chavez-Perez, V.A.1
Strasberg-Rieber, M.2
Rieber, M.3
-
15
-
-
84873532942
-
Mutant p53R273H attenuates the expression of phase 2 detoxifying enzymes and promotes the survival of cells with high levels of reactive oxygen species
-
Kalo E, Kogan-Sakin I, Solomon H, Bar-Nathan E, Shay M, Shetzer Y, Dekel E, Goldfinger N, Buganim Y, Stambolsky P, Goldstein I, Madar S, Rotter V. 2012. Mutant p53R273H attenuates the expression of phase 2 detoxifying enzymes and promotes the survival of cells with high levels of reactive oxygen species. J Cell Sci 125:5578-5586. https://doi.org/10.1242/jcs.106815
-
(2012)
J Cell Sci
, vol.125
, pp. 5578-5586
-
-
Kalo, E.1
Kogan-Sakin, I.2
Solomon, H.3
Bar-Nathan, E.4
Shay, M.5
Shetzer, Y.6
Dekel, E.7
Goldfinger, N.8
Buganim, Y.9
Stambolsky, P.10
Goldstein, I.11
Madar, S.12
Rotter, V.13
-
16
-
-
84862908644
-
Mutant p53 disrupts mammary tissue architecture via the mevalonate pathway
-
Freed-Pastor WA, Mizuno H, Zhao X, Langerod A, Moon SH, Rodriguez-Barrueco R, Barsotti A, Chicas A, Li W, Polotskaia A, Bissell MJ, Osborne TF, Tian B, Lowe SW, Silva JM, Borresen-Dale AL, Levine AJ, Bargonetti J, Prives C. 2012. Mutant p53 disrupts mammary tissue architecture via the mevalonate pathway. Cell 148:244-258. https://doi.org/10.1016/j.cell.2011.12.017
-
(2012)
Cell
, vol.148
, pp. 244-258
-
-
Freed-Pastor, W.A.1
Mizuno, H.2
Zhao, X.3
Langerod, A.4
Moon, S.H.5
Rodriguez-Barrueco, R.6
Barsotti, A.7
Chicas, A.8
Li, W.9
Polotskaia, A.10
Bissell, M.J.11
Osborne, T.F.12
Tian, B.13
Lowe, S.W.14
Silva, J.M.15
Borresen-Dale, A.L.16
Levine, A.J.17
Bargonetti, J.18
Prives, C.19
-
17
-
-
84880302677
-
Two hot spot mutant p53 mouse models display differential gain of function in tumorigenesis
-
Hanel W, Marchenko N, Xu S, Yu SX, Weng W, Moll U. 2013. Two hot spot mutant p53 mouse models display differential gain of function in tumorigenesis. Cell Death Differ 20:898-909. https://doi.org/10.1038/cdd.2013.17
-
(2013)
Cell Death Differ
, vol.20
, pp. 898-909
-
-
Hanel, W.1
Marchenko, N.2
Xu, S.3
Yu, S.X.4
Weng, W.5
Moll, U.6
-
18
-
-
13644260907
-
Gain of function of a p53 hot spot mutation in a mouse model of Li-Fraumeni syndrome
-
Lang GA, Iwakuma T, Suh YA, Liu G, Rao VA, Parant JM, Valentin-Vega YA, Terzian T, Caldwell LC, Strong LC, El-Naggar AK, Lozano G. 2004. Gain of function of a p53 hot spot mutation in a mouse model of Li-Fraumeni syndrome. Cell 119:861-872. https://doi.org/10.1016/j.cell.2004.11.006
-
(2004)
Cell
, vol.119
, pp. 861-872
-
-
Lang, G.A.1
Iwakuma, T.2
Suh, Y.A.3
Liu, G.4
Rao, V.A.5
Parant, J.M.6
Valentin-Vega, Y.A.7
Terzian, T.8
Caldwell, L.C.9
Strong, L.C.10
El-Naggar, A.K.11
Lozano, G.12
-
19
-
-
77149146794
-
A common gain of function of p53 cancer mutants in inducing genetic instability
-
Liu DP, Song H, Xu Y. 2010. A common gain of function of p53 cancer mutants in inducing genetic instability. Oncogene 29:949-956. https://doi.org/10.1038/onc.2009.376
-
(2010)
Oncogene
, vol.29
, pp. 949-956
-
-
Liu, D.P.1
Song, H.2
Xu, Y.3
-
20
-
-
34247329362
-
p53 gain-of-function cancer mutants induce genetic instability by inactivating ATM
-
Song H, Hollstein M, Xu Y. 2007. p53 gain-of-function cancer mutants induce genetic instability by inactivating ATM. Nat Cell Biol 9:573-580. https://doi.org/10.1038/ncb1571
-
(2007)
Nat Cell Biol
, vol.9
, pp. 573-580
-
-
Song, H.1
Hollstein, M.2
Xu, Y.3
-
21
-
-
85069238542
-
Mitochondria as biosynthetic factories for cancer proliferation
-
Ahn CS, Metallo CM. 2015. Mitochondria as biosynthetic factories for cancer proliferation. Cancer Metab 3:1. https://doi.org/10.1186/s40170-015-0128-2
-
(2015)
Cancer Metab
, vol.3
, pp. 1
-
-
Ahn, C.S.1
Metallo, C.M.2
-
23
-
-
79952283482
-
p53 regulates epithelial-mesenchymal transition and stem cell properties through modulating miRNAs
-
Chang CJ, Chao CH, Xia W, Yang JY, Xiong Y, Li CW, Yu WH, Rehman SK, Hsu JL, Lee HH, Liu M, Chen CT, Yu D, Hung MC. 2011. p53 regulates epithelial-mesenchymal transition and stem cell properties through modulating miRNAs. Nat Cell Biol 13:317-323. https://doi.org/10.1038/ncb2173
-
(2011)
Nat Cell Biol
, vol.13
, pp. 317-323
-
-
Chang, C.J.1
Chao, C.H.2
Xia, W.3
Yang, J.Y.4
Xiong, Y.5
Li, C.W.6
Yu, W.H.7
Rehman, S.K.8
Hsu, J.L.9
Lee, H.H.10
Liu, M.11
Chen, C.T.12
Yu, D.13
Hung, M.C.14
-
24
-
-
84855729906
-
A p53/miRNA-34 axis regulates Snail1-dependent cancer cell epithelialmesenchymal transition
-
Kim NH, Kim HS, Li XY, Lee I, Choi HS, Kang SE, Cha SY, Ryu JK, Yoon D, Fearon ER, Rowe RG, Lee S, Maher CA, Weiss SJ, Yook JI. 2011. A p53/miRNA-34 axis regulates Snail1-dependent cancer cell epithelialmesenchymal transition. J Cell Biol 195:417-433. https://doi.org/10.1083/jcb.201103097
-
(2011)
J Cell Biol
, vol.195
, pp. 417-433
-
-
Kim, N.H.1
Kim, H.S.2
Li, X.Y.3
Lee, I.4
Choi, H.S.5
Kang, S.E.6
Cha, S.Y.7
Ryu, J.K.8
Yoon, D.9
Fearon, E.R.10
Rowe, R.G.11
Lee, S.12
Maher, C.A.13
Weiss, S.J.14
Yook, J.I.15
-
25
-
-
79956143950
-
p53 regulates epithelial-mesenchymal transition through microRNAs targeting ZEB1 and ZEB2
-
Kim T, Veronese A, Pichiorri F, Lee TJ, Jeon YJ, Volinia S, Pineau P, Marchio A, Palatini J, Suh SS, Alder H, Liu CG, Dejean A, Croce CM. 2011. p53 regulates epithelial-mesenchymal transition through microRNAs targeting ZEB1 and ZEB2. J Exp Med 208:875-883. https://doi.org/10.1084/jem.20110235
-
(2011)
J Exp Med
, vol.208
, pp. 875-883
-
-
Kim, T.1
Veronese, A.2
Pichiorri, F.3
Lee, T.J.4
Jeon, Y.J.5
Volinia, S.6
Pineau, P.7
Marchio, A.8
Palatini, J.9
Suh, S.S.10
Alder, H.11
Liu, C.G.12
Dejean, A.13
Croce, C.M.14
-
26
-
-
77952298503
-
Mitochondrial regulation of cell death: processing of apoptosis-inducing factor (AIF)
-
Norberg E, Orrenius S, Zhivotovsky B. 2010. Mitochondrial regulation of cell death: processing of apoptosis-inducing factor (AIF). Biochem Biophys Res Commun 396:95-100. https://doi.org/10.1016/j.bbrc.2010.02.163
-
(2010)
Biochem Biophys Res Commun
, vol.396
, pp. 95-100
-
-
Norberg, E.1
Orrenius, S.2
Zhivotovsky, B.3
-
27
-
-
84867595989
-
Metabolic signatures uncover distinct targets in molecular subsets of diffuse large B cell lymphoma
-
Caro P, Kishan AU, Norberg E, Stanley IA, Chapuy B, Ficarro SB, Polak K, Tondera D, Gounarides J, Yin H, Zhou F, Green MR, Chen L, Monti S, Marto JA, Shipp MA, Danial NN. 2012. Metabolic signatures uncover distinct targets in molecular subsets of diffuse large B cell lymphoma. Cancer Cell 22:547-560. https://doi.org/10.1016/j.ccr.2012.08.014
-
(2012)
Cancer Cell
, vol.22
, pp. 547-560
-
-
Caro, P.1
Kishan, A.U.2
Norberg, E.3
Stanley, I.A.4
Chapuy, B.5
Ficarro, S.B.6
Polak, K.7
Tondera, D.8
Gounarides, J.9
Yin, H.10
Zhou, F.11
Green, M.R.12
Chen, L.13
Monti, S.14
Marto, J.A.15
Shipp, M.A.16
Danial, N.N.17
-
28
-
-
11144356558
-
p53-induced up-regulation of MnSOD and GPx but not catalase increases oxidative stress and apoptosis
-
Hussain SP, Amstad P, He P, Robles A, Lupold S, Kaneko I, Ichimiya M, Sengupta S, Mechanic L, Okamura S, Hofseth LJ, Moake M, Nagashima M, Forrester KS, Harris CC. 2004. p53-induced up-regulation of MnSOD and GPx but not catalase increases oxidative stress and apoptosis. Cancer Res 64:2350-2356. https://doi.org/10.1158/0008-5472.CAN-2287-2
-
(2004)
Cancer Res
, vol.64
, pp. 2350-2356
-
-
Hussain, S.P.1
Amstad, P.2
He, P.3
Robles, A.4
Lupold, S.5
Kaneko, I.6
Ichimiya, M.7
Sengupta, S.8
Mechanic, L.9
Okamura, S.10
Hofseth, L.J.11
Moake, M.12
Nagashima, M.13
Forrester, K.S.14
Harris, C.C.15
-
29
-
-
84955326448
-
The emerging hallmarks of cancer metabolism
-
Pavlova NN, Thompson CB. 2016. The emerging hallmarks of cancer metabolism. Cell Metab 23:27-47. https://doi.org/10.1016/j.cmet.2015.12.006
-
(2016)
Cell Metab
, vol.23
, pp. 27-47
-
-
Pavlova, N.N.1
Thompson, C.B.2
-
30
-
-
84920189113
-
Tumor suppressor p53 and its mutants in cancer metabolism
-
Liu J, Zhang C, Hu W, Feng Z. 2015. Tumor suppressor p53 and its mutants in cancer metabolism. Cancer Lett 356:197-203. https://doi.org/10.1016/j.canlet.2013.12.025
-
(2015)
Cancer Lett
, vol.356
, pp. 197-203
-
-
Liu, J.1
Zhang, C.2
Hu, W.3
Feng, Z.4
-
31
-
-
84874962987
-
Increased oxidative metabolism in the Li-Fraumeni syndrome
-
Wang PY, Ma W, Park JY, Celi FS, Arena R, Choi JW, Ali QA, Tripodi DJ, Zhuang J, Lago CU, Strong LC, Talagala SL, Balaban RS, Kang JG, Hwang PM. 2013. Increased oxidative metabolism in the Li-Fraumeni syndrome. N Engl J Med 368:1027-1032. https://doi.org/10.1056/NEJMoa1214091
-
(2013)
N Engl J Med
, vol.368
, pp. 1027-1032
-
-
Wang, P.Y.1
Ma, W.2
Park, J.Y.3
Celi, F.S.4
Arena, R.5
Choi, J.W.6
Ali, Q.A.7
Tripodi, D.J.8
Zhuang, J.9
Lago, C.U.10
Strong, L.C.11
Talagala, S.L.12
Balaban, R.S.13
Kang, J.G.14
Hwang, P.M.15
-
32
-
-
85008311686
-
Inhibiting mitochondrial respiration prevents cancer in a mouse model of Li-Fraumeni syndrome
-
Wang PY, Li J, Walcott FL, Kang JG, Starost MF, Talagala SL, Zhuang J, Park JH, Huffstutler RD, Bryla CM, Mai PL, Pollak M, Annunziata CM, Savage SA, Fojo AT, Hwang PM. 2017. Inhibiting mitochondrial respiration prevents cancer in a mouse model of Li-Fraumeni syndrome. J Clin Investig 127:132-136. https://doi.org/10.1172/JCI88668
-
(2017)
J Clin Investig
, vol.127
, pp. 132-136
-
-
Wang, P.Y.1
Li, J.2
Walcott, F.L.3
Kang, J.G.4
Starost, M.F.5
Talagala, S.L.6
Zhuang, J.7
Park, J.H.8
Huffstutler, R.D.9
Bryla, C.M.10
Mai, P.L.11
Pollak, M.12
Annunziata, C.M.13
Savage, S.A.14
Fojo, A.T.15
Hwang, P.M.16
-
33
-
-
84881061593
-
Chaperonemediated autophagy degrades mutant p53
-
Vakifahmetoglu-Norberg H, Kim M, Xia HG, Iwanicki MP, Ofengeim D, ColoffJL, Pan L, Ince TA, Kroemer G, Brugge JS, Yuan J. 2013. Chaperonemediated autophagy degrades mutant p53. Genes Dev 27:1718-1730. https://doi.org/10.1101/gad.220897.113
-
(2013)
Genes Dev
, vol.27
, pp. 1718-1730
-
-
Vakifahmetoglu-Norberg, H.1
Kim, M.2
Xia, H.G.3
Iwanicki, M.P.4
Ofengeim, D.5
Coloff, J.L.6
Pan, L.7
Ince, T.A.8
Kroemer, G.9
Brugge, J.S.10
Yuan, J.11
-
34
-
-
84962177627
-
Degradation of HK2 by chaperone-mediated autophagy promotes metabolic catastrophe and cell death
-
Xia HG, Najafov A, Geng J, Galan-Acosta L, Han X, Guo Y, Shan B, Zhang Y, Norberg E, Zhang T, Pan L, Liu J, ColoffJL, Ofengeim D, Zhu H, Wu K, Cai Y, Yates JR, Zhu Z, Yuan J, Vakifahmetoglu-Norberg H. 2015. Degradation of HK2 by chaperone-mediated autophagy promotes metabolic catastrophe and cell death. J Cell Biol 210:705-716. https://doi.org/10.1083/jcb.201503044
-
(2015)
J Cell Biol
, vol.210
, pp. 705-716
-
-
Xia, H.G.1
Najafov, A.2
Geng, J.3
Galan-Acosta, L.4
Han, X.5
Guo, Y.6
Shan, B.7
Zhang, Y.8
Norberg, E.9
Zhang, T.10
Pan, L.11
Liu, J.12
Coloff, J.L.13
Ofengeim, D.14
Zhu, H.15
Wu, K.16
Cai, Y.17
Yates, J.R.18
Zhu, Z.19
Yuan, J.20
Vakifahmetoglu-Norberg, H.21
more..
-
35
-
-
84937761692
-
Glucose metabolism provide distinct prosurvival benefits to nonsmall cell lung carcinomas
-
Wu R, Galan-Acosta L, Norberg E. 2015. Glucose metabolism provide distinct prosurvival benefits to nonsmall cell lung carcinomas. Biochem Biophys Res Commun 460:572-577. https://doi.org/10.1016/j.bbrc.2015.03.071
-
(2015)
Biochem Biophys Res Commun
, vol.460
, pp. 572-577
-
-
Wu, R.1
Galan-Acosta, L.2
Norberg, E.3
-
36
-
-
85020712800
-
PHGDH defines a metabolic subtype in lung adenocarcinomas with poor prognosis
-
Zhang B, Zheng A, Hydbring P, Ambroise G, Ouchida AT, Goiny M, Vakifahmetoglu-Norberg H, Norberg E. 2017. PHGDH defines a metabolic subtype in lung adenocarcinomas with poor prognosis. Cell Rep 19:2289-2303. https://doi.org/10.1016/j.celrep.2017.05.067
-
(2017)
Cell Rep
, vol.19
, pp. 2289-2303
-
-
Zhang, B.1
Zheng, A.2
Hydbring, P.3
Ambroise, G.4
Ouchida, A.T.5
Goiny, M.6
Vakifahmetoglu-Norberg, H.7
Norberg, E.8
-
37
-
-
84976615559
-
Thioredoxin reductase 1 suppresses adipocyte differentiation and insulin responsiveness
-
Peng X, Gimenez-Cassina A, Petrus P, Conrad M, Ryden M, Arner ES. 2016. Thioredoxin reductase 1 suppresses adipocyte differentiation and insulin responsiveness. Sci Rep 6:28080. https://doi.org/10.1038/srep28080
-
(2016)
Sci Rep
, vol.6
, pp. 28080
-
-
Peng, X.1
Gimenez-Cassina, A.2
Petrus, P.3
Conrad, M.4
Ryden, M.5
Arner, E.S.6
-
38
-
-
84870986907
-
Research methods: know when your numbers are significant
-
Vaux DL. 2012. Research methods: know when your numbers are significant. Nature 492:180-181
-
(2012)
Nature
, vol.492
, pp. 180-181
-
-
Vaux, D.L.1
-
39
-
-
33644772215
-
The clinical value of somatic TP53 gene mutations in 1,794 patients with breast cancer
-
Olivier M, Langerod A, Carrieri P, Bergh J, Klaar S, Eyfjord J, Theillet C, Rodriguez C, Lidereau R, Bieche I, Varley J, Bignon Y, Uhrhammer N, Winqvist R, Jukkola-Vuorinen A, Niederacher D, Kato S, Ishioka C, Hainaut P, Borresen-Dale AL. 2006. The clinical value of somatic TP53 gene mutations in 1,794 patients with breast cancer. Clin Cancer Res 12: 1157-1167
-
(2006)
Clin Cancer Res
, vol.12
, pp. 1157-1167
-
-
Olivier, M.1
Langerod, A.2
Carrieri, P.3
Bergh, J.4
Klaar, S.5
Eyfjord, J.6
Theillet, C.7
Rodriguez, C.8
Lidereau, R.9
Bieche, I.10
Varley, J.11
Bignon, Y.12
Uhrhammer, N.13
Winqvist, R.14
Jukkola-Vuorinen, A.15
Niederacher, D.16
Kato, S.17
Ishioka, C.18
Hainaut, P.19
Borresen-Dale, A.L.20
more..
|