-
1
-
-
84903738928
-
Reprogrammed metabolism of cancer cells as a potential therapeutic target
-
Keijer, J.; van Dartel, D.A. Reprogrammed metabolism of cancer cells as a potential therapeutic target. Curr. Pharm. Des. 2014, 20, 2580–2594.
-
(2014)
Curr. Pharm. Des.
, vol.20
, pp. 2580-2594
-
-
Keijer, J.1
Van Dartel, D.A.2
-
2
-
-
84962028922
-
Dysregulated metabolism contributes to oncogenesis
-
Hirschey, M.D.; DeBerardinis, R.J.; Diehl, A.M.; Drew, J.E.; Frezza, C.; Green, M.F.; Jones, L.W.; Ko, Y.H.; Le, A.; Lea, M.A. et al. Dysregulated metabolism contributes to oncogenesis. Semin. Cancer Biol. 2015, 35 (Suppl.), S129–S150.
-
(2015)
Semin. Cancer Biol.
, vol.35
, pp. S129-S150
-
-
Hirschey, M.D.1
Deberardinis, R.J.2
Diehl, A.M.3
Drew, J.E.4
Frezza, C.5
Green, M.F.6
Jones, L.W.7
Ko, Y.H.8
Le, A.9
Lea, M.A.10
-
3
-
-
85006768050
-
The metabolism of tumors in the body
-
Warburg, O.; Wind, F.; Negelein, E. The metabolism of tumors in the body. J. Gen. Physiol. 1927, 8, 519–530.
-
(1927)
J. Gen. Physiol.
, vol.8
, pp. 519-530
-
-
Warburg, O.1
Wind, F.2
Negelein, E.3
-
4
-
-
37449034854
-
Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis
-
DeBerardinis, R.J.; Mancuso, A.; Daikhin, E.; Nissim, I.; Yudkoff, M.; Wehrli, S.; Thompson, C.B. Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc. Natl. Acad. Sci. USA 2007, 104, 19345–19350.
-
(2007)
Proc. Natl. Acad. Sci. USA
, vol.104
, pp. 19345-19350
-
-
Deberardinis, R.J.1
Mancuso, A.2
Daikhin, E.3
Nissim, I.4
Yudkoff, M.5
Wehrli, S.6
Thompson, C.B.7
-
5
-
-
84863837081
-
Lipid metabolism in cancer
-
Santos, C.R.; Schulze, A. Lipid metabolism in cancer. FEBS J. 2012, 279, 2610–2623.
-
(2012)
FEBS J.
, vol.279
, pp. 2610-2623
-
-
Santos, C.R.1
-
8
-
-
85009204799
-
Mitochondria, cholesterol and cancer cell metabolism
-
Ribas, V.; Garcia-Ruiz, C.; Fernandez-Checa, J.C. Mitochondria, cholesterol and cancer cell metabolism. Clin. Transl. Med. 2016, 5, 22.
-
(2016)
Clin. Transl. Med.
, vol.5
, pp. 22
-
-
Ribas, V.1
Garcia-Ruiz, C.2
Fernandez-Checa, J.C.3
-
9
-
-
84881372774
-
Cellular fatty acid metabolism and cancer
-
Currie, E.; Schulze, A.; Zechner, R.; Walther, T.C.; Farese, R.V., Jr. Cellular fatty acid metabolism and cancer. Cell Metab. 2013, 18, 153–161.
-
(2013)
Cell Metab
, vol.18
, pp. 153-161
-
-
Currie, E.1
Schulze, A.2
Zechner, R.3
Walther, T.C.4
Farese, R.V.5
-
10
-
-
84903703282
-
Targeting SREBP-1-driven lipid metabolism to treat cancer
-
Guo, D.; Bell, E.H.; Mischel, P.; Chakravarti, A. Targeting SREBP-1-driven lipid metabolism to treat cancer. Curr. Pharm. Des. 2014, 20, 2619–2626.
-
(2014)
Curr. Pharm. Des.
, vol.20
, pp. 2619-2626
-
-
Guo, D.1
Bell, E.H.2
Mischel, P.3
Chakravarti, A.4
-
11
-
-
84862636275
-
Mutant p53: One name, many proteins
-
Freed-Pastor, W.A.; Prives, C. Mutant p53: One name, many proteins. Genes Dev. 2012, 26, 1268–1286.
-
(2012)
Genes Dev
, vol.26
, pp. 1268-1286
-
-
Freed-Pastor, W.A.1
Prives, C.2
-
12
-
-
80053039210
-
Mutations in the p53 tumor suppressor gene: Important milestones at the various steps of tumorigenesis
-
Rivlin, N.; Brosh, R.; Oren, M.; Rotter, V. Mutations in the p53 tumor suppressor gene: Important milestones at the various steps of tumorigenesis. Genes Cancer 2011, 2, 466–474.
-
(2011)
Genes Cancer
, vol.2
, pp. 466-474
-
-
Rivlin, N.1
Brosh, R.2
Oren, M.3
Rotter, V.4
-
13
-
-
84887430076
-
Metabolic regulation by p53 family members
-
Berkers, C.R.; Maddocks, O.D.; Cheung, E.C.; Mor, I.; Vousden, K.H. Metabolic regulation by p53 family members. Cell Metab. 2013, 18, 617–633.
-
(2013)
Cell Metab
, vol.18
, pp. 617-633
-
-
Berkers, C.R.1
Maddocks, O.D.2
Cheung, E.C.3
Mor, I.4
Vousden, K.H.5
-
14
-
-
84857372561
-
P53, a novel regulator of lipid metabolism pathways
-
Goldstein, I.; Ezra, O.; Rivlin, N.; Molchadsky, A.; Madar, S.; Goldfinger, N.; Rotter, V. p53, a novel regulator of lipid metabolism pathways. J. Hepatol. 2012, 56, 656–662.
-
(2012)
J. Hepatol.
, vol.56
, pp. 656-662
-
-
Goldstein, I.1
Ezra, O.2
Rivlin, N.3
Molchadsky, A.4
Madar, S.5
Goldfinger, N.6
Rotter, V.7
-
15
-
-
84920189113
-
Tumor suppressor p53 and its mutants in cancer metabolism
-
Liu, J.; Zhang, C.; Hu, W.; Feng, Z. Tumor suppressor p53 and its mutants in cancer metabolism. Cancer Lett. 2015, 356, 197–203.
-
(2015)
Cancer Lett
, vol.356
, pp. 197-203
-
-
Liu, J.1
Zhang, C.2
Hu, W.3
Feng, Z.4
-
16
-
-
79952280229
-
P53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase
-
Jiang, P.; Du, W.; Wang, X.; Mancuso, A.; Gao, X.; Wu, M.; Yang, X. p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase. Nat. Cell Biol. 2011, 13, 310–316.
-
(2011)
Nat. Cell Biol.
, vol.13
, pp. 310-316
-
-
Jiang, P.1
Du, W.2
Wang, X.3
Mancuso, A.4
Gao, X.5
Wu, M.6
Yang, X.7
-
17
-
-
33745918951
-
TIGAR, a p53-inducible regulator of glycolysis and apoptosis
-
Bensaad, K.; Tsuruta, A.; Selak, M.A.; Vidal, M.N.; Nakano, K.; Bartrons, R.; Gottlieb, E.; Vousden, K.H. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 2006, 126, 107–120.
-
(2006)
Cell
, vol.126
, pp. 107-120
-
-
Bensaad, K.1
Tsuruta, A.2
Selak, M.A.3
Vidal, M.N.4
Nakano, K.5
Bartrons, R.6
Gottlieb, E.7
Vousden, K.H.8
-
18
-
-
84890695935
-
Tumour-associated mutant p53 drives the Warburg effect
-
Zhang, C.; Liu, J.; Liang, Y.; Wu, R.; Zhao, Y.; Hong, X.; Lin, M.; Yu, H.; Liu, L.; Levine, A.J. et al. Tumour-associated mutant p53 drives the Warburg effect. Nat. Commun. 2013, 4, 2935.
-
(2013)
Nat. Commun.
, vol.4
, pp. 2935
-
-
Zhang, C.1
Liu, J.2
Liang, Y.3
Wu, R.4
Zhao, Y.5
Hong, X.6
Lin, M.7
Yu, H.8
Liu, L.9
Levine, A.J.10
-
19
-
-
84935901131
-
Regulation of nucleotide metabolism by mutant p53 contributes to its gain-of-function activities
-
Kollareddy, M.; Dimitrova, E.; Vallabhaneni, K.C.; Chan, A.; Le, T.; Chauhan, K.M.; Carrero, Z.I.; Ramakrishnan, G.; Watabe, K.; Haupt, Y. et al. Regulation of nucleotide metabolism by mutant p53 contributes to its gain-of-function activities. Nat. Commun. 2015, 6, 7389.
-
(2015)
Nat. Commun.
, vol.6
, pp. 7389
-
-
Kollareddy, M.1
Dimitrova, E.2
Vallabhaneni, K.C.3
Chan, A.4
Le, T.5
Chauhan, K.M.6
Carrero, Z.I.7
Ramakrishnan, G.8
Watabe, K.9
Haupt, Y.10
-
20
-
-
0038491561
-
p53 activation in adipocytes of obese mice
-
Yahagi, N.; Shimano, H.; Matsuzaka, T.; Najima, Y.; Sekiya, M.; Nakagawa, Y.; Ide, T.; Tomita, S.; Okazaki, H.; Tamura, Y. et al. p53 activation in adipocytes of obese mice. J. Biol. Chem. 2003, 278, 25395–25400.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 25395-25400
-
-
Yahagi, N.1
Shimano, H.2
Matsuzaka, T.3
Najima, Y.4
Sekiya, M.5
Nakagawa, Y.6
Ide, T.7
Tomita, S.8
Okazaki, H.9
-
21
-
-
10844236451
-
Nutrient availability regulates sirt1 through a forkhead-dependent pathway
-
Nemoto, S.; Fergusson, M.M.; Finkel, T. Nutrient availability regulates sirt1 through a forkhead-dependent pathway. Science 2004, 306, 2105–2108.
-
(2004)
Science
, vol.306
, pp. 2105-2108
-
-
Nemoto, S.1
Fergusson, M.M.2
Finkel, T.3
-
22
-
-
84875747902
-
A new role of p53 in regulating lipid metabolism
-
Wang, X.; Zhao, X.; Gao, X.; Mei, Y.; Wu, M. A new role of p53 in regulating lipid metabolism. J. Mol. Cell Biol. 2013, 5, 147–150.
-
(2013)
J. Mol. Cell Biol.
, vol.5
, pp. 147-150
-
-
Wang, X.1
Zhao, X.2
Gao, X.3
Mei, Y.4
Wu, M.5
-
23
-
-
84924569706
-
Analysis of p53 transactivation domain mutants reveals ACAD11 as a metabolic target important for p53 pro-survival function
-
Jiang, D.; LaGory, E.L.; Kenzelmann Broz, D.; Bieging, K.T.; Brady, C.A.; Link, N.; Abrams, J.M.; Giaccia, A.J.; Attardi, L.D. Analysis of p53 transactivation domain mutants reveals ACAD11 as a metabolic target important for p53 pro-survival function. Cell Rep. 2015, 10, 1096–1109.
-
(2015)
Cell Rep
, vol.10
, pp. 1096-1109
-
-
Jiang, D.1
Lagory, E.L.2
Kenzelmann Broz, D.3
Bieging, K.T.4
Brady, C.A.5
Link, N.6
Abrams, J.M.7
Giaccia, A.J.8
Attardi, L.D.9
-
24
-
-
80555135898
-
ROS-mediated p53 induction of lpin1 regulates fatty acid oxidation in response to nutritional stress
-
Assaily, W.; Rubinger, D.A.; Wheaton, K.; Lin, Y.; Ma, W.; Xuan, W.; Brown-Endres, L.; Tsuchihara, K.; Mak, T.W.; Benchimol, S. ROS-mediated p53 induction of lpin1 regulates fatty acid oxidation in response to nutritional stress. Mol. Cell 2011, 44, 491–501.
-
(2011)
Mol. Cell
, vol.44
, pp. 491-501
-
-
Assaily, W.1
Rubinger, D.A.2
Wheaton, K.3
Lin, Y.4
Ma, W.5
Xuan, W.6
Brown-Endres, L.7
Tsuchihara, K.8
Mak, T.W.9
Benchimol, S.10
-
25
-
-
84902131086
-
Ribosomal protein-Mdm2-p53 pathway coordinates nutrient stress with lipid metabolism by regulating mcd and promoting fatty acid oxidation
-
Liu, Y.; He, Y.; Jin, A.; Tikunov, A.P.; Zhou, L.; Tollini, L.A.; Leslie, P.; Kim, T.H.; Li, L.O.; Coleman, R.A. et al. Ribosomal protein-Mdm2-p53 pathway coordinates nutrient stress with lipid metabolism by regulating mcd and promoting fatty acid oxidation. Proc. Natl. Acad. Sci. USA 2014, 111, E2414–E2422.
-
(2014)
Proc. Natl. Acad. Sci. USA
, vol.111
, pp. E2414-E2422
-
-
Liu, Y.1
He, Y.2
Jin, A.3
Tikunov, A.P.4
Zhou, L.5
Tollini, L.A.6
Leslie, P.7
Kim, T.H.8
Li, L.O.9
Coleman, R.A.10
-
26
-
-
80051517670
-
P53-inducible DHRS3 is an endoplasmic reticulum protein associated with lipid droplet accumulation
-
Deisenroth, C.; Itahana, Y.; Tollini, L.; Jin, A.; Zhang, Y. p53-inducible DHRS3 is an endoplasmic reticulum protein associated with lipid droplet accumulation. J. Biol. Chem. 2011, 286, 28343–28356.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 28343-28356
-
-
Deisenroth, C.1
Itahana, Y.2
Tollini, L.3
Jin, A.4
Zhang, Y.5
-
27
-
-
77953601542
-
The retinal dehydrogenase/reductase retSDR1/DHRS3 gene is activated by p53 and p63 but not by mutants derived from tumors or EEC/ADULT malformation syndromes
-
Kirschner, R.D.; Rother, K.; Muller, G.A.; Engeland, K. The retinal dehydrogenase/reductase retSDR1/DHRS3 gene is activated by p53 and p63 but not by mutants derived from tumors or EEC/ADULT malformation syndromes. Cell Cycle 2010, 9, 2177–2188.
-
(2010)
Cell Cycle
, vol.9
, pp. 2177-2188
-
-
Kirschner, R.D.1
Rother, K.2
Muller, G.A.3
Engeland, K.4
-
28
-
-
0034728387
-
P53 regulates caveolin gene transcription, cell cholesterol, and growth by a novel mechanism
-
Bist, A.; Fielding, C.J.; Fielding, P.E. p53 regulates caveolin gene transcription, cell cholesterol, and growth by a novel mechanism. Biochemistry 2000, 39, 1966–1972.
-
(2000)
Biochemistry
, vol.39
, pp. 1966-1972
-
-
Bist, A.1
Fielding, C.J.2
Fielding, P.E.3
-
29
-
-
0028834278
-
Targeted disruption of the housekeeping gene encoding glucose 6-phosphate dehydrogenase (G6PD): G6PD is dispensable for pentose synthesis but essential for defense against oxidative stress
-
Pandolfi, P.P.; Sonati, F.; Rivi, R.; Mason, P.; Grosveld, F.; Luzzatto, L. Targeted disruption of the housekeeping gene encoding glucose 6-phosphate dehydrogenase (G6PD): G6PD is dispensable for pentose synthesis but essential for defense against oxidative stress. EMBO J. 1995, 14, 5209–5215.
-
(1995)
EMBO J
, vol.14
, pp. 5209-5215
-
-
Pandolfi, P.P.1
Sonati, F.2
Rivi, R.3
Mason, P.4
Grosveld, F.5
Luzzatto, L.6
-
30
-
-
84859787172
-
Glucose-6-phosphate dehydrogenase, NADPH, and cell survival
-
Stanton, R.C. Glucose-6-phosphate dehydrogenase, NADPH, and cell survival. IUBMB Life 2012, 64, 362–369.
-
(2012)
IUBMB Life
, vol.64
, pp. 362-369
-
-
Stanton, R.C.1
-
31
-
-
84943815265
-
Glucose-6-phosphate dehydrogenase expression is correlated with poor clinical prognosis in esophageal squamous cell carcinoma
-
Wang, X.; Li, X.; Zhang, X.; Fan, R.; Gu, H.; Shi, Y.; Liu, H. Glucose-6-phosphate dehydrogenase expression is correlated with poor clinical prognosis in esophageal squamous cell carcinoma. Eur. J. Surg. Oncol. 2015, 41, 1293–1299.
-
(2015)
Eur. J. Surg. Oncol.
, vol.41
, pp. 1293-1299
-
-
Wang, X.1
Li, X.2
Zhang, X.3
Fan, R.4
Gu, H.5
Shi, Y.6
Liu, H.7
-
32
-
-
10044271037
-
SREBP transcription factors: Master regulators of lipid homeostasis
-
Eberle, D.; Hegarty, B.; Bossard, P.; Ferre, P.; Foufelle, F. SREBP transcription factors: Master regulators of lipid homeostasis. Biochimie 2004, 86, 839–848.
-
(2004)
Biochimie
, vol.86
, pp. 839-848
-
-
Eberle, D.1
Hegarty, B.2
Bossard, P.3
Ferre, P.4
Foufelle, F.5
-
33
-
-
0032568557
-
Regulation of sterol regulatory element binding proteins in livers of fasted and refed mice
-
Horton, J.D.; Bashmakov, Y.; Shimomura, I.; Shimano, H. Regulation of sterol regulatory element binding proteins in livers of fasted and refed mice. Proc. Natl. Acad. Sci. USA 1998, 95, 5987–5992.
-
(1998)
Proc. Natl. Acad. Sci. USA
, vol.95
, pp. 5987-5992
-
-
Horton, J.D.1
Bashmakov, Y.2
Shimomura, I.3
Shimano, H.4
-
34
-
-
77649216053
-
EGFR signaling through an Akt-SREBP-1-dependent, rapamycin-resistant pathway sensitizes glioblastomas to antilipogenic therapy
-
Guo, D.; Prins, R.M.; Dang, J.; Kuga, D.; Iwanami, A.; Soto, H.; Lin, K.Y.; Huang, T.T.; Akhavan, D.; Hock, M.B. et al. EGFR signaling through an Akt-SREBP-1-dependent, rapamycin-resistant pathway sensitizes glioblastomas to antilipogenic therapy. Sci. Signal. 2009, 2.
-
(2009)
Sci. Signal
, vol.2
-
-
Guo, D.1
Prins, R.M.2
Dang, J.3
Kuga, D.4
Iwanami, A.5
Soto, H.6
Lin, K.Y.7
Huang, T.T.8
Akhavan, D.9
Hock, M.B.10
-
35
-
-
1542615071
-
Dysregulation of sterol response element-binding proteins and downstream effectors in prostate cancer during progression to androgen independence
-
Ettinger, S.L.; Sobel, R.; Whitmore, T.G.; Akbari, M.; Bradley, D.R.; Gleave, M.E.; Nelson, C.C. Dysregulation of sterol response element-binding proteins and downstream effectors in prostate cancer during progression to androgen independence. Cancer Res. 2004, 64, 2212–2221.
-
(2004)
Cancer Res
, vol.64
, pp. 2212-2221
-
-
Ettinger, S.L.1
Sobel, R.2
Whitmore, T.G.3
Akbari, M.4
Bradley, D.R.5
Gleave, M.E.6
Nelson, C.C.7
-
36
-
-
79953898189
-
Sirtuin 1 in lipid metabolism and obesity
-
Schug, T.T.; Li, X. Sirtuin 1 in lipid metabolism and obesity. Ann. Med. 2011, 43, 198–211.
-
(2011)
Ann. Med.
, vol.43
, pp. 198-211
-
-
Schug, T.T.1
Li, X.2
-
37
-
-
63449112017
-
Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation
-
Purushotham, A.; Schug, T.T.; Xu, Q.; Surapureddi, S.; Guo, X.; Li, X. Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metab. 2009, 9, 327–338.
-
(2009)
Cell Metab
, vol.9
, pp. 327-338
-
-
Purushotham, A.1
Schug, T.T.2
Xu, Q.3
Surapureddi, S.4
Guo, X.5
Li, X.6
-
38
-
-
34948883324
-
SIRT1 deacetylates and positively regulates the nuclear receptor LXR
-
Li, X.; Zhang, S.; Blander, G.; Tse, J.G.; Krieger, M.; Guarente, L. SIRT1 deacetylates and positively regulates the nuclear receptor LXR. Mol. Cell 2007, 28, 91–106.
-
(2007)
Mol. Cell
, vol.28
, pp. 91-106
-
-
Li, X.1
Zhang, S.2
Blander, G.3
Tse, J.G.4
Krieger, M.5
Guarente, L.6
-
39
-
-
77958595135
-
SIRT1 deacetylates and inhibits SREBP-1C activity in regulation of hepatic lipid metabolism
-
Ponugoti, B.; Kim, D.H.; Xiao, Z.; Smith, Z.; Miao, J.; Zang, M.; Wu, S.Y.; Chiang, C.M.; Veenstra, T.D.; Kemper, J.K. SIRT1 deacetylates and inhibits SREBP-1C activity in regulation of hepatic lipid metabolism. J. Biol. Chem. 2010, 285, 33959–33970.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 33959-33970
-
-
Ponugoti, B.1
Kim, D.H.2
Xiao, Z.3
Smith, Z.4
Miao, J.5
Zang, M.6
Wu, S.Y.7
Chiang, C.M.8
Veenstra, T.D.9
Kemper, J.K.10
-
40
-
-
77954488637
-
Conserved role of SIRT1 orthologs in fasting-dependent inhibition of the lipid/cholesterol regulator SREBP
-
Walker, A.K.; Yang, F.; Jiang, K.; Ji, J.Y.; Watts, J.L.; Purushotham, A.; Boss, O.; Hirsch, M.L.; Ribich, S.; Smith, J.J. et al. Conserved role of SIRT1 orthologs in fasting-dependent inhibition of the lipid/cholesterol regulator SREBP. Genes Dev. 2010, 24, 1403–1417.
-
(2010)
Genes Dev
, vol.24
, pp. 1403-1417
-
-
Walker, A.K.1
Yang, F.2
Jiang, K.3
Ji, J.Y.4
Watts, J.L.5
Purushotham, A.6
Boss, O.7
Hirsch, M.L.8
Ribich, S.9
Smith, J.J.10
-
41
-
-
12944276957
-
Aromatase-deficient (ArKO) mice have a phenotype of increased adiposity
-
Jones, M.E.; Thorburn, A.W.; Britt, K.L.; Hewitt, K.N.; Wreford, N.G.; Proietto, J.; Oz, O.K.; Leury, B.J.; Robertson, K.M.; Yao, S. et al. Aromatase-deficient (ArKO) mice have a phenotype of increased adiposity. Proc. Natl. Acad. Sci. USA 2000, 97, 12735–12740.
-
(2000)
Proc. Natl. Acad. Sci. USA
, vol.97
, pp. 12735-12740
-
-
Jones, M.E.1
Thorburn, A.W.2
Britt, K.L.3
Hewitt, K.N.4
Wreford, N.G.5
Proietto, J.6
Oz, O.K.7
Leury, B.J.8
Robertson, K.M.9
Yao, S.10
-
42
-
-
79952628393
-
Identification and characterization of new long chain acyl-CoA dehydrogenases
-
He, M.; Pei, Z.; Mohsen, A.W.; Watkins, P.; Murdoch, G.; van Veldhoven, P.P.; Ensenauer, R.; Vockley, J. Identification and characterization of new long chain acyl-CoA dehydrogenases. Mol. Genet. Metab. 2011, 102, 418–429.
-
(2011)
Mol. Genet. Metab.
, vol.102
, pp. 418-429
-
-
He, M.1
Pei, Z.2
Mohsen, A.W.3
Watkins, P.4
Murdoch, G.5
Van Veldhoven, P.P.6
Ensenauer, R.7
Vockley, J.8
-
43
-
-
0035163850
-
Lipodystrophy in the FLD mouse results from mutation of a new gene encoding a nuclear protein, lipin
-
Peterfy, M.; Phan, J.; Xu, P.; Reue, K. Lipodystrophy in the FLD mouse results from mutation of a new gene encoding a nuclear protein, lipin. Nat. Genet. 2001, 27, 121–124.
-
(2001)
Nat. Genet.
, vol.27
, pp. 121-124
-
-
Peterfy, M.1
Phan, J.2
Xu, P.3
Reue, K.4
-
44
-
-
33747853190
-
Lipin 1 is an inducible amplifier of the hepatic PGC-1α/PPARα regulatory pathway
-
Finck, B.N.; Gropler, M.C.; Chen, Z.; Leone, T.C.; Croce, M.A.; Harris, T.E.; Lawrence, J.C., Jr.; Kelly, D.P. Lipin 1 is an inducible amplifier of the hepatic PGC-1α/PPARα regulatory pathway. Cell Metab. 2006, 4, 199–210.
-
(2006)
Cell Metab
, vol.4
, pp. 199-210
-
-
Finck, B.N.1
Gropler, M.C.2
Chen, Z.3
Leone, T.C.4
Croce, M.A.5
Harris, T.E.6
Lawrence, J.C.7
Kelly, D.P.8
-
45
-
-
84878891625
-
SIRT4 coordinates the balance between lipid synthesis and catabolism by repressing malonyl CoA decarboxylase
-
Laurent, G.; German, N.J.; Saha, A.K.; de Boer, V.C.; Davies, M.; Koves, T.R.; Dephoure, N.; Fischer, F.; Boanca, G.; Vaitheesvaran, B. et al. SIRT4 coordinates the balance between lipid synthesis and catabolism by repressing malonyl CoA decarboxylase. Mol. Cell 2013, 50, 686–698.
-
(2013)
Mol. Cell
, vol.50
, pp. 686-698
-
-
Laurent, G.1
German, N.J.2
Saha, A.K.3
De Boer, V.C.4
Davies, M.5
Koves, T.R.6
Dephoure, N.7
Fischer, F.8
Boanca, G.9
Vaitheesvaran, B.10
-
46
-
-
33846617807
-
Cancer-associated mutations in the Mdm2 zinc finger domain disrupt ribosomal protein interaction and attenuate Mdm2-induced p53 degradation
-
Lindstrom, M.S.; Jin, A.; Deisenroth, C.; White Wolf, G.; Zhang, Y. Cancer-associated mutations in the Mdm2 zinc finger domain disrupt ribosomal protein interaction and attenuate Mdm2-induced p53 degradation. Mol. Cell. Biol. 2007, 27, 1056–1068.
-
(2007)
Mol. Cell. Biol.
, vol.27
, pp. 1056-1068
-
-
Lindstrom, M.S.1
Jin, A.2
Deisenroth, C.3
White Wolf, G.4
Zhang, Y.5
-
47
-
-
84865765909
-
DHRS3, a retinal reductase, is differentially regulated by retinoic acid and lipopolysaccharide-induced inflammation in THP-1 cells and rat liver
-
Zolfaghari, R.; Chen, Q.; Ross, A.C. DHRS3, a retinal reductase, is differentially regulated by retinoic acid and lipopolysaccharide-induced inflammation in THP-1 cells and rat liver. Am. J. Physiol. Gastrointest. Liver Physiol. 2012, 303, G578–G588.
-
(2012)
Am. J. Physiol. Gastrointest. Liver Physiol.
, vol.303
, pp. G578-G588
-
-
Zolfaghari, R.1
Chen, Q.2
Ross, A.C.3
-
48
-
-
84957937629
-
Characteristics and functions of lipid droplets and associated proteins in enterocytes
-
Beilstein, F.; Carriere, V.; Leturque, A.; Demignot, S. Characteristics and functions of lipid droplets and associated proteins in enterocytes. Exp. Cell Res. 2016, 340, 172–179.
-
(2016)
Exp. Cell Res.
, vol.340
, pp. 172-179
-
-
Beilstein, F.1
Carriere, V.2
Leturque, A.3
Demignot, S.4
-
49
-
-
0036830114
-
Multiple functions of caveolin-1
-
Liu, P.; Rudick, M.; Anderson, R.G. Multiple functions of caveolin-1. J. Biol. Chem. 2002, 277, 41295–41298.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 41295-41298
-
-
Liu, P.1
Rudick, M.2
Anderson, R.G.3
-
50
-
-
0028885614
-
VIP21/caveolin is a cholesterol-binding protein
-
Murata, M.; Peranen, J.; Schreiner, R.; Wieland, F.; Kurzchalia, T.V.; Simons, K. VIP21/caveolin is a cholesterol-binding protein. Proc. Natl. Acad. Sci. USA 1995, 92, 10339–10343.
-
(1995)
Proc. Natl. Acad. Sci. USA
, vol.92
, pp. 10339-10343
-
-
Murata, M.1
Peranen, J.2
Schreiner, R.3
Wieland, F.4
Kurzchalia, T.V.5
Simons, K.6
-
51
-
-
0033596725
-
Intracellular cholesterol transport in synchronized human skin fibroblasts
-
Fielding, C.J.; Bist, A.; Fielding, P.E. Intracellular cholesterol transport in synchronized human skin fibroblasts. Biochemistry 1999, 38, 2506–2513.
-
(1999)
Biochemistry
, vol.38
, pp. 2506-2513
-
-
Fielding, C.J.1
Bist, A.2
Fielding, P.E.3
-
52
-
-
84859797899
-
Caveolin-1 and prostate cancer progression
-
Freeman, M.R.; Yang, W.; di Vizio, D. Caveolin-1 and prostate cancer progression. Adv. Exp. Med. Biol. 2012, 729, 95–110.
-
(2012)
Adv. Exp. Med. Biol.
, vol.729
, pp. 95-110
-
-
Freeman, M.R.1
Yang, W.2
Di Vizio, D.3
-
53
-
-
84948140060
-
Caveolin-1 in breast cancer: Single molecule regulation of multiple key signaling pathways
-
Anwar, S.L.; Wahyono, A.; Aryandono, T.; Haryono, S.J. Caveolin-1 in breast cancer: Single molecule regulation of multiple key signaling pathways. Asian Pac. J. Cancer Prev. 2015, 16, 6803–6812.
-
(2015)
Asian Pac. J. Cancer Prev.
, vol.16
, pp. 6803-6812
-
-
Anwar, S.L.1
Wahyono, A.2
Aryandono, T.3
Haryono, S.J.4
-
54
-
-
84997355381
-
Caveolin-1 in the regulation of cell metabolism: A cancer perspective
-
Nwosu, Z.C.; Ebert, M.P.; Dooley, S.; Meyer, C. Caveolin-1 in the regulation of cell metabolism: A cancer perspective. Mol. Cancer 2016, 15, 71.
-
(2016)
Mol. Cancer
, vol.15
, pp. 71
-
-
Nwosu, Z.C.1
Ebert, M.P.2
Dooley, S.3
Meyer, C.4
-
55
-
-
79955054710
-
Gain of function of mutant p53 by coaggregation with multiple tumor suppressors
-
Xu, J.; Reumers, J.; Couceiro, J.R.; de Smet, F.; Gallardo, R.; Rudyak, S.; Cornelis, A.; Rozenski, J.; Zwolinska, A.; Marine, J.C. et al. Gain of function of mutant p53 by coaggregation with multiple tumor suppressors. Nat. Chem. Biol. 2011, 7, 285–295.
-
(2011)
Nat. Chem. Biol.
, vol.7
, pp. 285-295
-
-
Xu, J.1
Reumers, J.2
Couceiro, J.R.3
De Smet, F.4
Gallardo, R.5
Rudyak, S.6
Cornelis, A.7
Rozenski, J.8
Zwolinska, A.9
Marine, J.C.10
-
56
-
-
84859869155
-
Mutant p53 cooperates with ETS2 to promote etoposide resistance
-
Do, P.M.; Varanasi, L.; Fan, S.; Li, C.; Kubacka, I.; Newman, V.; Chauhan, K.; Daniels, S.R.; Boccetta, M.; Garrett, M.R. et al. Mutant p53 cooperates with ETS2 to promote etoposide resistance. Genes Dev. 2012, 26, 830–845.
-
(2012)
Genes Dev
, vol.26
, pp. 830-845
-
-
Do, P.M.1
Varanasi, L.2
Fan, S.3
Li, C.4
Kubacka, I.5
Newman, V.6
Chauhan, K.7
Daniels, S.R.8
Boccetta, M.9
Garrett, M.R.10
-
57
-
-
84976331500
-
Proteasome machinery is instrumental in a common gain-of-function program of the p53 missense mutants in cancer
-
Walerych, D.; Lisek, K.; Sommaggio, R.; Piazza, S.; Ciani, Y.; Dalla, E.; Rajkowska, K.; Gaweda-Walerych, K.; Ingallina, E.; Tonelli, C. et al. Proteasome machinery is instrumental in a common gain-of-function program of the p53 missense mutants in cancer. Nat. Chem. Biol. 2016, 18, 897–909.
-
(2016)
Nat. Chem. Biol.
, vol.18
, pp. 897-909
-
-
Walerych, D.1
Lisek, K.2
Sommaggio, R.3
Piazza, S.4
Ciani, Y.5
Dalla, E.6
Rajkowska, K.7
Gaweda-Walerych, K.8
Ingallina, E.9
Tonelli, C.10
-
58
-
-
84862908644
-
Mutant p53 disrupts mammary tissue architecture via the mevalonate pathway
-
Freed-Pastor, W.A.; Mizuno, H.; Zhao, X.; Langerod, A.; Moon, S.H.; Rodriguez-Barrueco, R.; Barsotti, A.; Chicas, A.; Li, W.; Polotskaia, A. et al. Mutant p53 disrupts mammary tissue architecture via the mevalonate pathway. Cell 2012, 148, 244–258.
-
(2012)
Cell
, vol.148
, pp. 244-258
-
-
Freed-Pastor, W.A.1
Mizuno, H.2
Zhao, X.3
Langerod, A.4
Moon, S.H.5
Rodriguez-Barrueco, R.6
Barsotti, A.7
Chicas, A.8
Li, W.9
Polotskaia, A.10
-
59
-
-
84903627732
-
Gain-of-function mutant p53 promotes cell growth and cancer cell metabolism via inhibition of AMPK activation
-
Zhou, G.; Wang, J.; Zhao, M.; Xie, T.X.; Tanaka, N.; Sano, D.; Patel, A.A.; Ward, A.M.; Sandulache, V.C.; Jasser, S.A. et al. Gain-of-function mutant p53 promotes cell growth and cancer cell metabolism via inhibition of AMPK activation. Mol. Cell 2014, 54, 960–974.
-
(2014)
Mol. Cell
, vol.54
, pp. 960-974
-
-
Zhou, G.1
Wang, J.2
Zhao, M.3
Xie, T.X.4
Tanaka, N.5
Sano, D.6
Patel, A.A.7
Ward, A.M.8
Sandulache, V.C.9
Jasser, S.A.10
-
60
-
-
84858782079
-
AMPK: A nutrient and energy sensor that maintains energy homeostasis
-
Hardie, D.G.; Ross, F.A.; Hawley, S.A. AMPK: A nutrient and energy sensor that maintains energy homeostasis. Nat. Rev. Mol. Cell Biol. 2012, 13, 251–262.
-
(2012)
Nat. Rev. Mol. Cell Biol.
, vol.13
, pp. 251-262
-
-
Hardie, D.G.1
Ross, F.A.2
Hawley, S.A.3
-
61
-
-
0036087776
-
Phosphorylation-activity relationships of AMPK and acetyl-CoA carboxylase in muscle
-
Park, S.H.; Gammon, S.R.; Knippers, J.D.; Paulsen, S.R.; Rubink, D.S.; Winder, W.W. Phosphorylation-activity relationships of AMPK and acetyl-CoA carboxylase in muscle. J. Appl. Physiol. 2002, 92, 2475–2482.
-
(2002)
J. Appl. Physiol.
, vol.92
, pp. 2475-2482
-
-
Park, S.H.1
Gammon, S.R.2
Knippers, J.D.3
Paulsen, S.R.4
Rubink, D.S.5
Winder, W.W.6
-
62
-
-
79953755370
-
AMPK phosphorylates and inhibits srebp activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice
-
Li, Y.; Xu, S.; Mihaylova, M.M.; Zheng, B.; Hou, X.; Jiang, B.; Park, O.; Luo, Z.; Lefai, E.; Shyy, J.Y. et al. AMPK phosphorylates and inhibits srebp activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab. 2011, 13, 376–388.
-
(2011)
Cell Metab
, vol.13
, pp. 376-388
-
-
Li, Y.1
Xu, S.2
Mihaylova, M.M.3
Zheng, B.4
Hou, X.5
Jiang, B.6
Park, O.7
Luo, Z.8
Lefai, E.9
Shyy, J.Y.10
-
63
-
-
84992425403
-
DNAJA1 controls the fate of misfolded mutant p53 through the mevalonate pathway
-
Parrales, A.; Ranjan, A.; Iyer, S.V.; Padhye, S.; Weir, S.J.; Roy, A.; Iwakuma, T. DNAJA1 controls the fate of misfolded mutant p53 through the mevalonate pathway. Nat. Cell Biol. 2016, 18, 1233–1243.
-
(2016)
Nat. Cell Biol.
, vol.18
, pp. 1233-1243
-
-
Parrales, A.1
Ranjan, A.2
Iyer, S.V.3
Padhye, S.4
Weir, S.J.5
Roy, A.6
Iwakuma, T.7
-
64
-
-
84958068650
-
Allele-specific silencing of mutant p53 attenuates dominant-negative and gain-of-function activities
-
Iyer, S.V.; Parrales, A.; Begani, P.; Narkar, A.; Adhikari, A.S.; Martinez, L.A.; Iwakuma, T. Allele-specific silencing of mutant p53 attenuates dominant-negative and gain-of-function activities. Oncotarget 2016, 7, 5401–5415.
-
(2016)
Oncotarget
, vol.7
, pp. 5401-5415
-
-
Iyer, S.V.1
Parrales, A.2
Begani, P.3
Narkar, A.4
Adhikari, A.S.5
Martinez, L.A.6
Iwakuma, T.7
-
65
-
-
84872811756
-
Silencing of mutant p53 by siRNA induces cell cycle arrest and apoptosis in human bladder cancer cells
-
Zhu, H.B.; Yang, K.; Xie, Y.Q.; Lin, Y.W.; Mao, Q.Q.; Xie, L.P. Silencing of mutant p53 by siRNA induces cell cycle arrest and apoptosis in human bladder cancer cells. World J. Surg. Oncol. 2013, 11, 22.
-
(2013)
World J. Surg. Oncol.
, vol.11
, pp. 22
-
-
Zhu, H.B.1
Yang, K.2
Xie, Y.Q.3
Lin, Y.W.4
Mao, Q.Q.5
Xie, L.P.6
-
66
-
-
30544452870
-
Mutant p53 gain of function: Reduction of tumor malignancy of human cancer cell lines through abrogation of mutant p53 expression
-
Bossi, G.; Lapi, E.; Strano, S.; Rinaldo, C.; Blandino, G.; Sacchi, A. Mutant p53 gain of function: Reduction of tumor malignancy of human cancer cell lines through abrogation of mutant p53 expression. Oncogene 2006, 25, 304–309.
-
(2006)
Oncogene
, vol.25
, pp. 304-309
-
-
Bossi, G.1
Lapi, E.2
Strano, S.3
Rinaldo, C.4
Blandino, G.5
Sacchi, A.6
-
67
-
-
70350654373
-
Mutant p53 mediates survival of breast cancer cells
-
Lim, L.Y.; Vidnovic, N.; Ellisen, L.W.; Leong, C.O. Mutant p53 mediates survival of breast cancer cells. Br. J. Cancer 2009, 101, 1606–1612.
-
(2009)
Br. J. Cancer
, vol.101
, pp. 1606-1612
-
-
Lim, L.Y.1
Vidnovic, N.2
Ellisen, L.W.3
Leong, C.O.4
-
68
-
-
84994772083
-
Statins are associated with reduced mortality in multiple myeloma
-
Sanfilippo, K.M.; Keller, J.; Gage, B.F.; Luo, S.; Wang, T.F.; Moskowitz, G.; Gumbel, J.; Blue, B.; O’Brian, K.; Carson, K.R. Statins are associated with reduced mortality in multiple myeloma. J. Clin. Oncol. 2016, 19, JCO683482.
-
(2016)
J. Clin. Oncol
, vol.19
-
-
Sanfilippo, K.M.1
Keller, J.2
Gage, B.F.3
Luo, S.4
Wang, T.F.5
Moskowitz, G.6
Gumbel, J.7
Blue, B.8
O’Brian, K.9
Carson, K.R.10
-
69
-
-
84897073920
-
Statins: Protectors or pretenders in prostate cancer
-
Moon, H.; Hill, M.M.; Roberts, M.J.; Gardiner, R.A.; Brown, A.J. Statins: Protectors or pretenders in prostate cancer? Trends Endocrinol. Metab. 2014, 25, 188–196.
-
(2014)
Trends Endocrinol. Metab.
, vol.25
, pp. 188-196
-
-
Moon, H.1
Hill, M.M.2
Roberts, M.J.3
Gardiner, R.A.4
Brown, A.J.5
-
70
-
-
84920688856
-
Statin use and risk for ovarian cancer: A Danish nationwide case-control study
-
Baandrup, L.; Dehlendorff, C.; Friis, S.; Olsen, J.H.; Kjaer, S.K. Statin use and risk for ovarian cancer: A Danish nationwide case-control study. Br. J. Cancer 2015, 112, 157–161.
-
(2015)
Br. J. Cancer
, vol.112
, pp. 157-161
-
-
Baandrup, L.1
Dehlendorff, C.2
Friis, S.3
Olsen, J.H.4
Kjaer, S.K.5
-
71
-
-
84988354894
-
Statins improve outcomes of nonsurgical curative treatments in hepatocellular carcinoma patients
-
Wu, L.L.; Hsieh, M.C.; Chow, J.M.; Liu, S.H.; Chang, C.L.; Wu, S.Y. Statins improve outcomes of nonsurgical curative treatments in hepatocellular carcinoma patients. Medicine 2016, 95, e4639.
-
(2016)
Medicine
, vol.95
-
-
Wu, L.L.1
Hsieh, M.C.2
Chow, J.M.3
Liu, S.H.4
Chang, C.L.5
Wu, S.Y.6
-
72
-
-
84987861813
-
The association between treatment for metabolic disorders and breast cancer characteristics
-
4658469
-
Goldvaser, H.; Rizel, S.; Hendler, D.; Neiman, V.; Shepshelovich, D.; Shochat, T.; Sulkes, A.; Brenner, B.; Yerushalmi, R. The association between treatment for metabolic disorders and breast cancer characteristics. Int. J. Endocrinol. 2016, 2016, 4658469.
-
(2016)
Int. J. Endocrinol
, vol.2016
-
-
Goldvaser, H.1
Rizel, S.2
Hendler, D.3
Neiman, V.4
Shepshelovich, D.5
Shochat, T.6
Sulkes, A.7
Brenner, B.8
Yerushalmi, R.9
-
73
-
-
84991687189
-
Inhibition of fatty acid synthesis induces apoptosis of human pancreatic cancer cells
-
Nishi, K.; Suzuki, K.; Sawamoto, J.; Tokizawa, Y.; Iwase, Y.; Yumita, N.; Ikeda, T. Inhibition of fatty acid synthesis induces apoptosis of human pancreatic cancer cells. Anticancer Res. 2016, 36, 4655–4660.
-
(2016)
Anticancer Res
, vol.36
, pp. 4655-4660
-
-
Nishi, K.1
Suzuki, K.2
Sawamoto, J.3
Tokizawa, Y.4
Iwase, Y.5
Yumita, N.6
Ikeda, T.7
-
74
-
-
84960172342
-
Inhibition of fatty acid oxidation as a therapy for MYC-overexpressing triple-negative breast cancer
-
Camarda, R.; Zhou, A.Y.; Kohnz, R.A.; Balakrishnan, S.; Mahieu, C.; Anderton, B.; Eyob, H.; Kajimura, S.; Tward, A.; Krings, G. et al. Inhibition of fatty acid oxidation as a therapy for MYC-overexpressing triple-negative breast cancer. Nat. Med. 2016, 22, 427–432.
-
(2016)
Nat. Med.
, vol.22
, pp. 427-432
-
-
Camarda, R.1
Zhou, A.Y.2
Kohnz, R.A.3
Balakrishnan, S.4
Mahieu, C.5
Anderton, B.6
Eyob, H.7
Kajimura, S.8
Tward, A.9
Krings, G.10
-
75
-
-
53149137486
-
Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice
-
Wang, R.H.; Sengupta, K.; Li, C.; Kim, H.S.; Cao, L.; Xiao, C.; Kim, S.; Xu, X.; Zheng, Y.; Chilton, B. et al. Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice. Cancer Cell 2008, 14, 312–323.
-
(2008)
Cancer Cell
, vol.14
, pp. 312-323
-
-
Wang, R.H.1
Sengupta, K.2
Li, C.3
Kim, H.S.4
Cao, L.5
Xiao, C.6
Kim, S.7
Xu, X.8
Zheng, Y.9
Chilton, B.10
-
76
-
-
44849096876
-
The SIRT1 deacetylase suppresses intestinal tumorigenesis and colon cancer growth
-
Firestein, R.; Blander, G.; Michan, S.; Oberdoerffer, P.; Ogino, S.; Campbell, J.; Bhimavarapu, A.; Luikenhuis, S.; de Cabo, R.; Fuchs, C. et al. The SIRT1 deacetylase suppresses intestinal tumorigenesis and colon cancer growth. PLoS ONE 2008, 3, e2020.
-
(2008)
Plos ONE
, vol.3
-
-
Firestein, R.1
Blander, G.2
Michan, S.3
Oberdoerffer, P.4
Ogino, S.5
Campbell, J.6
Bhimavarapu, A.7
Luikenhuis, S.8
De Cabo, R.9
Fuchs, C.10
-
77
-
-
0035015891
-
Elevated androgens and prolactin in aromatase-deficient mice cause enlargement, but not malignancy, of the prostate gland
-
McPherson, S.J.; Wang, H.; Jones, M.E.; Pedersen, J.; Iismaa, T.P.; Wreford, N.; Simpson, E.R.; Risbridger, G.P. Elevated androgens and prolactin in aromatase-deficient mice cause enlargement, but not malignancy, of the prostate gland. Endocrinology 2001, 142, 2458–2467.
-
(2001)
Endocrinology
, vol.142
, pp. 2458-2467
-
-
McPherson, S.J.1
Wang, H.2
Jones, M.E.3
Pedersen, J.4
Iismaa, T.P.5
Wreford, N.6
Simpson, E.R.7
Risbridger, G.P.8
-
78
-
-
0033836079
-
Overexpression of aromatase leads to development of testicular Leydig cell tumors: An in vivo model for hormone-mediated testicularcancer
-
Fowler, K.A.; Gill, K.; Kirma, N.; Dillehay, D.L.; Tekmal, R.R. Overexpression of aromatase leads to development of testicular Leydig cell tumors: An in vivo model for hormone-mediated testicularcancer. Am. J. Pathol. 2000, 156, 347–353.
-
(2000)
Am. J. Pathol.
, vol.156
, pp. 347-353
-
-
Fowler, K.A.1
Gill, K.2
Kirma, N.3
Dillehay, D.L.4
Tekmal, R.R.5
-
79
-
-
80051700986
-
Comparison of increased aromatase versus ERα in the generation of mammary hyperplasia and cancer
-
Diaz-Cruz, E.S.; Sugimoto, Y.; Gallicano, G.I.; Brueggemeier, R.W.; Furth, P.A. Comparison of increased aromatase versus ERα in the generation of mammary hyperplasia and cancer. Cancer Res. 2011, 71, 5477–5487.
-
(2011)
Cancer Res
, vol.71
, pp. 5477-5487
-
-
Diaz-Cruz, E.S.1
Sugimoto, Y.2
Gallicano, G.I.3
Brueggemeier, R.W.4
Furth, P.A.5
|