-
1
-
-
81055138684
-
Big Data: The Next Frontier for Innovation, Competition, and Productivity
-
Analytics
-
Manyika, J., Chui, M., Brown, B., et al. Big Data: The Next Frontier for Innovation, Competition, and Productivity. 2011, Analytics.
-
(2011)
-
-
Manyika, J.1
Chui, M.2
Brown, B.3
-
2
-
-
85130734369
-
Knowledge Discovery and Data Mining: Towards a Unifying Framework
-
Shapiro
-
Fayyad, U., Piatetskyshapiro, G., Smyth, P., Knowledge Discovery and Data Mining: Towards a Unifying Framework. 1996, Shapiro, 82–88.
-
(1996)
, pp. 82-88
-
-
Fayyad, U.1
Piatetskyshapiro, G.2
Smyth, P.3
-
3
-
-
84879070876
-
Data-based scheduling framework and adaptive dispatching rule of complex manufacturing systems
-
Li, L., Sun, Z., Ni, J., et al. Data-based scheduling framework and adaptive dispatching rule of complex manufacturing systems. Int. J. Adv. Manuf. Tech. 66:9 (2013), 1891–1905.
-
(2013)
Int. J. Adv. Manuf. Tech.
, vol.66
, Issue.9
, pp. 1891-1905
-
-
Li, L.1
Sun, Z.2
Ni, J.3
-
4
-
-
84990941766
-
Data Mining: Concepts and Techniques
-
third ed.
-
Han, J., Kamber, M., Pei, J., Data Mining: Concepts and Techniques. third ed., 2011.
-
(2011)
-
-
Han, J.1
Kamber, M.2
Pei, J.3
-
5
-
-
0003836690
-
Building the Data Warehouse
-
third ed.
-
Inmon, W.H., Building the Data Warehouse. third ed., 2002.
-
(2002)
-
-
Inmon, W.H.1
-
6
-
-
0027621699
-
Mining association rules between sets of items in large databases
-
Agrawal, R., Imielinski, T., Swami, A.N., Mining association rules between sets of items in large databases. ACM SIGMOD International Conference on Management of Data, Washington D.C., vol. 22 (2), 1993, 207–216.
-
(1993)
ACM SIGMOD International Conference on Management of Data, Washington D.C.
, vol.vol. 22 2)
, pp. 207-216
-
-
Agrawal, R.1
Imielinski, T.2
Swami, A.N.3
-
7
-
-
0005106921
-
Mining Sequential Patterns
-
IEEE Computer Society
-
Agrawal, R., Srikant, R., Mining Sequential Patterns. 1995, IEEE Computer Society.
-
(1995)
-
-
Agrawal, R.1
Srikant, R.2
-
8
-
-
84925290531
-
Application of local clustering organization to reactive job-shop scheduling
-
Tamura, Y., Iizuka, H., Yamamoto, M., et al. Application of local clustering organization to reactive job-shop scheduling. Soft Comput. 19:4 (2015), 891–899.
-
(2015)
Soft Comput.
, vol.19
, Issue.4
, pp. 891-899
-
-
Tamura, Y.1
Iizuka, H.2
Yamamoto, M.3
-
9
-
-
84881500606
-
Dispatching rule selection with Gaussian processes
-
Heger, J., Hildebrandt, T., Scholz-Reiter, B., Dispatching rule selection with Gaussian processes. Central Eur. J. Oper. Res. 23:1 (2015), 235–249.
-
(2015)
Central Eur. J. Oper. Res.
, vol.23
, Issue.1
, pp. 235-249
-
-
Heger, J.1
Hildebrandt, T.2
Scholz-Reiter, B.3
-
10
-
-
84962494026
-
Fast scheduling of semiconductor manufacturing facilities using case-based reasoning
-
Lim, J., Chae, M.J., Yang, Y., et al. Fast scheduling of semiconductor manufacturing facilities using case-based reasoning. IEEE Trans. Semicond. Manuf. 29:1 (2016), 22–32.
-
(2016)
IEEE Trans. Semicond. Manuf.
, vol.29
, Issue.1
, pp. 22-32
-
-
Lim, J.1
Chae, M.J.2
Yang, Y.3
-
11
-
-
77957790861
-
Learning effective new single machine dispatching rules from optimal scheduling data
-
Olafsson, S., Li, X., Learning effective new single machine dispatching rules from optimal scheduling data. Int. J. Prod. Econ. 128:1 (2010), 118–126.
-
(2010)
Int. J. Prod. Econ.
, vol.128
, Issue.1
, pp. 118-126
-
-
Olafsson, S.1
Li, X.2
-
12
-
-
84864772150
-
Data mining based job dispatching using hybrid simulation-optimization approach for shop scheduling problem
-
Shahzad, A., Mebarki, N., Data mining based job dispatching using hybrid simulation-optimization approach for shop scheduling problem. Eng. Appl. Artif. Intell. 25:6 (2012), 1173–1181.
-
(2012)
Eng. Appl. Artif. Intell.
, vol.25
, Issue.6
, pp. 1173-1181
-
-
Shahzad, A.1
Mebarki, N.2
-
13
-
-
78349250220
-
Real time selection of scheduling rules and knowledge extraction via dynamically controlled data mining
-
Metan, G., Sabuncuoglu, I., Pierreval, H., Real time selection of scheduling rules and knowledge extraction via dynamically controlled data mining. Int. J. Prod. Res. 48:23 (2010), 6909–6938.
-
(2010)
Int. J. Prod. Res.
, vol.48
, Issue.23
, pp. 6909-6938
-
-
Metan, G.1
Sabuncuoglu, I.2
Pierreval, H.3
-
14
-
-
80053615218
-
A hybrid computer simulation-artificial neural network algorithm for optimisation of dispatching rule selection in stochastic job shop scheduling problems
-
Azadeh, A., Negahban, A., Moghaddam, M., A hybrid computer simulation-artificial neural network algorithm for optimisation of dispatching rule selection in stochastic job shop scheduling problems. Int. J. Prod. Res. 50:2 (2012), 551–566.
-
(2012)
Int. J. Prod. Res.
, vol.50
, Issue.2
, pp. 551-566
-
-
Azadeh, A.1
Negahban, A.2
Moghaddam, M.3
-
15
-
-
77951545828
-
Sequential Monte Carlo-based fidelity selection in dynamic-data-driven adaptive multi-scale simulations (DDDAMmemetS)
-
Celik, N., Son, Y.J., Sequential Monte Carlo-based fidelity selection in dynamic-data-driven adaptive multi-scale simulations (DDDAMmemetS). IEEE Simulation Conference, 2009, 2281–2293.
-
(2009)
IEEE Simulation Conference
, pp. 2281-2293
-
-
Celik, N.1
Son, Y.J.2
-
16
-
-
84965050253
-
Hierarchical models for the spatial–temporal carbon nanotube height variations
-
Tao, J., Wang, K., Li, B., et al. Hierarchical models for the spatial–temporal carbon nanotube height variations. Int. J. Prod. Res. 54:21 (2016), 1–20.
-
(2016)
Int. J. Prod. Res.
, vol.54
, Issue.21
, pp. 1-20
-
-
Tao, J.1
Wang, K.2
Li, B.3
-
17
-
-
74549217842
-
Recursive parameter estimation for categorical process control
-
Wang, K., Tsung, F., Recursive parameter estimation for categorical process control. Int. J. Prod. Res. 48:5 (2010), 1381–1394.
-
(2010)
Int. J. Prod. Res.
, vol.48
, Issue.5
, pp. 1381-1394
-
-
Wang, K.1
Tsung, F.2
-
18
-
-
84932196810
-
Engineering model-based Bayesian monitoring of ramp-up phase of multistage manufacturing process
-
Du, S., Yao, X., Huang, D., Engineering model-based Bayesian monitoring of ramp-up phase of multistage manufacturing process. Int. J. Prod. Res. 53:15 (2015), 4594–4613.
-
(2015)
Int. J. Prod. Res.
, vol.53
, Issue.15
, pp. 4594-4613
-
-
Du, S.1
Yao, X.2
Huang, D.3
-
19
-
-
84938802905
-
Fault detection using human–machine co-construct intelligence in semiconductor manufacturing processes
-
Ranjit, M., Gazula, H., Hsiang, S.M., et al. Fault detection using human–machine co-construct intelligence in semiconductor manufacturing processes. IEEE Trans. Semicond. Manuf. 28:3 (2015), 297–305.
-
(2015)
IEEE Trans. Semicond. Manuf.
, vol.28
, Issue.3
, pp. 297-305
-
-
Ranjit, M.1
Gazula, H.2
Hsiang, S.M.3
-
20
-
-
84950282243
-
Bead modelling and implementation of adaptive MAT path in wire and arc additive manufacturing
-
Ding, D., Pan, Z., Cuiuri, D., et al. Bead modelling and implementation of adaptive MAT path in wire and arc additive manufacturing. Robot. Comput.-Integr. Manuf. 39 (2016), 32–42.
-
(2016)
Robot. Comput.-Integr. Manuf.
, vol.39
, pp. 32-42
-
-
Ding, D.1
Pan, Z.2
Cuiuri, D.3
-
21
-
-
85043979865
-
Feature-based modelling and process parameters selection in a CAPP system for prismatic micro parts
-
Kumar, S.P.L., Jerald, J., Kumanan, S., Feature-based modelling and process parameters selection in a CAPP system for prismatic micro parts. Int. J. Comput. Integr. Manuf. 28:10 (2014), 1–17.
-
(2014)
Int. J. Comput. Integr. Manuf.
, vol.28
, Issue.10
, pp. 1-17
-
-
Kumar, S.P.L.1
Jerald, J.2
Kumanan, S.3
-
22
-
-
77955654338
-
Designing a new model of distributed quality control for sub-assemble products based on the intelligent web information system
-
Sahebjamnia, N., Mahdavi, I., Cho, N., Designing a new model of distributed quality control for sub-assemble products based on the intelligent web information system. J. Intell. Manuf. 21:4 (2010), 511–523.
-
(2010)
J. Intell. Manuf.
, vol.21
, Issue.4
, pp. 511-523
-
-
Sahebjamnia, N.1
Mahdavi, I.2
Cho, N.3
-
23
-
-
84901582950
-
Continuous prediction of manufacturing performance throughout the production lifecycle
-
Weiss, S.M., Dhurandhar, A., Baseman, R.J., et al. Continuous prediction of manufacturing performance throughout the production lifecycle. J. Intell. Manuf. 27:4 (2016), 751–763.
-
(2016)
J. Intell. Manuf.
, vol.27
, Issue.4
, pp. 751-763
-
-
Weiss, S.M.1
Dhurandhar, A.2
Baseman, R.J.3
-
24
-
-
84963812513
-
The application of LVQ neural network for weld strength evaluation of RF-welded plastic materials
-
Podržaj, P., Čebular, A., The application of LVQ neural network for weld strength evaluation of RF-welded plastic materials. IEEE/ASME Trans. Mechatron. 21:2 (2016), 1063–1071.
-
(2016)
IEEE/ASME Trans. Mechatron.
, vol.21
, Issue.2
, pp. 1063-1071
-
-
Podržaj, P.1
Čebular, A.2
-
25
-
-
84993994653
-
A selective multiclass support vector machine ensemble classifier for engineering surface classification using high definition metrology
-
011003-1-15
-
Du, S., Liu, C., Xi, L., A selective multiclass support vector machine ensemble classifier for engineering surface classification using high definition metrology. J. Manuf. Sci. Eng., 137(1), 2015 011003-1-15.
-
(2015)
J. Manuf. Sci. Eng.
, vol.137
, Issue.1
-
-
Du, S.1
Liu, C.2
Xi, L.3
-
26
-
-
84937203669
-
A new statistical approach to automated quality control in manufacturing processes
-
Milo, M.W., Roan, M., Harris, B., A new statistical approach to automated quality control in manufacturing processes. J. Manuf. Syst. 36 (2015), 159–167.
-
(2015)
J. Manuf. Syst.
, vol.36
, pp. 159-167
-
-
Milo, M.W.1
Roan, M.2
Harris, B.3
-
27
-
-
84941208014
-
Online real-time quality monitoring in additive manufacturing processes using heterogeneous sensors
-
Rao, P., Liu, J., Roberson, D., et al. Online real-time quality monitoring in additive manufacturing processes using heterogeneous sensors. J. Manuf. Sci. Eng., 2015.
-
(2015)
J. Manuf. Sci. Eng.
-
-
Rao, P.1
Liu, J.2
Roberson, D.3
-
28
-
-
84948111136
-
An integrated support vector regression–imperialist competitive algorithm for reliability estimation of a shearing machine
-
Azadeh, A., Seif, J., Sheikhalishahi, M., Yazdani, M., An integrated support vector regression–imperialist competitive algorithm for reliability estimation of a shearing machine. Int. J. Comput. Integr. Manuf. 29:1 (2016), 16–24.
-
(2016)
Int. J. Comput. Integr. Manuf.
, vol.29
, Issue.1
, pp. 16-24
-
-
Azadeh, A.1
Seif, J.2
Sheikhalishahi, M.3
Yazdani, M.4
-
29
-
-
77958054526
-
Online intelligent monitoring and diagnosis of aircraft horizontal stabilizer assemble processes
-
Du, S., Xi, L., Yu, J., Sun, J., Online intelligent monitoring and diagnosis of aircraft horizontal stabilizer assemble processes. Int. J. Adv. Manuf. Technol. 50:1 (2010), 377–389.
-
(2010)
Int. J. Adv. Manuf. Technol.
, vol.50
, Issue.1
, pp. 377-389
-
-
Du, S.1
Xi, L.2
Yu, J.3
Sun, J.4
-
30
-
-
84937979118
-
Monitoring and diagnosing of mean shifts in multivariate manufacturing processes using two-level selective ensemble of learning vector quantization neural networks
-
Yang, W.A., Monitoring and diagnosing of mean shifts in multivariate manufacturing processes using two-level selective ensemble of learning vector quantization neural networks. J. Intell. Manuf. 26:4 (2015), 1–15.
-
(2015)
J. Intell. Manuf.
, vol.26
, Issue.4
, pp. 1-15
-
-
Yang, W.A.1
-
31
-
-
79956115039
-
On-line analysis of out-of-control signals in multivariate manufacturing processes using a hybrid learning-based model
-
Salehi, M., Bahreininejad, A., Nakhai, I., On-line analysis of out-of-control signals in multivariate manufacturing processes using a hybrid learning-based model. Neurocomputing 74:12–13 (2011), 2083–2095.
-
(2011)
Neurocomputing
, vol.74
, Issue.12-13
, pp. 2083-2095
-
-
Salehi, M.1
Bahreininejad, A.2
Nakhai, I.3
-
32
-
-
84868228150
-
On-line classifying process mean shifts in multivariate control charts based on multiclass support vector machines
-
Du, S., Lv, J., Xi, L., On-line classifying process mean shifts in multivariate control charts based on multiclass support vector machines. Int. J. Prod. Res. 50:22 (2012), 6288–6310.
-
(2012)
Int. J. Prod. Res.
, vol.50
, Issue.22
, pp. 6288-6310
-
-
Du, S.1
Lv, J.2
Xi, L.3
-
33
-
-
85027944759
-
Online monitoring and fault identification of mean shifts in bivariate processes using decision tree learning techniques
-
He, S.G., He, Z., Wang, G.A., Online monitoring and fault identification of mean shifts in bivariate processes using decision tree learning techniques. J. Intell. Manuf. 24:1 (2013), 25–34.
-
(2013)
J. Intell. Manuf.
, vol.24
, Issue.1
, pp. 25-34
-
-
He, S.G.1
He, Z.2
Wang, G.A.3
-
34
-
-
84892371787
-
Multivariate process parameter change identification by neural network
-
Ahmadzadeh, F., Lundberg, J., Strömberg, T., Multivariate process parameter change identification by neural network. Int. J. Adv. Manuf. Technol. 69:9 (2013), 2261–2268.
-
(2013)
Int. J. Adv. Manuf. Technol.
, vol.69
, Issue.9
, pp. 2261-2268
-
-
Ahmadzadeh, F.1
Lundberg, J.2
Strömberg, T.3
-
35
-
-
84964627164
-
A variance change point estimation method based on intelligent ensemble model for quality fluctuation analysis
-
Hu, S., Zhao, L., Yao, Y., et al. A variance change point estimation method based on intelligent ensemble model for quality fluctuation analysis. Int. J. Prod. Res. 54:19 (2016), 1–15.
-
(2016)
Int. J. Prod. Res.
, vol.54
, Issue.19
, pp. 1-15
-
-
Hu, S.1
Zhao, L.2
Yao, Y.3
-
36
-
-
84961785405
-
Excavation of critical resource node for quality control of multi-variety mixed production shopfloor based on complex network property
-
Xu, A.M., Gao, J.M., Chen, K., Excavation of critical resource node for quality control of multi-variety mixed production shopfloor based on complex network property. J. Sci. Proc. Inst. Mech. Eng. Part B 230:1 (2016), 169–177.
-
(2016)
J. Sci. Proc. Inst. Mech. Eng. Part B
, vol.230
, Issue.1
, pp. 169-177
-
-
Xu, A.M.1
Gao, J.M.2
Chen, K.3
-
37
-
-
84929965226
-
A dynamic quality control approach by improving dominant factors based on improved principal component analysis
-
Diao, G.Z., Zhao, L.P., Yao, Y.Y., A dynamic quality control approach by improving dominant factors based on improved principal component analysis. Int. J. Prod. Res. 53:14 (2015), 4287–4303.
-
(2015)
Int. J. Prod. Res.
, vol.53
, Issue.14
, pp. 4287-4303
-
-
Diao, G.Z.1
Zhao, L.P.2
Yao, Y.Y.3
-
38
-
-
80051508050
-
Detection of spatial defect patterns generated in semiconductor fabrication processes
-
Yuan, T., Kuo, W., Bae, S.J., Detection of spatial defect patterns generated in semiconductor fabrication processes. IEEE Trans. Semicond. Manuf. 24:3 (2011), 392–403.
-
(2011)
IEEE Trans. Semicond. Manuf.
, vol.24
, Issue.3
, pp. 392-403
-
-
Yuan, T.1
Kuo, W.2
Bae, S.J.3
-
39
-
-
84975136179
-
Design of deep convolutional neural network architectures for automated feature extraction in industrial inspection
-
Weimer, D., Scholz-Reiter, B., Shpitalni, M., Design of deep convolutional neural network architectures for automated feature extraction in industrial inspection. J. Sci. CIRP Ann.-Manuf. Technol. 65:1 (2016), 417–420.
-
(2016)
J. Sci. CIRP Ann.-Manuf. Technol.
, vol.65
, Issue.1
, pp. 417-420
-
-
Weimer, D.1
Scholz-Reiter, B.2
Shpitalni, M.3
-
40
-
-
84971617678
-
Manufacturing intelligence for reducing false alarm of defect classification by integrating similarity matching approach in CMOS image sensor manufacturing
-
Chen, Y.J., Fan, C.Y., Chang, K.H., Manufacturing intelligence for reducing false alarm of defect classification by integrating similarity matching approach in CMOS image sensor manufacturing. Comput. Ind. Eng. 99 (2016), 465–473.
-
(2016)
Comput. Ind. Eng.
, vol.99
, pp. 465-473
-
-
Chen, Y.J.1
Fan, C.Y.2
Chang, K.H.3
-
41
-
-
84961151788
-
Intelligent maintenance prediction system for LED wafer testing machine
-
Hsu, C.C., Chen, M.S., Intelligent maintenance prediction system for LED wafer testing machine. J. Intell. Manuf. 27:2 (2016), 335–342.
-
(2016)
J. Intell. Manuf.
, vol.27
, Issue.2
, pp. 335-342
-
-
Hsu, C.C.1
Chen, M.S.2
-
42
-
-
84941702635
-
In situ monitoring of FDM machine condition via acoustic emission
-
Wu, H., Wang, Y., Yu, Z., In situ monitoring of FDM machine condition via acoustic emission. Int. J. Adv. Manuf. Technol. 84:5 (2016), 1483–1495.
-
(2016)
Int. J. Adv. Manuf. Technol.
, vol.84
, Issue.5
, pp. 1483-1495
-
-
Wu, H.1
Wang, Y.2
Yu, Z.3
-
43
-
-
77950350812
-
Study on steam turbine fault diagnosis and maintenance service grid system
-
Ding, Y.F., Sheng, B.Y., Study on steam turbine fault diagnosis and maintenance service grid system. Proc. Inst. Mech. Eng. Part B 224:3 (2010), 517–530.
-
(2010)
Proc. Inst. Mech. Eng. Part B
, vol.224
, Issue.3
, pp. 517-530
-
-
Ding, Y.F.1
Sheng, B.Y.2
-
44
-
-
85011634438
-
Application of psychoacoustics for gear fault diagnosis using artificial neural network
-
Kane, P.V., Andhare, A.B., Application of psychoacoustics for gear fault diagnosis using artificial neural network. J. Low Freq. Noise Vib. Active Control, 35, 2016.
-
(2016)
J. Low Freq. Noise Vib. Active Control
, vol.35
-
-
Kane, P.V.1
Andhare, A.B.2
-
45
-
-
84995678244
-
Fault diagnosis of rolling bearings using data mining techniques and boosting
-
Unal, M., Sahin, Y., Onat, M., Demetgul, M., Kucuk, H., Fault diagnosis of rolling bearings using data mining techniques and boosting. J. Dyn. Syst. Meas. Control, 139(2), 2017.
-
(2017)
J. Dyn. Syst. Meas. Control
, vol.139
, Issue.2
-
-
Unal, M.1
Sahin, Y.2
Onat, M.3
Demetgul, M.4
Kucuk, H.5
-
46
-
-
85043984428
-
Detection of inappropriate working conditions for the timing belt in internal-combustion engines using vibration signals and data mining
-
Khazaee, M., Banakar, A., Ghobadian, B., et al. Detection of inappropriate working conditions for the timing belt in internal-combustion engines using vibration signals and data mining. Proc. Inst. Mech. Eng. D, 2016.
-
(2016)
Proc. Inst. Mech. Eng. D
-
-
Khazaee, M.1
Banakar, A.2
Ghobadian, B.3
-
47
-
-
84963690505
-
A data mining approach for machine fault diagnosis based on associated frequency patterns
-
Rashid, M.M., Amar, M., Gondal, I., et al. A data mining approach for machine fault diagnosis based on associated frequency patterns. Appl. Intell. 45:3 (2016), 1–14.
-
(2016)
Appl. Intell.
, vol.45
, Issue.3
, pp. 1-14
-
-
Rashid, M.M.1
Amar, M.2
Gondal, I.3
-
48
-
-
84953358669
-
Simulation-based experimental design and statistical modeling for lead time quotation
-
Li, M., Yang, F., Wan, H., et al. Simulation-based experimental design and statistical modeling for lead time quotation. J. Manuf. Syst. 37 (2015), 362–374.
-
(2015)
J. Manuf. Syst.
, vol.37
, pp. 362-374
-
-
Li, M.1
Yang, F.2
Wan, H.3
-
49
-
-
79955661948
-
Cycle-time key factor identification and prediction in semiconductor manufacturing using machine learning and data mining
-
Meidan, Y., Lerner, B., Rabinowitz, G., et al. Cycle-time key factor identification and prediction in semiconductor manufacturing using machine learning and data mining. IEEE Trans. Semicond. Manuf. 24:2 (2011), 237–248.
-
(2011)
IEEE Trans. Semicond. Manuf.
, vol.24
, Issue.2
, pp. 237-248
-
-
Meidan, Y.1
Lerner, B.2
Rabinowitz, G.3
-
50
-
-
84925292228
-
Health assessment and life prediction of cutting tools based on support vector regression
-
Benkedjouh, T., Medjaher, K., Zerhouni, N., et al. Health assessment and life prediction of cutting tools based on support vector regression. J. Intell. Manuf. 26:2 (2015), 213–223.
-
(2015)
J. Intell. Manuf.
, vol.26
, Issue.2
, pp. 213-223
-
-
Benkedjouh, T.1
Medjaher, K.2
Zerhouni, N.3
-
51
-
-
84948086510
-
Modelling and prediction of tool wear using LS-SVM in milling operation
-
Zhang, H., Modelling and prediction of tool wear using LS-SVM in milling operation. Int. J. Comput. Integr. Manuf. 29:1 (2016), 76–91.
-
(2016)
Int. J. Comput. Integr. Manuf.
, vol.29
, Issue.1
, pp. 76-91
-
-
Zhang, H.1
-
52
-
-
77951099774
-
Fuzzy neural network based yield prediction model for semiconductor manufacturing system
-
Wu, L., Zhang, J., Fuzzy neural network based yield prediction model for semiconductor manufacturing system. Int. J. Prod. Res. 48:11 (2010), 3225–3243.
-
(2010)
Int. J. Prod. Res.
, vol.48
, Issue.11
, pp. 3225-3243
-
-
Wu, L.1
Zhang, J.2
-
53
-
-
84960342545
-
Yield prediction through the event sequence analysis of the die attach process
-
Lee, H., Chang, O.K., Ko, H.H., et al. Yield prediction through the event sequence analysis of the die attach process. IEEE Trans. Semicond. Manuf. 28:4 (2015), 563–570.
-
(2015)
IEEE Trans. Semicond. Manuf.
, vol.28
, Issue.4
, pp. 563-570
-
-
Lee, H.1
Chang, O.K.2
Ko, H.H.3
-
54
-
-
84884594974
-
Forecasting flow time in semiconductor manufacturing using knowledge discovery in databases
-
Tirkel, I., Forecasting flow time in semiconductor manufacturing using knowledge discovery in databases. Int. J. Prod. Res. 51:18 (2013), 5536–5548.
-
(2013)
Int. J. Prod. Res.
, vol.51
, Issue.18
, pp. 5536-5548
-
-
Tirkel, I.1
|