메뉴 건너뛰기




Volumn 9, Issue , 2018, Pages 1-13

Data and knowledge mining with big data towards smart production

Author keywords

Big data; Data mining techniques (DMTs); Knowledge discovery; Production management; Smart manufacturing; Statistical analysis

Indexed keywords

BIG DATA; INDUSTRIAL MANAGEMENT; MANUFACTURE; STATISTICAL METHODS;

EID: 85043999662     PISSN: 2452414X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jii.2017.08.001     Document Type: Article
Times cited : (221)

References (54)
  • 1
    • 81055138684 scopus 로고    scopus 로고
    • Big Data: The Next Frontier for Innovation, Competition, and Productivity
    • Analytics
    • Manyika, J., Chui, M., Brown, B., et al. Big Data: The Next Frontier for Innovation, Competition, and Productivity. 2011, Analytics.
    • (2011)
    • Manyika, J.1    Chui, M.2    Brown, B.3
  • 2
    • 85130734369 scopus 로고    scopus 로고
    • Knowledge Discovery and Data Mining: Towards a Unifying Framework
    • Shapiro
    • Fayyad, U., Piatetskyshapiro, G., Smyth, P., Knowledge Discovery and Data Mining: Towards a Unifying Framework. 1996, Shapiro, 82–88.
    • (1996) , pp. 82-88
    • Fayyad, U.1    Piatetskyshapiro, G.2    Smyth, P.3
  • 3
    • 84879070876 scopus 로고    scopus 로고
    • Data-based scheduling framework and adaptive dispatching rule of complex manufacturing systems
    • Li, L., Sun, Z., Ni, J., et al. Data-based scheduling framework and adaptive dispatching rule of complex manufacturing systems. Int. J. Adv. Manuf. Tech. 66:9 (2013), 1891–1905.
    • (2013) Int. J. Adv. Manuf. Tech. , vol.66 , Issue.9 , pp. 1891-1905
    • Li, L.1    Sun, Z.2    Ni, J.3
  • 4
    • 84990941766 scopus 로고    scopus 로고
    • Data Mining: Concepts and Techniques
    • third ed.
    • Han, J., Kamber, M., Pei, J., Data Mining: Concepts and Techniques. third ed., 2011.
    • (2011)
    • Han, J.1    Kamber, M.2    Pei, J.3
  • 5
    • 0003836690 scopus 로고    scopus 로고
    • Building the Data Warehouse
    • third ed.
    • Inmon, W.H., Building the Data Warehouse. third ed., 2002.
    • (2002)
    • Inmon, W.H.1
  • 7
    • 0005106921 scopus 로고
    • Mining Sequential Patterns
    • IEEE Computer Society
    • Agrawal, R., Srikant, R., Mining Sequential Patterns. 1995, IEEE Computer Society.
    • (1995)
    • Agrawal, R.1    Srikant, R.2
  • 8
    • 84925290531 scopus 로고    scopus 로고
    • Application of local clustering organization to reactive job-shop scheduling
    • Tamura, Y., Iizuka, H., Yamamoto, M., et al. Application of local clustering organization to reactive job-shop scheduling. Soft Comput. 19:4 (2015), 891–899.
    • (2015) Soft Comput. , vol.19 , Issue.4 , pp. 891-899
    • Tamura, Y.1    Iizuka, H.2    Yamamoto, M.3
  • 10
    • 84962494026 scopus 로고    scopus 로고
    • Fast scheduling of semiconductor manufacturing facilities using case-based reasoning
    • Lim, J., Chae, M.J., Yang, Y., et al. Fast scheduling of semiconductor manufacturing facilities using case-based reasoning. IEEE Trans. Semicond. Manuf. 29:1 (2016), 22–32.
    • (2016) IEEE Trans. Semicond. Manuf. , vol.29 , Issue.1 , pp. 22-32
    • Lim, J.1    Chae, M.J.2    Yang, Y.3
  • 11
    • 77957790861 scopus 로고    scopus 로고
    • Learning effective new single machine dispatching rules from optimal scheduling data
    • Olafsson, S., Li, X., Learning effective new single machine dispatching rules from optimal scheduling data. Int. J. Prod. Econ. 128:1 (2010), 118–126.
    • (2010) Int. J. Prod. Econ. , vol.128 , Issue.1 , pp. 118-126
    • Olafsson, S.1    Li, X.2
  • 12
    • 84864772150 scopus 로고    scopus 로고
    • Data mining based job dispatching using hybrid simulation-optimization approach for shop scheduling problem
    • Shahzad, A., Mebarki, N., Data mining based job dispatching using hybrid simulation-optimization approach for shop scheduling problem. Eng. Appl. Artif. Intell. 25:6 (2012), 1173–1181.
    • (2012) Eng. Appl. Artif. Intell. , vol.25 , Issue.6 , pp. 1173-1181
    • Shahzad, A.1    Mebarki, N.2
  • 13
    • 78349250220 scopus 로고    scopus 로고
    • Real time selection of scheduling rules and knowledge extraction via dynamically controlled data mining
    • Metan, G., Sabuncuoglu, I., Pierreval, H., Real time selection of scheduling rules and knowledge extraction via dynamically controlled data mining. Int. J. Prod. Res. 48:23 (2010), 6909–6938.
    • (2010) Int. J. Prod. Res. , vol.48 , Issue.23 , pp. 6909-6938
    • Metan, G.1    Sabuncuoglu, I.2    Pierreval, H.3
  • 14
    • 80053615218 scopus 로고    scopus 로고
    • A hybrid computer simulation-artificial neural network algorithm for optimisation of dispatching rule selection in stochastic job shop scheduling problems
    • Azadeh, A., Negahban, A., Moghaddam, M., A hybrid computer simulation-artificial neural network algorithm for optimisation of dispatching rule selection in stochastic job shop scheduling problems. Int. J. Prod. Res. 50:2 (2012), 551–566.
    • (2012) Int. J. Prod. Res. , vol.50 , Issue.2 , pp. 551-566
    • Azadeh, A.1    Negahban, A.2    Moghaddam, M.3
  • 15
    • 77951545828 scopus 로고    scopus 로고
    • Sequential Monte Carlo-based fidelity selection in dynamic-data-driven adaptive multi-scale simulations (DDDAMmemetS)
    • Celik, N., Son, Y.J., Sequential Monte Carlo-based fidelity selection in dynamic-data-driven adaptive multi-scale simulations (DDDAMmemetS). IEEE Simulation Conference, 2009, 2281–2293.
    • (2009) IEEE Simulation Conference , pp. 2281-2293
    • Celik, N.1    Son, Y.J.2
  • 16
    • 84965050253 scopus 로고    scopus 로고
    • Hierarchical models for the spatial–temporal carbon nanotube height variations
    • Tao, J., Wang, K., Li, B., et al. Hierarchical models for the spatial–temporal carbon nanotube height variations. Int. J. Prod. Res. 54:21 (2016), 1–20.
    • (2016) Int. J. Prod. Res. , vol.54 , Issue.21 , pp. 1-20
    • Tao, J.1    Wang, K.2    Li, B.3
  • 17
    • 74549217842 scopus 로고    scopus 로고
    • Recursive parameter estimation for categorical process control
    • Wang, K., Tsung, F., Recursive parameter estimation for categorical process control. Int. J. Prod. Res. 48:5 (2010), 1381–1394.
    • (2010) Int. J. Prod. Res. , vol.48 , Issue.5 , pp. 1381-1394
    • Wang, K.1    Tsung, F.2
  • 18
    • 84932196810 scopus 로고    scopus 로고
    • Engineering model-based Bayesian monitoring of ramp-up phase of multistage manufacturing process
    • Du, S., Yao, X., Huang, D., Engineering model-based Bayesian monitoring of ramp-up phase of multistage manufacturing process. Int. J. Prod. Res. 53:15 (2015), 4594–4613.
    • (2015) Int. J. Prod. Res. , vol.53 , Issue.15 , pp. 4594-4613
    • Du, S.1    Yao, X.2    Huang, D.3
  • 19
    • 84938802905 scopus 로고    scopus 로고
    • Fault detection using human–machine co-construct intelligence in semiconductor manufacturing processes
    • Ranjit, M., Gazula, H., Hsiang, S.M., et al. Fault detection using human–machine co-construct intelligence in semiconductor manufacturing processes. IEEE Trans. Semicond. Manuf. 28:3 (2015), 297–305.
    • (2015) IEEE Trans. Semicond. Manuf. , vol.28 , Issue.3 , pp. 297-305
    • Ranjit, M.1    Gazula, H.2    Hsiang, S.M.3
  • 20
    • 84950282243 scopus 로고    scopus 로고
    • Bead modelling and implementation of adaptive MAT path in wire and arc additive manufacturing
    • Ding, D., Pan, Z., Cuiuri, D., et al. Bead modelling and implementation of adaptive MAT path in wire and arc additive manufacturing. Robot. Comput.-Integr. Manuf. 39 (2016), 32–42.
    • (2016) Robot. Comput.-Integr. Manuf. , vol.39 , pp. 32-42
    • Ding, D.1    Pan, Z.2    Cuiuri, D.3
  • 21
    • 85043979865 scopus 로고    scopus 로고
    • Feature-based modelling and process parameters selection in a CAPP system for prismatic micro parts
    • Kumar, S.P.L., Jerald, J., Kumanan, S., Feature-based modelling and process parameters selection in a CAPP system for prismatic micro parts. Int. J. Comput. Integr. Manuf. 28:10 (2014), 1–17.
    • (2014) Int. J. Comput. Integr. Manuf. , vol.28 , Issue.10 , pp. 1-17
    • Kumar, S.P.L.1    Jerald, J.2    Kumanan, S.3
  • 22
    • 77955654338 scopus 로고    scopus 로고
    • Designing a new model of distributed quality control for sub-assemble products based on the intelligent web information system
    • Sahebjamnia, N., Mahdavi, I., Cho, N., Designing a new model of distributed quality control for sub-assemble products based on the intelligent web information system. J. Intell. Manuf. 21:4 (2010), 511–523.
    • (2010) J. Intell. Manuf. , vol.21 , Issue.4 , pp. 511-523
    • Sahebjamnia, N.1    Mahdavi, I.2    Cho, N.3
  • 23
    • 84901582950 scopus 로고    scopus 로고
    • Continuous prediction of manufacturing performance throughout the production lifecycle
    • Weiss, S.M., Dhurandhar, A., Baseman, R.J., et al. Continuous prediction of manufacturing performance throughout the production lifecycle. J. Intell. Manuf. 27:4 (2016), 751–763.
    • (2016) J. Intell. Manuf. , vol.27 , Issue.4 , pp. 751-763
    • Weiss, S.M.1    Dhurandhar, A.2    Baseman, R.J.3
  • 24
    • 84963812513 scopus 로고    scopus 로고
    • The application of LVQ neural network for weld strength evaluation of RF-welded plastic materials
    • Podržaj, P., Čebular, A., The application of LVQ neural network for weld strength evaluation of RF-welded plastic materials. IEEE/ASME Trans. Mechatron. 21:2 (2016), 1063–1071.
    • (2016) IEEE/ASME Trans. Mechatron. , vol.21 , Issue.2 , pp. 1063-1071
    • Podržaj, P.1    Čebular, A.2
  • 25
    • 84993994653 scopus 로고    scopus 로고
    • A selective multiclass support vector machine ensemble classifier for engineering surface classification using high definition metrology
    • 011003-1-15
    • Du, S., Liu, C., Xi, L., A selective multiclass support vector machine ensemble classifier for engineering surface classification using high definition metrology. J. Manuf. Sci. Eng., 137(1), 2015 011003-1-15.
    • (2015) J. Manuf. Sci. Eng. , vol.137 , Issue.1
    • Du, S.1    Liu, C.2    Xi, L.3
  • 26
    • 84937203669 scopus 로고    scopus 로고
    • A new statistical approach to automated quality control in manufacturing processes
    • Milo, M.W., Roan, M., Harris, B., A new statistical approach to automated quality control in manufacturing processes. J. Manuf. Syst. 36 (2015), 159–167.
    • (2015) J. Manuf. Syst. , vol.36 , pp. 159-167
    • Milo, M.W.1    Roan, M.2    Harris, B.3
  • 27
    • 84941208014 scopus 로고    scopus 로고
    • Online real-time quality monitoring in additive manufacturing processes using heterogeneous sensors
    • Rao, P., Liu, J., Roberson, D., et al. Online real-time quality monitoring in additive manufacturing processes using heterogeneous sensors. J. Manuf. Sci. Eng., 2015.
    • (2015) J. Manuf. Sci. Eng.
    • Rao, P.1    Liu, J.2    Roberson, D.3
  • 28
    • 84948111136 scopus 로고    scopus 로고
    • An integrated support vector regression–imperialist competitive algorithm for reliability estimation of a shearing machine
    • Azadeh, A., Seif, J., Sheikhalishahi, M., Yazdani, M., An integrated support vector regression–imperialist competitive algorithm for reliability estimation of a shearing machine. Int. J. Comput. Integr. Manuf. 29:1 (2016), 16–24.
    • (2016) Int. J. Comput. Integr. Manuf. , vol.29 , Issue.1 , pp. 16-24
    • Azadeh, A.1    Seif, J.2    Sheikhalishahi, M.3    Yazdani, M.4
  • 29
    • 77958054526 scopus 로고    scopus 로고
    • Online intelligent monitoring and diagnosis of aircraft horizontal stabilizer assemble processes
    • Du, S., Xi, L., Yu, J., Sun, J., Online intelligent monitoring and diagnosis of aircraft horizontal stabilizer assemble processes. Int. J. Adv. Manuf. Technol. 50:1 (2010), 377–389.
    • (2010) Int. J. Adv. Manuf. Technol. , vol.50 , Issue.1 , pp. 377-389
    • Du, S.1    Xi, L.2    Yu, J.3    Sun, J.4
  • 30
    • 84937979118 scopus 로고    scopus 로고
    • Monitoring and diagnosing of mean shifts in multivariate manufacturing processes using two-level selective ensemble of learning vector quantization neural networks
    • Yang, W.A., Monitoring and diagnosing of mean shifts in multivariate manufacturing processes using two-level selective ensemble of learning vector quantization neural networks. J. Intell. Manuf. 26:4 (2015), 1–15.
    • (2015) J. Intell. Manuf. , vol.26 , Issue.4 , pp. 1-15
    • Yang, W.A.1
  • 31
    • 79956115039 scopus 로고    scopus 로고
    • On-line analysis of out-of-control signals in multivariate manufacturing processes using a hybrid learning-based model
    • Salehi, M., Bahreininejad, A., Nakhai, I., On-line analysis of out-of-control signals in multivariate manufacturing processes using a hybrid learning-based model. Neurocomputing 74:12–13 (2011), 2083–2095.
    • (2011) Neurocomputing , vol.74 , Issue.12-13 , pp. 2083-2095
    • Salehi, M.1    Bahreininejad, A.2    Nakhai, I.3
  • 32
    • 84868228150 scopus 로고    scopus 로고
    • On-line classifying process mean shifts in multivariate control charts based on multiclass support vector machines
    • Du, S., Lv, J., Xi, L., On-line classifying process mean shifts in multivariate control charts based on multiclass support vector machines. Int. J. Prod. Res. 50:22 (2012), 6288–6310.
    • (2012) Int. J. Prod. Res. , vol.50 , Issue.22 , pp. 6288-6310
    • Du, S.1    Lv, J.2    Xi, L.3
  • 33
    • 85027944759 scopus 로고    scopus 로고
    • Online monitoring and fault identification of mean shifts in bivariate processes using decision tree learning techniques
    • He, S.G., He, Z., Wang, G.A., Online monitoring and fault identification of mean shifts in bivariate processes using decision tree learning techniques. J. Intell. Manuf. 24:1 (2013), 25–34.
    • (2013) J. Intell. Manuf. , vol.24 , Issue.1 , pp. 25-34
    • He, S.G.1    He, Z.2    Wang, G.A.3
  • 34
    • 84892371787 scopus 로고    scopus 로고
    • Multivariate process parameter change identification by neural network
    • Ahmadzadeh, F., Lundberg, J., Strömberg, T., Multivariate process parameter change identification by neural network. Int. J. Adv. Manuf. Technol. 69:9 (2013), 2261–2268.
    • (2013) Int. J. Adv. Manuf. Technol. , vol.69 , Issue.9 , pp. 2261-2268
    • Ahmadzadeh, F.1    Lundberg, J.2    Strömberg, T.3
  • 35
    • 84964627164 scopus 로고    scopus 로고
    • A variance change point estimation method based on intelligent ensemble model for quality fluctuation analysis
    • Hu, S., Zhao, L., Yao, Y., et al. A variance change point estimation method based on intelligent ensemble model for quality fluctuation analysis. Int. J. Prod. Res. 54:19 (2016), 1–15.
    • (2016) Int. J. Prod. Res. , vol.54 , Issue.19 , pp. 1-15
    • Hu, S.1    Zhao, L.2    Yao, Y.3
  • 36
    • 84961785405 scopus 로고    scopus 로고
    • Excavation of critical resource node for quality control of multi-variety mixed production shopfloor based on complex network property
    • Xu, A.M., Gao, J.M., Chen, K., Excavation of critical resource node for quality control of multi-variety mixed production shopfloor based on complex network property. J. Sci. Proc. Inst. Mech. Eng. Part B 230:1 (2016), 169–177.
    • (2016) J. Sci. Proc. Inst. Mech. Eng. Part B , vol.230 , Issue.1 , pp. 169-177
    • Xu, A.M.1    Gao, J.M.2    Chen, K.3
  • 37
    • 84929965226 scopus 로고    scopus 로고
    • A dynamic quality control approach by improving dominant factors based on improved principal component analysis
    • Diao, G.Z., Zhao, L.P., Yao, Y.Y., A dynamic quality control approach by improving dominant factors based on improved principal component analysis. Int. J. Prod. Res. 53:14 (2015), 4287–4303.
    • (2015) Int. J. Prod. Res. , vol.53 , Issue.14 , pp. 4287-4303
    • Diao, G.Z.1    Zhao, L.P.2    Yao, Y.Y.3
  • 38
    • 80051508050 scopus 로고    scopus 로고
    • Detection of spatial defect patterns generated in semiconductor fabrication processes
    • Yuan, T., Kuo, W., Bae, S.J., Detection of spatial defect patterns generated in semiconductor fabrication processes. IEEE Trans. Semicond. Manuf. 24:3 (2011), 392–403.
    • (2011) IEEE Trans. Semicond. Manuf. , vol.24 , Issue.3 , pp. 392-403
    • Yuan, T.1    Kuo, W.2    Bae, S.J.3
  • 39
    • 84975136179 scopus 로고    scopus 로고
    • Design of deep convolutional neural network architectures for automated feature extraction in industrial inspection
    • Weimer, D., Scholz-Reiter, B., Shpitalni, M., Design of deep convolutional neural network architectures for automated feature extraction in industrial inspection. J. Sci. CIRP Ann.-Manuf. Technol. 65:1 (2016), 417–420.
    • (2016) J. Sci. CIRP Ann.-Manuf. Technol. , vol.65 , Issue.1 , pp. 417-420
    • Weimer, D.1    Scholz-Reiter, B.2    Shpitalni, M.3
  • 40
    • 84971617678 scopus 로고    scopus 로고
    • Manufacturing intelligence for reducing false alarm of defect classification by integrating similarity matching approach in CMOS image sensor manufacturing
    • Chen, Y.J., Fan, C.Y., Chang, K.H., Manufacturing intelligence for reducing false alarm of defect classification by integrating similarity matching approach in CMOS image sensor manufacturing. Comput. Ind. Eng. 99 (2016), 465–473.
    • (2016) Comput. Ind. Eng. , vol.99 , pp. 465-473
    • Chen, Y.J.1    Fan, C.Y.2    Chang, K.H.3
  • 41
    • 84961151788 scopus 로고    scopus 로고
    • Intelligent maintenance prediction system for LED wafer testing machine
    • Hsu, C.C., Chen, M.S., Intelligent maintenance prediction system for LED wafer testing machine. J. Intell. Manuf. 27:2 (2016), 335–342.
    • (2016) J. Intell. Manuf. , vol.27 , Issue.2 , pp. 335-342
    • Hsu, C.C.1    Chen, M.S.2
  • 42
    • 84941702635 scopus 로고    scopus 로고
    • In situ monitoring of FDM machine condition via acoustic emission
    • Wu, H., Wang, Y., Yu, Z., In situ monitoring of FDM machine condition via acoustic emission. Int. J. Adv. Manuf. Technol. 84:5 (2016), 1483–1495.
    • (2016) Int. J. Adv. Manuf. Technol. , vol.84 , Issue.5 , pp. 1483-1495
    • Wu, H.1    Wang, Y.2    Yu, Z.3
  • 43
    • 77950350812 scopus 로고    scopus 로고
    • Study on steam turbine fault diagnosis and maintenance service grid system
    • Ding, Y.F., Sheng, B.Y., Study on steam turbine fault diagnosis and maintenance service grid system. Proc. Inst. Mech. Eng. Part B 224:3 (2010), 517–530.
    • (2010) Proc. Inst. Mech. Eng. Part B , vol.224 , Issue.3 , pp. 517-530
    • Ding, Y.F.1    Sheng, B.Y.2
  • 44
    • 85011634438 scopus 로고    scopus 로고
    • Application of psychoacoustics for gear fault diagnosis using artificial neural network
    • Kane, P.V., Andhare, A.B., Application of psychoacoustics for gear fault diagnosis using artificial neural network. J. Low Freq. Noise Vib. Active Control, 35, 2016.
    • (2016) J. Low Freq. Noise Vib. Active Control , vol.35
    • Kane, P.V.1    Andhare, A.B.2
  • 45
    • 84995678244 scopus 로고    scopus 로고
    • Fault diagnosis of rolling bearings using data mining techniques and boosting
    • Unal, M., Sahin, Y., Onat, M., Demetgul, M., Kucuk, H., Fault diagnosis of rolling bearings using data mining techniques and boosting. J. Dyn. Syst. Meas. Control, 139(2), 2017.
    • (2017) J. Dyn. Syst. Meas. Control , vol.139 , Issue.2
    • Unal, M.1    Sahin, Y.2    Onat, M.3    Demetgul, M.4    Kucuk, H.5
  • 46
    • 85043984428 scopus 로고    scopus 로고
    • Detection of inappropriate working conditions for the timing belt in internal-combustion engines using vibration signals and data mining
    • Khazaee, M., Banakar, A., Ghobadian, B., et al. Detection of inappropriate working conditions for the timing belt in internal-combustion engines using vibration signals and data mining. Proc. Inst. Mech. Eng. D, 2016.
    • (2016) Proc. Inst. Mech. Eng. D
    • Khazaee, M.1    Banakar, A.2    Ghobadian, B.3
  • 47
    • 84963690505 scopus 로고    scopus 로고
    • A data mining approach for machine fault diagnosis based on associated frequency patterns
    • Rashid, M.M., Amar, M., Gondal, I., et al. A data mining approach for machine fault diagnosis based on associated frequency patterns. Appl. Intell. 45:3 (2016), 1–14.
    • (2016) Appl. Intell. , vol.45 , Issue.3 , pp. 1-14
    • Rashid, M.M.1    Amar, M.2    Gondal, I.3
  • 48
    • 84953358669 scopus 로고    scopus 로고
    • Simulation-based experimental design and statistical modeling for lead time quotation
    • Li, M., Yang, F., Wan, H., et al. Simulation-based experimental design and statistical modeling for lead time quotation. J. Manuf. Syst. 37 (2015), 362–374.
    • (2015) J. Manuf. Syst. , vol.37 , pp. 362-374
    • Li, M.1    Yang, F.2    Wan, H.3
  • 49
    • 79955661948 scopus 로고    scopus 로고
    • Cycle-time key factor identification and prediction in semiconductor manufacturing using machine learning and data mining
    • Meidan, Y., Lerner, B., Rabinowitz, G., et al. Cycle-time key factor identification and prediction in semiconductor manufacturing using machine learning and data mining. IEEE Trans. Semicond. Manuf. 24:2 (2011), 237–248.
    • (2011) IEEE Trans. Semicond. Manuf. , vol.24 , Issue.2 , pp. 237-248
    • Meidan, Y.1    Lerner, B.2    Rabinowitz, G.3
  • 50
    • 84925292228 scopus 로고    scopus 로고
    • Health assessment and life prediction of cutting tools based on support vector regression
    • Benkedjouh, T., Medjaher, K., Zerhouni, N., et al. Health assessment and life prediction of cutting tools based on support vector regression. J. Intell. Manuf. 26:2 (2015), 213–223.
    • (2015) J. Intell. Manuf. , vol.26 , Issue.2 , pp. 213-223
    • Benkedjouh, T.1    Medjaher, K.2    Zerhouni, N.3
  • 51
    • 84948086510 scopus 로고    scopus 로고
    • Modelling and prediction of tool wear using LS-SVM in milling operation
    • Zhang, H., Modelling and prediction of tool wear using LS-SVM in milling operation. Int. J. Comput. Integr. Manuf. 29:1 (2016), 76–91.
    • (2016) Int. J. Comput. Integr. Manuf. , vol.29 , Issue.1 , pp. 76-91
    • Zhang, H.1
  • 52
    • 77951099774 scopus 로고    scopus 로고
    • Fuzzy neural network based yield prediction model for semiconductor manufacturing system
    • Wu, L., Zhang, J., Fuzzy neural network based yield prediction model for semiconductor manufacturing system. Int. J. Prod. Res. 48:11 (2010), 3225–3243.
    • (2010) Int. J. Prod. Res. , vol.48 , Issue.11 , pp. 3225-3243
    • Wu, L.1    Zhang, J.2
  • 53
    • 84960342545 scopus 로고    scopus 로고
    • Yield prediction through the event sequence analysis of the die attach process
    • Lee, H., Chang, O.K., Ko, H.H., et al. Yield prediction through the event sequence analysis of the die attach process. IEEE Trans. Semicond. Manuf. 28:4 (2015), 563–570.
    • (2015) IEEE Trans. Semicond. Manuf. , vol.28 , Issue.4 , pp. 563-570
    • Lee, H.1    Chang, O.K.2    Ko, H.H.3
  • 54
    • 84884594974 scopus 로고    scopus 로고
    • Forecasting flow time in semiconductor manufacturing using knowledge discovery in databases
    • Tirkel, I., Forecasting flow time in semiconductor manufacturing using knowledge discovery in databases. Int. J. Prod. Res. 51:18 (2013), 5536–5548.
    • (2013) Int. J. Prod. Res. , vol.51 , Issue.18 , pp. 5536-5548
    • Tirkel, I.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.