-
1
-
-
33744770587
-
Techniques to interpret T2control chart signals
-
Aparisi, F., Avendano, G., & Sanz, J. (2006). Techniques to interpret $$\text{ T }^{2}$$T2 control chart signals. IIE Transactions, 38(8), 647–657.
-
(2006)
IIE Transactions
, vol.38
, Issue.8
, pp. 647-657
-
-
Aparisi, F.1
Avendano, G.2
Sanz, J.3
-
2
-
-
4344709594
-
Pattern recognition of control charts using artificial neural networks—Analyzing the effect of the training parameters
-
Barghash, M. A., & Santarisi, N. S. (2004). Pattern recognition of control charts using artificial neural networks—Analyzing the effect of the training parameters. Journal of Intelligent Manufacturing, 15, 635–644.
-
(2004)
Journal of Intelligent Manufacturing
, vol.15
, pp. 635-644
-
-
Barghash, M.A.1
Santarisi, N.S.2
-
3
-
-
0030211964
-
Bagging predictors
-
Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123–140.
-
(1996)
Machine Learning
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
4
-
-
6344223429
-
Artificial neural networks to classify mean shifts from multivariate T2chart signals
-
Chen, L. H., & Wang, T. Y. (2004). Artificial neural networks to classify mean shifts from multivariate $$\text{ T }^{2}$$T2 chart signals. Computers and Industrial Engineering, 47(2–3), 195–205.
-
(2004)
Computers and Industrial Engineering
, vol.47
, Issue.2-3
, pp. 195-205
-
-
Chen, L.H.1
Wang, T.Y.2
-
5
-
-
0024062307
-
Multivariate generalizations of cumulative sum quality control schemes
-
Crosier, R. B. (1988). Multivariate generalizations of cumulative sum quality control schemes. Technometrics, 30(3), 291–303.
-
(1988)
Technometrics
, vol.30
, Issue.3
, pp. 291-303
-
-
Crosier, R.B.1
-
6
-
-
0024123145
-
-
Desieno, D. (1988). Adding a conscience to competitive learning. In Proceedings of international joint conference on neural networks (pp. 117–124). San Diego, CA: IEEE Press.
-
Desieno, D. (1988). Adding a conscience to competitive learning. In Proceedings of international joint conference on neural networks (pp. 117–124). San Diego, CA: IEEE Press.
-
-
-
-
7
-
-
71749085820
-
A proposed framework for control chart pattern recognition in multivariate process using artificial neural networks
-
El-Midany, T. T., El-Baz, M. A., & Abd-Elwahed, M. S. (2010). A proposed framework for control chart pattern recognition in multivariate process using artificial neural networks. Expert Systems with Applications, 37(2), 1035–1042.
-
(2010)
Expert Systems with Applications
, vol.37
, Issue.2
, pp. 1035-1042
-
-
El-Midany, T.T.1
El-Baz, M.A.2
Abd-Elwahed, M.S.3
-
8
-
-
84888639250
-
-
Identification of concurrent control chart patterns with singular spectrum analysis and learning vector quantization, Journal of Intelligent Manufacturing
-
Gu, N., Cao, Z. Q., & Xie, L. J., et al. (2012). Identification of concurrent control chart patterns with singular spectrum analysis and learning vector quantization. Journal of Intelligent Manufacturing. doi:10.1007/s10845-012-0659-0.
-
(2012)
et al
-
-
Gu, N.1
Cao, Z.Q.2
Xie, L.J.3
-
9
-
-
0033221564
-
A neural network approach to characterize pattern parameters in process control charts
-
Guh, R. S., & Tannock, J. D. T. (1999). A neural network approach to characterize pattern parameters in process control charts. Journal of Intelligent Manufacturing, 10(5), 449–462.
-
(1999)
Journal of Intelligent Manufacturing
, vol.10
, Issue.5
, pp. 449-462
-
-
Guh, R.S.1
Tannock, J.D.T.2
-
10
-
-
34047098687
-
On-line identification and quantification of mean shifts in bivariate processes using a neural network-based approach
-
Guh, R. S. (2007). On-line identification and quantification of mean shifts in bivariate processes using a neural network-based approach. Quality and Reliability Engineering International, 23(3), 367–385.
-
(2007)
Quality and Reliability Engineering International
, vol.23
, Issue.3
, pp. 367-385
-
-
Guh, R.S.1
-
11
-
-
50349096476
-
An effective application of decision tree learning for online detection of mean shifts in multivariate control charts
-
Guh, R. S., & Shiue, Y. R. (2008). An effective application of decision tree learning for online detection of mean shifts in multivariate control charts. Computers and Industrial Engineering, 55(2), 475–493.
-
(2008)
Computers and Industrial Engineering
, vol.55
, Issue.2
, pp. 475-493
-
-
Guh, R.S.1
Shiue, Y.R.2
-
12
-
-
0025507176
-
Neural network ensembles
-
Hansen, L. K., & Salamon, P. (1990). Neural network ensembles. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(10), 993–1001.
-
(1990)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.12
, Issue.10
, pp. 993-1001
-
-
Hansen, L.K.1
Salamon, P.2
-
13
-
-
85027944759
-
Online monitoring and fault identification of mean shifts in bivariate processes using decision tree learning techniques
-
He, S.-G., He, Z., & Wang G. A. (2013). Online monitoring and fault identification of mean shifts in bivariate processes using decision tree learning techniques. Journal of Intelligent Manufacturing, 24, 25–34.
-
(2013)
Journal of Intelligent Manufacturing
, vol.24
, pp. 25-34
-
-
He, S.-G.1
He, Z.2
Wang, G.A.3
-
14
-
-
0002199780
-
Multivariate quality control. In C. Eisenhart, M. W. Hastay, W. A
-
New York: McGraw-Hill
-
Hotelling, H. H. (1947). Multivariate quality control. In C. Eisenhart, M. W. Hastay, W. A. Wallis (Eds.) Techniques of statistical analysis. New York: McGraw-Hill.
-
(1947)
Wallis (Eds.) Techniques of statistical analysis
-
-
Hotelling, H.H.1
-
15
-
-
0027589082
-
X-bar control chart pattern identification through efficient off-line neural network training
-
Hwarng, H. B., & Hubele, N. F. (1993). X-bar control chart pattern identification through efficient off-line neural network training. IIE Transactions, 25(3), 27–40.
-
(1993)
IIE Transactions
, vol.25
, Issue.3
, pp. 27-40
-
-
Hwarng, H.B.1
Hubele, N.F.2
-
16
-
-
0027579104
-
Back-propagation pattern recognizers for X-bar control charts: Methodology and performance
-
Hwarng, H. B., & Hubele, N. F. (1993). Back-propagation pattern recognizers for X-bar control charts: Methodology and performance. Computers and Industrial Engineering, 24(2), 219–235.
-
(1993)
Computers and Industrial Engineering
, vol.24
, Issue.2
, pp. 219-235
-
-
Hwarng, H.B.1
Hubele, N.F.2
-
18
-
-
70450233892
-
Recognizing control chart patterns with neural network and numerical fitting
-
Jiang, P. Y., Liu, D. Y., & Zeng, Z. J. (2009). Recognizing control chart patterns with neural network and numerical fitting. Journal of Intelligent Manufacturing, 20, 625–635.
-
(2009)
Journal of Intelligent Manufacturing
, vol.20
, pp. 625-635
-
-
Jiang, P.Y.1
Liu, D.Y.2
Zeng, Z.J.3
-
19
-
-
0031352450
-
-
Kennedy, J., & Eberhart, R. (1997). A discrete binary version of the particle swarm optimization. In Proceedings of the IEEE international conference on computational cybernetics and simulation (pp. 4104–4108). Piscataway, NJ: IEEE Press.
-
Kennedy, J., & Eberhart, R. (1997). A discrete binary version of the particle swarm optimization. In Proceedings of the IEEE international conference on computational cybernetics and simulation (pp. 4104–4108). Piscataway, NJ: IEEE Press.
-
-
-
-
20
-
-
0024124595
-
-
Kohonen, T., Barna, G., & Chrisley, R. (1988). Statistical pattern recognition with neural networks: Benchmarking studies. In Proceedings of international joint conference on neural networks (pp. 161–168). San Diego, CA: IEEE Press.
-
Kohonen, T., Barna, G., & Chrisley, R. (1988). Statistical pattern recognition with neural networks: Benchmarking studies. In Proceedings of international joint conference on neural networks (pp. 161–168). San Diego, CA: IEEE Press.
-
-
-
-
22
-
-
84937992840
-
-
Krogh, A., & Vedelsby, J. (1995). Neural network ensembles cross validation, and active learning. In Advances in neural information processing systems 7 (pp. 231–238). Denver, CO, Cambridge, MA: MIT Press.
-
Krogh, A., & Vedelsby, J. (1995). Neural network ensembles cross validation, and active learning. In Advances in neural information processing systems 7 (pp. 231–238). Denver, CO, Cambridge, MA: MIT Press.
-
-
-
-
25
-
-
21044431938
-
Multi-scale statistical process monitoring in machining
-
Li, X. L., & Yao, X. (2005). Multi-scale statistical process monitoring in machining. IEEE Transactions on Industrial Electronics, 52(3), 922–924.
-
(2005)
IEEE Transactions on Industrial Electronics
, vol.52
, Issue.3
, pp. 922-924
-
-
Li, X.L.1
Yao, X.2
-
26
-
-
0346276741
-
Analysis of variations in a multi-variate process using neural networks
-
Low, C., Hsu, C. M., & Yu, F. J. (2003). Analysis of variations in a multi-variate process using neural networks. International Journal of Advanced Manufacturing Technology, 22(11–12), 911–921.
-
(2003)
International Journal of Advanced Manufacturing Technology
, vol.22
, Issue.11-12
, pp. 911-921
-
-
Low, C.1
Hsu, C.M.2
Yu, F.J.3
-
27
-
-
77955331694
-
A multivariate exponentially weighted moving average control chart
-
Lowry, C. A., Woodall, W. H., Champ, C. W., & Rigdon, S. E. (1992). A multivariate exponentially weighted moving average control chart. Technometrics, 34(1), 46–53.
-
(1992)
Technometrics
, vol.34
, Issue.1
, pp. 46-53
-
-
Lowry, C.A.1
Woodall, W.H.2
Champ, C.W.3
Rigdon, S.E.4
-
28
-
-
28844486614
-
Fault diagnosis in multivariate control charts using artificial neural networks
-
Niaki, S. T. A., & Abbasi, B. (2005). Fault diagnosis in multivariate control charts using artificial neural networks. International Quality and Reliability Engineering, 21(8), 825–840.
-
(2005)
International Quality and Reliability Engineering
, vol.21
, Issue.8
, pp. 825-840
-
-
Niaki, S.T.A.1
Abbasi, B.2
-
29
-
-
0001332840
-
Comparisons of multivariate CUSUM charts
-
Pignatiello, J. J., & Runger, G. C. (1990). Comparisons of multivariate CUSUM charts. Journal of Quality Technology, 22(3), 173–186.
-
(1990)
Journal of Quality Technology
, vol.22
, Issue.3
, pp. 173-186
-
-
Pignatiello, J.J.1
Runger, G.C.2
-
31
-
-
79956115039
-
On-line analysis of out-of-control signals in multivariate manufacturing processes using a hybrid learning-based model
-
Salehi, M., Bahreininejad, A., & Nakhai, I. (2011). On-line analysis of out-of-control signals in multivariate manufacturing processes using a hybrid learning-based model. Neurocomputing, 74(12–13), 2083–2095.
-
(2011)
Neurocomputing
, vol.74
, Issue.12-13
, pp. 2083-2095
-
-
Salehi, M.1
Bahreininejad, A.2
Nakhai, I.3
-
32
-
-
84937992841
-
Neural network toolbox
-
The MathWorks Company. (2004). Neural network toolbox. The Math Works Inc.
-
(2004)
The Math Works Inc
-
-
-
33
-
-
0036610685
-
Mean shifts detection and classification in multivariate process: A neural-fuzzy approach
-
Wang, T. Y., & Chen, L. H. (2002). Mean shifts detection and classification in multivariate process: A neural-fuzzy approach. Journal of Intelligent Manufacturing, 13(3), 211–221.
-
(2002)
Journal of Intelligent Manufacturing
, vol.13
, Issue.3
, pp. 211-221
-
-
Wang, T.Y.1
Chen, L.H.2
-
34
-
-
34547699508
-
Identification of control chart patterns using wavelet filtering and robust fuzzy clustering
-
Wang, C.-H., & Kuo, W. (2007). Identification of control chart patterns using wavelet filtering and robust fuzzy clustering. Journal of Intelligent Manufacturing, 18, 343–350.
-
(2007)
Journal of Intelligent Manufacturing
, vol.18
, pp. 343-350
-
-
Wang, C.-H.1
Kuo, W.2
-
35
-
-
67749088653
-
A hybrid approach for identification of concurrent control chart patterns
-
Wang, C.-H., Dong, T.-P., & Kuo, W. (2009). A hybrid approach for identification of concurrent control chart patterns. Journal of Intelligent Manufacturing, 20, 409–419.
-
(2009)
Journal of Intelligent Manufacturing
, vol.20
, pp. 409-419
-
-
Wang, C.-H.1
Dong, T.-P.2
Kuo, W.3
-
36
-
-
53849102241
-
A neural network ensemble-based model for on-line monitoring and diagnosis of out of control signals in multivariate manufacturing processes
-
Yu, J. B., & Xi, L. F. (2009). A neural network ensemble-based model for on-line monitoring and diagnosis of out of control signals in multivariate manufacturing processes. Expert Systems with Applications, 36(1), 909–921.
-
(2009)
Expert Systems with Applications
, vol.36
, Issue.1
, pp. 909-921
-
-
Yu, J.B.1
Xi, L.F.2
-
37
-
-
0036567392
-
Ensembling neural networks: many could be better than all
-
Zhou, Z. H., Wu, J. X., & Tang, W. (2002). Ensembling neural networks: many could be better than all. Artificial Intelligence, 137(1–2), 239–263.
-
(2002)
Artificial Intelligence
, vol.137
, Issue.1-2
, pp. 239-263
-
-
Zhou, Z.H.1
Wu, J.X.2
Tang, W.3
|