메뉴 건너뛰기




Volumn 26, Issue 4, 2015, Pages 769-783

Monitoring and diagnosing of mean shifts in multivariate manufacturing processes using two-level selective ensemble of learning vector quantization neural networks

Author keywords

Multivariate manufacturing process; Neural network; Particle swarm optimization; Selective ensemble; Statistical process control

Indexed keywords

CONTROL CHARTS; ENGINEERING EDUCATION; FLOWCHARTING; MANUFACTURE; NEURAL NETWORKS; PARTICLE SWARM OPTIMIZATION (PSO); SIGNAL DETECTION; STATISTICAL PROCESS CONTROL; VECTOR QUANTIZATION;

EID: 84937979118     PISSN: 09565515     EISSN: 15728145     Source Type: Journal    
DOI: 10.1007/s10845-013-0833-z     Document Type: Article
Times cited : (26)

References (37)
  • 1
    • 33744770587 scopus 로고    scopus 로고
    • Techniques to interpret T2control chart signals
    • Aparisi, F., Avendano, G., & Sanz, J. (2006). Techniques to interpret $$\text{ T }^{2}$$T2 control chart signals. IIE Transactions, 38(8), 647–657.
    • (2006) IIE Transactions , vol.38 , Issue.8 , pp. 647-657
    • Aparisi, F.1    Avendano, G.2    Sanz, J.3
  • 2
    • 4344709594 scopus 로고    scopus 로고
    • Pattern recognition of control charts using artificial neural networks—Analyzing the effect of the training parameters
    • Barghash, M. A., & Santarisi, N. S. (2004). Pattern recognition of control charts using artificial neural networks—Analyzing the effect of the training parameters. Journal of Intelligent Manufacturing, 15, 635–644.
    • (2004) Journal of Intelligent Manufacturing , vol.15 , pp. 635-644
    • Barghash, M.A.1    Santarisi, N.S.2
  • 3
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123–140.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 4
    • 6344223429 scopus 로고    scopus 로고
    • Artificial neural networks to classify mean shifts from multivariate T2chart signals
    • Chen, L. H., & Wang, T. Y. (2004). Artificial neural networks to classify mean shifts from multivariate $$\text{ T }^{2}$$T2 chart signals. Computers and Industrial Engineering, 47(2–3), 195–205.
    • (2004) Computers and Industrial Engineering , vol.47 , Issue.2-3 , pp. 195-205
    • Chen, L.H.1    Wang, T.Y.2
  • 5
    • 0024062307 scopus 로고
    • Multivariate generalizations of cumulative sum quality control schemes
    • Crosier, R. B. (1988). Multivariate generalizations of cumulative sum quality control schemes. Technometrics, 30(3), 291–303.
    • (1988) Technometrics , vol.30 , Issue.3 , pp. 291-303
    • Crosier, R.B.1
  • 6
    • 0024123145 scopus 로고    scopus 로고
    • Desieno, D. (1988). Adding a conscience to competitive learning. In Proceedings of international joint conference on neural networks (pp. 117–124). San Diego, CA: IEEE Press.
    • Desieno, D. (1988). Adding a conscience to competitive learning. In Proceedings of international joint conference on neural networks (pp. 117–124). San Diego, CA: IEEE Press.
  • 7
    • 71749085820 scopus 로고    scopus 로고
    • A proposed framework for control chart pattern recognition in multivariate process using artificial neural networks
    • El-Midany, T. T., El-Baz, M. A., & Abd-Elwahed, M. S. (2010). A proposed framework for control chart pattern recognition in multivariate process using artificial neural networks. Expert Systems with Applications, 37(2), 1035–1042.
    • (2010) Expert Systems with Applications , vol.37 , Issue.2 , pp. 1035-1042
    • El-Midany, T.T.1    El-Baz, M.A.2    Abd-Elwahed, M.S.3
  • 8
    • 84888639250 scopus 로고    scopus 로고
    • Identification of concurrent control chart patterns with singular spectrum analysis and learning vector quantization, Journal of Intelligent Manufacturing
    • Gu, N., Cao, Z. Q., & Xie, L. J., et al. (2012). Identification of concurrent control chart patterns with singular spectrum analysis and learning vector quantization. Journal of Intelligent Manufacturing. doi:10.1007/s10845-012-0659-0.
    • (2012) et al
    • Gu, N.1    Cao, Z.Q.2    Xie, L.J.3
  • 9
    • 0033221564 scopus 로고    scopus 로고
    • A neural network approach to characterize pattern parameters in process control charts
    • Guh, R. S., & Tannock, J. D. T. (1999). A neural network approach to characterize pattern parameters in process control charts. Journal of Intelligent Manufacturing, 10(5), 449–462.
    • (1999) Journal of Intelligent Manufacturing , vol.10 , Issue.5 , pp. 449-462
    • Guh, R.S.1    Tannock, J.D.T.2
  • 10
    • 34047098687 scopus 로고    scopus 로고
    • On-line identification and quantification of mean shifts in bivariate processes using a neural network-based approach
    • Guh, R. S. (2007). On-line identification and quantification of mean shifts in bivariate processes using a neural network-based approach. Quality and Reliability Engineering International, 23(3), 367–385.
    • (2007) Quality and Reliability Engineering International , vol.23 , Issue.3 , pp. 367-385
    • Guh, R.S.1
  • 11
    • 50349096476 scopus 로고    scopus 로고
    • An effective application of decision tree learning for online detection of mean shifts in multivariate control charts
    • Guh, R. S., & Shiue, Y. R. (2008). An effective application of decision tree learning for online detection of mean shifts in multivariate control charts. Computers and Industrial Engineering, 55(2), 475–493.
    • (2008) Computers and Industrial Engineering , vol.55 , Issue.2 , pp. 475-493
    • Guh, R.S.1    Shiue, Y.R.2
  • 13
    • 85027944759 scopus 로고    scopus 로고
    • Online monitoring and fault identification of mean shifts in bivariate processes using decision tree learning techniques
    • He, S.-G., He, Z., & Wang G. A. (2013). Online monitoring and fault identification of mean shifts in bivariate processes using decision tree learning techniques. Journal of Intelligent Manufacturing, 24, 25–34.
    • (2013) Journal of Intelligent Manufacturing , vol.24 , pp. 25-34
    • He, S.-G.1    He, Z.2    Wang, G.A.3
  • 14
    • 0002199780 scopus 로고
    • Multivariate quality control. In C. Eisenhart, M. W. Hastay, W. A
    • New York: McGraw-Hill
    • Hotelling, H. H. (1947). Multivariate quality control. In C. Eisenhart, M. W. Hastay, W. A. Wallis (Eds.) Techniques of statistical analysis. New York: McGraw-Hill.
    • (1947) Wallis (Eds.) Techniques of statistical analysis
    • Hotelling, H.H.1
  • 15
    • 0027589082 scopus 로고
    • X-bar control chart pattern identification through efficient off-line neural network training
    • Hwarng, H. B., & Hubele, N. F. (1993). X-bar control chart pattern identification through efficient off-line neural network training. IIE Transactions, 25(3), 27–40.
    • (1993) IIE Transactions , vol.25 , Issue.3 , pp. 27-40
    • Hwarng, H.B.1    Hubele, N.F.2
  • 16
    • 0027579104 scopus 로고
    • Back-propagation pattern recognizers for X-bar control charts: Methodology and performance
    • Hwarng, H. B., & Hubele, N. F. (1993). Back-propagation pattern recognizers for X-bar control charts: Methodology and performance. Computers and Industrial Engineering, 24(2), 219–235.
    • (1993) Computers and Industrial Engineering , vol.24 , Issue.2 , pp. 219-235
    • Hwarng, H.B.1    Hubele, N.F.2
  • 18
    • 70450233892 scopus 로고    scopus 로고
    • Recognizing control chart patterns with neural network and numerical fitting
    • Jiang, P. Y., Liu, D. Y., & Zeng, Z. J. (2009). Recognizing control chart patterns with neural network and numerical fitting. Journal of Intelligent Manufacturing, 20, 625–635.
    • (2009) Journal of Intelligent Manufacturing , vol.20 , pp. 625-635
    • Jiang, P.Y.1    Liu, D.Y.2    Zeng, Z.J.3
  • 19
    • 0031352450 scopus 로고    scopus 로고
    • Kennedy, J., & Eberhart, R. (1997). A discrete binary version of the particle swarm optimization. In Proceedings of the IEEE international conference on computational cybernetics and simulation (pp. 4104–4108). Piscataway, NJ: IEEE Press.
    • Kennedy, J., & Eberhart, R. (1997). A discrete binary version of the particle swarm optimization. In Proceedings of the IEEE international conference on computational cybernetics and simulation (pp. 4104–4108). Piscataway, NJ: IEEE Press.
  • 20
    • 0024124595 scopus 로고    scopus 로고
    • Kohonen, T., Barna, G., & Chrisley, R. (1988). Statistical pattern recognition with neural networks: Benchmarking studies. In Proceedings of international joint conference on neural networks (pp. 161–168). San Diego, CA: IEEE Press.
    • Kohonen, T., Barna, G., & Chrisley, R. (1988). Statistical pattern recognition with neural networks: Benchmarking studies. In Proceedings of international joint conference on neural networks (pp. 161–168). San Diego, CA: IEEE Press.
  • 22
    • 84937992840 scopus 로고    scopus 로고
    • Krogh, A., & Vedelsby, J. (1995). Neural network ensembles cross validation, and active learning. In Advances in neural information processing systems 7 (pp. 231–238). Denver, CO, Cambridge, MA: MIT Press.
    • Krogh, A., & Vedelsby, J. (1995). Neural network ensembles cross validation, and active learning. In Advances in neural information processing systems 7 (pp. 231–238). Denver, CO, Cambridge, MA: MIT Press.
  • 25
    • 21044431938 scopus 로고    scopus 로고
    • Multi-scale statistical process monitoring in machining
    • Li, X. L., & Yao, X. (2005). Multi-scale statistical process monitoring in machining. IEEE Transactions on Industrial Electronics, 52(3), 922–924.
    • (2005) IEEE Transactions on Industrial Electronics , vol.52 , Issue.3 , pp. 922-924
    • Li, X.L.1    Yao, X.2
  • 27
    • 77955331694 scopus 로고
    • A multivariate exponentially weighted moving average control chart
    • Lowry, C. A., Woodall, W. H., Champ, C. W., & Rigdon, S. E. (1992). A multivariate exponentially weighted moving average control chart. Technometrics, 34(1), 46–53.
    • (1992) Technometrics , vol.34 , Issue.1 , pp. 46-53
    • Lowry, C.A.1    Woodall, W.H.2    Champ, C.W.3    Rigdon, S.E.4
  • 28
    • 28844486614 scopus 로고    scopus 로고
    • Fault diagnosis in multivariate control charts using artificial neural networks
    • Niaki, S. T. A., & Abbasi, B. (2005). Fault diagnosis in multivariate control charts using artificial neural networks. International Quality and Reliability Engineering, 21(8), 825–840.
    • (2005) International Quality and Reliability Engineering , vol.21 , Issue.8 , pp. 825-840
    • Niaki, S.T.A.1    Abbasi, B.2
  • 31
    • 79956115039 scopus 로고    scopus 로고
    • On-line analysis of out-of-control signals in multivariate manufacturing processes using a hybrid learning-based model
    • Salehi, M., Bahreininejad, A., & Nakhai, I. (2011). On-line analysis of out-of-control signals in multivariate manufacturing processes using a hybrid learning-based model. Neurocomputing, 74(12–13), 2083–2095.
    • (2011) Neurocomputing , vol.74 , Issue.12-13 , pp. 2083-2095
    • Salehi, M.1    Bahreininejad, A.2    Nakhai, I.3
  • 32
    • 84937992841 scopus 로고    scopus 로고
    • Neural network toolbox
    • The MathWorks Company. (2004). Neural network toolbox. The Math Works Inc.
    • (2004) The Math Works Inc
  • 33
    • 0036610685 scopus 로고    scopus 로고
    • Mean shifts detection and classification in multivariate process: A neural-fuzzy approach
    • Wang, T. Y., & Chen, L. H. (2002). Mean shifts detection and classification in multivariate process: A neural-fuzzy approach. Journal of Intelligent Manufacturing, 13(3), 211–221.
    • (2002) Journal of Intelligent Manufacturing , vol.13 , Issue.3 , pp. 211-221
    • Wang, T.Y.1    Chen, L.H.2
  • 34
    • 34547699508 scopus 로고    scopus 로고
    • Identification of control chart patterns using wavelet filtering and robust fuzzy clustering
    • Wang, C.-H., & Kuo, W. (2007). Identification of control chart patterns using wavelet filtering and robust fuzzy clustering. Journal of Intelligent Manufacturing, 18, 343–350.
    • (2007) Journal of Intelligent Manufacturing , vol.18 , pp. 343-350
    • Wang, C.-H.1    Kuo, W.2
  • 35
    • 67749088653 scopus 로고    scopus 로고
    • A hybrid approach for identification of concurrent control chart patterns
    • Wang, C.-H., Dong, T.-P., & Kuo, W. (2009). A hybrid approach for identification of concurrent control chart patterns. Journal of Intelligent Manufacturing, 20, 409–419.
    • (2009) Journal of Intelligent Manufacturing , vol.20 , pp. 409-419
    • Wang, C.-H.1    Dong, T.-P.2    Kuo, W.3
  • 36
    • 53849102241 scopus 로고    scopus 로고
    • A neural network ensemble-based model for on-line monitoring and diagnosis of out of control signals in multivariate manufacturing processes
    • Yu, J. B., & Xi, L. F. (2009). A neural network ensemble-based model for on-line monitoring and diagnosis of out of control signals in multivariate manufacturing processes. Expert Systems with Applications, 36(1), 909–921.
    • (2009) Expert Systems with Applications , vol.36 , Issue.1 , pp. 909-921
    • Yu, J.B.1    Xi, L.F.2
  • 37
    • 0036567392 scopus 로고    scopus 로고
    • Ensembling neural networks: many could be better than all
    • Zhou, Z. H., Wu, J. X., & Tang, W. (2002). Ensembling neural networks: many could be better than all. Artificial Intelligence, 137(1–2), 239–263.
    • (2002) Artificial Intelligence , vol.137 , Issue.1-2 , pp. 239-263
    • Zhou, Z.H.1    Wu, J.X.2    Tang, W.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.