메뉴 건너뛰기




Volumn 26, Issue 2, 2015, Pages 213-223

Health assessment and life prediction of cutting tools based on support vector regression

Author keywords

Feature extraction and reduction; Prognostics; Remaining useful life; Support vector regression; Tool condition monitoring

Indexed keywords

CONDITION MONITORING; FORECASTING; PRECISION ENGINEERING; SUPPORT VECTOR REGRESSION; SURFACE PROPERTIES; WEAR OF MATERIALS;

EID: 84925292228     PISSN: 09565515     EISSN: 15728145     Source Type: Journal    
DOI: 10.1007/s10845-013-0774-6     Document Type: Article
Times cited : (337)

References (40)
  • 1
    • 85067755021 scopus 로고    scopus 로고
    • Condition monitoring and diagnostics of machines–Prognostics: Part 1: General guidelines
    • AFNOR. (2005). Condition monitoring and diagnostics of machines–Prognostics: Part 1: General guidelines. NF ISO 13381-1.
    • (2005) NF ISO , pp. 13381
  • 3
    • 56249103141 scopus 로고    scopus 로고
    • Tool wear condition monitoring using a sensor fusion model based on fuzzy inference system
    • Aliustaoglu, C., Ertunc, H. M., & Ocak, H. (2009). Tool wear condition monitoring using a sensor fusion model based on fuzzy inference system. Mechanical Systems and Signal Processing, 23, 539–546.
    • (2009) Mechanical Systems and Signal Processing , vol.23 , pp. 539-546
    • Aliustaoglu, C.1    Ertunc, H.M.2    Ocak, H.3
  • 4
    • 38149114090 scopus 로고    scopus 로고
    • Analysis of the structure of vibration signals for tool wear detection
    • Alonso, F., & Salgado, R. (2008). Analysis of the structure of vibration signals for tool wear detection. Mechanical Systems and Signal Processing, 22, 735–748.
    • (2008) Mechanical Systems and Signal Processing , vol.22 , pp. 735-748
    • Alonso, F.1    Salgado, R.2
  • 6
    • 84862289855 scopus 로고    scopus 로고
    • Tool wear estimation using an analytic fuzzy classifier and support vector machines
    • Brezak, D., Majetic, D., Udiljak, T., & Kasac, J. (2012). Tool wear estimation using an analytic fuzzy classifier and support vector machines. Journal of Intelligent Manufacturing, 23, 797–809.
    • (2012) Journal of Intelligent Manufacturing , vol.23 , pp. 797-809
    • Brezak, D.1    Majetic, D.2    Udiljak, T.3    Kasac, J.4
  • 8
    • 34547372974 scopus 로고    scopus 로고
    • Acoustic emission method for tool condition monitoring based on wavelet analysis
    • Chen, X., & Li, B. (2007). Acoustic emission method for tool condition monitoring based on wavelet analysis. International Journal of Advanced Manufacturing Technology, 33, 968–976.
    • (2007) International Journal of Advanced Manufacturing Technology , vol.33 , pp. 968-976
    • Chen, X.1    Li, B.2
  • 9
    • 34147125993 scopus 로고    scopus 로고
    • A segmental hidden semi-Markov model (HSMM)-based diagnostics and prognostics framework and methodology
    • Dong, M., & He, D. (2007). A segmental hidden semi-Markov model (HSMM)-based diagnostics and prognostics framework and methodology. Mechanical Systems and Signal Processing, 21, 2248–2266.
    • (2007) Mechanical Systems and Signal Processing , vol.21 , pp. 2248-2266
    • Dong, M.1    He, D.2
  • 10
    • 84862296569 scopus 로고    scopus 로고
    • Tool wear monitoring using neuro-fuzzy techniques: A comparative study in a turning process
    • Gajate, A., Haber, R., Del Toro, R., Vega, P., & Bustillo, A. (2012). Tool wear monitoring using neuro-fuzzy techniques: A comparative study in a turning process. Journal of Intelligent Manufacturing, 23, 869–882.
    • (2012) Journal of Intelligent Manufacturing , vol.23 , pp. 869-882
    • Gajate, A.1    Haber, R.2    Del Toro, R.3    Vega, P.4    Bustillo, A.5
  • 11
    • 84862229712 scopus 로고    scopus 로고
    • Stochastic modeling of damage physics for mechanical component prognostics using condition indicators
    • He, D., Li, R., & Bechhoefer, E. (2012). Stochastic modeling of damage physics for mechanical component prognostics using condition indicators. Journal of Intelligent Manufacturing, 23, 221–226.
    • (2012) Journal of Intelligent Manufacturing , vol.23 , pp. 221-226
    • He, D.1    Li, R.2    Bechhoefer, E.3
  • 13
    • 58049190180 scopus 로고    scopus 로고
    • Rotating machinery prognostics: State of the art, challenges and opportunities
    • Heng, A., Zhang, S., Tan, A. C. C., & Mathew, J. (2009). Rotating machinery prognostics: State of the art, challenges and opportunities. Mechanical Systems and Signal Processing, 23(3), 724–739.
    • (2009) Mechanical Systems and Signal Processing , vol.23 , Issue.3 , pp. 724-739
    • Heng, A.1    Zhang, S.2    Tan, A.C.C.3    Mathew, J.4
  • 14
    • 33646534620 scopus 로고    scopus 로고
    • A review on machinery diagnostics and prognostics implementing condition-based maintenance
    • Jardine, A. K., Lin, D., & Banjevic, D. (2006). A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mechanical Systems and Signal Processing, 20(7), 1483–1510.
    • (2006) Mechanical Systems and Signal Processing , vol.20 , Issue.7 , pp. 1483-1510
    • Jardine, A.K.1    Lin, D.2    Banjevic, D.3
  • 15
    • 56449089064 scopus 로고    scopus 로고
    • Application of ae and cutting force signals in tool condition monitoring in micro-milling
    • Jemielniak, K., & Arrazola, P. (2008). Application of ae and cutting force signals in tool condition monitoring in micro-milling. CIRP Journal of Manufacturing Science and Technology, 1, 97–102.
    • (2008) CIRP Journal of Manufacturing Science and Technology , vol.1 , pp. 97-102
    • Jemielniak, K.1    Arrazola, P.2
  • 16
    • 78349306164 scopus 로고    scopus 로고
    • Tool wear monitoring by machine learning techniques and singular spectrum analysis
    • Kilundu, B., Dehombreux, P., & Chiementin, X. (2011). Tool wear monitoring by machine learning techniques and singular spectrum analysis. Mechanical Systems and Signal Processing, 25, 400–415.
    • (2011) Mechanical Systems and Signal Processing , vol.25 , pp. 400-415
    • Kilundu, B.1    Dehombreux, P.2    Chiementin, X.3
  • 17
    • 64449086323 scopus 로고    scopus 로고
    • Wavelet analysis of sensor signals for tool condition monitoring: A review and some new results
    • Kunpeng, Z., San, W. Y., & Soon, H. G. (2009). Wavelet analysis of sensor signals for tool condition monitoring: A review and some new results. International Journal of Machine Tools and Manufacture, 49, 537–553.
    • (2009) International Journal of Machine Tools and Manufacture , vol.49 , pp. 537-553
    • Kunpeng, Z.1    San, W.Y.2    Soon, H.G.3
  • 18
    • 85067746947 scopus 로고    scopus 로고
    • Lebold, M., & Thurston, M. (2001). Open standards for condition-based maintenance and prognostic systems. In Proceedings of the 5th maintenance and reliability conference (MARCON)
    • Lebold, M., & Thurston, M. (2001). Open standards for condition-based maintenance and prognostic systems. In Proceedings of the 5th maintenance and reliability conference (MARCON).
  • 20
    • 84861911833 scopus 로고    scopus 로고
    • Remaining useful life estimation of critical components with application to bearings
    • Medjaher, K., Tobon-Mejia, D. A., & Zerhouni, N. (2012). Remaining useful life estimation of critical components with application to bearings. IEEE Transactions on Reliability, 61(2), 292–302.
    • (2012) IEEE Transactions on Reliability , vol.61 , Issue.2 , pp. 292-302
    • Medjaher, K.1    Tobon-Mejia, D.A.2    Zerhouni, N.3
  • 22
    • 80053406480 scopus 로고    scopus 로고
    • Tool wear monitoring and selection of optimum cutting conditions with progressive tool wear effect and input uncertainties
    • Pal, S., Heyns, P. S., Freyer, B. H., Theron, N. J., & Pal, S. K. (2011). Tool wear monitoring and selection of optimum cutting conditions with progressive tool wear effect and input uncertainties. Journal of Intelligent Manufacturing, 22, 491–504.
    • (2011) Journal of Intelligent Manufacturing , vol.22 , pp. 491-504
    • Pal, S.1    Heyns, P.S.2    Freyer, B.H.3    Theron, N.J.4    Pal, S.K.5
  • 23
    • 85067774465 scopus 로고    scopus 로고
    • PHM Society. (2010). PHM data chalelnge 2010
    • PHM Society. (2010). PHM data chalelnge 2010. https://www.phmsociety.org/competition/phm/10.
  • 24
    • 78650179604 scopus 로고    scopus 로고
    • Tool wear monitoring using artificial neural network based on extended Kalman filter weight updation with transformed input patterns
    • Purushothaman, S. (2010). Tool wear monitoring using artificial neural network based on extended Kalman filter weight updation with transformed input patterns. Journal of Intelligent Manufacturing, 21, 717–730.
    • (2010) Journal of Intelligent Manufacturing , vol.21 , pp. 717-730
    • Purushothaman, S.1
  • 26
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • Roweis, T., & Saul, L. (2000). Nonlinear dimensionality reduction by locally linear embedding. Science, 290, 2323–2326.
    • (2000) Science , vol.290 , pp. 2323-2326
    • Roweis, T.1    Saul, L.2
  • 29
    • 33846844788 scopus 로고    scopus 로고
    • Tool wear predictive model based on least squares support vector machines
    • Shi, D., & Gindy, N. N. (2007). Tool wear predictive model based on least squares support vector machines. Mechanical Systems and Signal Processing, 21(4), 1799–1814.
    • (2007) Mechanical Systems and Signal Processing , vol.21 , Issue.4 , pp. 1799-1814
    • Shi, D.1    Gindy, N.N.2
  • 30
    • 79953899252 scopus 로고    scopus 로고
    • Prognostic modelling options for remaining useful life estimation by industry
    • Sikorska, J., Hodkiewicz, M., & Ma, L. (2011). Prognostic modelling options for remaining useful life estimation by industry. Mechanical Systems and Signal Processing, 25(5), 1803–1836.
    • (2011) Mechanical Systems and Signal Processing , vol.25 , Issue.5 , pp. 1803-1836
    • Sikorska, J.1    Hodkiewicz, M.2    Ma, L.3
  • 32
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • Tenenbaum, J., Silva, V. D., & Langford, J. C. (2000). A global geometric framework for nonlinear dimensionality reduction. Science, 290, 2319–2323.
    • (2000) Science , vol.290 , pp. 2319-2323
    • Tenenbaum, J.1    Silva, V.D.2    Langford, J.C.3
  • 33
    • 84857368939 scopus 로고    scopus 로고
    • Cnc machine tool’s wear diagnostic and prognostic by using dynamic bayesian networks
    • Tobon-Mejia, D. A., Medjaher, K., & Zerhouni, N. (2012). Cnc machine tool’s wear diagnostic and prognostic by using dynamic bayesian networks. Mechanical Systems and Signal Processing, 28, 167–182.
    • (2012) Mechanical Systems and Signal Processing , vol.28 , pp. 167-182
    • Tobon-Mejia, D.A.1    Medjaher, K.2    Zerhouni, N.3
  • 35
    • 38349018685 scopus 로고    scopus 로고
    • Dimensionality reduction: A comparative review. Tech. report, Tilburg University
    • Van Der Maaten, L. J. P., Postma, E. O., & Van Den Herik, H. J. (2009). Dimensionality reduction: A comparative review. Tech. report, Tilburg University. TiCC-TR 2009-005.
    • (2009) TiCC-TR , pp. 2005-2009
    • Van Der Maaten, L.J.P.1    Postma, E.O.2    Van Den Herik, H.J.3
  • 37
    • 84887252594 scopus 로고    scopus 로고
    • Support vector method for function approximation, regression estimation, and signal processing
    • Vapnik, V., Golowich, S., & Smola, A. (1997). Support vector method for function approximation, regression estimation, and signal processing. Advances in Neural Information Processing Systems, 9, 281–287.
    • (1997) Advances in Neural Information Processing Systems , vol.9 , pp. 281-287
    • Vapnik, V.1    Golowich, S.2    Smola, A.3
  • 40
    • 0034516536 scopus 로고    scopus 로고
    • Tool condition monitoring using reflectance of chip surface and neural network
    • Yeo, S. H., Khoo, L. P., & Neo, S. S. (2000). Tool condition monitoring using reflectance of chip surface and neural network. Journal of Intelligent Manufacturing, 11, 507–514.
    • (2000) Journal of Intelligent Manufacturing , vol.11 , pp. 507-514
    • Yeo, S.H.1    Khoo, L.P.2    Neo, S.S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.