메뉴 건너뛰기




Volumn , Issue , 2009, Pages 2281-2293

Sequential Monte Carlo-based fidelity selection in Dynamic-data-driven Adaptive Multi-scale Simulations (DDDAMS)

Author keywords

[No Author keywords available]

Indexed keywords

COMPLEX SIMULATION; COMPUTATIONAL RESOURCES; DATA UPDATE; DATA-DRIVEN; DYNAMIC DATA; DYNAMIC INFORMATION; MASSIVE DATA SETS; MEASUREMENT PROCESS; MULTI-SCALE SIMULATION; NUMBER OF DATUM; PARALLELIZATIONS; PARAMETER ESTIMATE; QUANTITY OF INTEREST; SEMICONDUCTOR SUPPLY CHAIN; SEQUENTIAL BAYESIAN INFERENCE; SEQUENTIAL MONTE CARLO; SEQUENTIAL MONTE CARLO METHODS;

EID: 77951545828     PISSN: 08917736     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/WSC.2009.5429195     Document Type: Conference Paper
Times cited : (5)

References (19)
  • 1
    • 0036475447 scopus 로고    scopus 로고
    • A tutorial on particle filters for online nonlinear/non-gaussian bayesian tracking
    • Arulampalam, S., S. Maskell, N. Gordon, and T. Clapp. 2002. A tutorial on particle filters for online nonlinear/non-gaussian bayesian tracking. IEEE Transactions on Signal Processing, 50 (2), 174-188.
    • (2002) IEEE Transactions on Signal Processing , vol.50 , Issue.2 , pp. 174-188
    • Arulampalam, S.1    Maskell, S.2    Gordon, N.3    Clapp, T.4
  • 3
    • 77951527468 scopus 로고    scopus 로고
    • DDDAS-based multi-fidelity simulation framework for supply chain cystems
    • submitted to
    • Celik, N., S. Lee, K.K. Vasudevan, and Y. Son. 2007. DDDAS-based multi-fidelity simulation framework for supply chain cystems, submitted to IIE Transactions.
    • (2007) IIE Transactions
    • Celik, N.1    Lee, S.2    Vasudevan, K.K.3    Son, Y.4
  • 4
    • 46149107917 scopus 로고    scopus 로고
    • Bayesian ideas and discrete event simulation: Why, what and how?
    • Monterey, California
    • Chick, S.E. 2006. Bayesian ideas and discrete event simulation: Why, what and how? In Proceedings of the 2006 Winter Simulation Conference, 96-106. Monterey, California.
    • (2006) Proceedings of the 2006 Winter Simulation Conference , pp. 96-106
    • Chick, S.E.1
  • 6
    • 0001460136 scopus 로고    scopus 로고
    • On sequential Monte Carlo sampling methods for Bayesian filtering
    • Doucet, A., S. Godsill, and C. Andrieu, C. 2000. On sequential Monte Carlo sampling methods for Bayesian filtering. Statistics and Computing, 10, 197-208.
    • (2000) Statistics and Computing , vol.10 , pp. 197-208
    • Doucet, A.1    Godsill, S.2    Andrieu C, C.3
  • 10
    • 21344458535 scopus 로고    scopus 로고
    • Metropolized independent sampling with comparison to rejection sampling and importance sampling
    • Liu, J.S. 1996. Metropolized independent sampling with comparison to rejection sampling and importance sampling. Statistics and Computing, 6, 113-119.
    • (1996) Statistics and Computing , vol.6 , pp. 113-119
    • Liu, J.S.1
  • 11
    • 54449089010 scopus 로고    scopus 로고
    • Neural network learning of optimal Kalman prediction and control
    • Linsker, R. 2008. Neural network learning of optimal Kalman prediction and control. Neural Networks, 21(9), 1328-1343.
    • (2008) Neural Networks , vol.21 , Issue.9 , pp. 1328-1343
    • Linsker, R.1
  • 12
    • 23844505298 scopus 로고    scopus 로고
    • Employing the extended Kalman filter in measuring the output gap
    • Ozbek L. and U. Ozlale. 2005. Employing the extended Kalman filter in measuring the output gap. Journal of Economic Dynamics and Control. 29 (9), 1611-1622.
    • (2005) Journal of Economic Dynamics and Control , vol.29 , Issue.9 , pp. 1611-1622
    • Ozbek, L.1    Ozlale, U.2
  • 14
    • 0037527978 scopus 로고    scopus 로고
    • A sequential Monte Carlo method for Bayesian analysis of massive datasets
    • Ridgeway, G. and D. Madigan. 2003. A sequential Monte Carlo method for Bayesian analysis of massive datasets. Journal of Knowledge Discovery and Data Mining, 7(3), 301-319.
    • (2003) Journal of Knowledge Discovery and Data Mining , vol.7 , Issue.3 , pp. 301-319
    • Ridgeway, G.1    Madigan, D.2
  • 15
    • 33746266963 scopus 로고    scopus 로고
    • Inter-organizational information sharing: The role of supply network configuration and partner goal congruence
    • Samaddar, S., S.A. Nargundkar, and M. Daleya. 2006. Inter-organizational information sharing: The role of supply network configuration and partner goal congruence. European Journal of Operations Research, 174(2), 744-76.5.
    • (2006) European Journal of Operations Research , vol.174 , Issue.2
    • Samaddar, S.1    Nargundkar, S.A.2    Daleya, M.3
  • 17
    • 27544460134 scopus 로고    scopus 로고
    • Sequential Monte Carlo methods for multi-target filtering with random finite sets
    • Vo, B.N., S. Singh, and A. Doucet. 2005. Sequential Monte Carlo methods for multi-target filtering with random finite sets. IEEE Transactions on Aerospace and Electronic Systems, 41(4), 1224-1245.
    • (2005) IEEE Transactions on Aerospace and Electronic Systems , vol.41 , Issue.4 , pp. 1224-1245
    • Vo, B.N.1    Singh, S.2    Doucet, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.