메뉴 건너뛰기




Volumn 50, Issue 22, 2012, Pages 6288-6310

On-line classifying process mean shifts in multivariate control charts based on multiclass support vector machines

Author keywords

Ensemble classification; Multivariate statistical process control; Process mean shifts; Support vector machine

Indexed keywords

CLASSIFICATION ACCURACY; CORRECTIVE ACTIONS; ENSEMBLE CLASSIFICATION; MULTI-CLASS; MULTI-CLASS SUPPORT VECTOR MACHINES; MULTIVARIATE CONTROL CHARTS; MULTIVARIATE MANUFACTURING PROCESS; MULTIVARIATE STATISTICAL PROCESS CONTROL; OUT-OF-CONTROL SIGNALS; PARTICLE SWARM OPTIMISATION; PROCESS MEAN SHIFTS; QUALITY ENGINEERS; REAL APPLICATIONS; ROOT CAUSE; SIMULATION EXPERIMENTS;

EID: 84868228150     PISSN: 00207543     EISSN: 1366588X     Source Type: Journal    
DOI: 10.1080/00207543.2011.631596     Document Type: Article
Times cited : (49)

References (55)
  • 5
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L., 1996. Bagging predictors. Machine Learning, 24 (2), 123-140. (Pubitemid 126724382)
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 6
    • 0035273693 scopus 로고    scopus 로고
    • Enhanced algorithm performance for land cover classification from remotely sensed data using bagging and boosting
    • DOI 10.1109/36.911126, PII S0196289201020903
    • Chan, J., Huang, C., and DeFries, R., 2001. Enhanced algorithm performance for land cover classification from remotely sensed data using bagging and boosting. IEEE Transactions on Geoscience and Remote Sensing, 39 (3), 693-695. (Pubitemid 32400437)
    • (2001) IEEE Transactions on Geoscience and Remote Sensing , vol.39 , Issue.3 , pp. 693-695
    • Chan, J.C.-W.1    Huang, C.2    DeFries, R.3
  • 7
    • 0030211371 scopus 로고    scopus 로고
    • A neural fuzzy control chart for detecting and classifying process mean shifts
    • Chang, S.I. and Aw, C.A., 1996. A neural fuzzy control chart for detecting and classifying process mean shifts. International Journal of Production Research, 34 (8), 2265-2278. (Pubitemid 126525296)
    • (1996) International Journal of Production Research , vol.34 , Issue.8 , pp. 2265-2278
    • Chang, S.I.1    Aw, C.A.2
  • 8
    • 0033131670 scopus 로고    scopus 로고
    • A two-stage neural network approach for process variance change detection and classification
    • Chang, S.I. and Ho, E.S., 1999. A two-stage neural network approach for process variance change detection and classification. International Journal of Production Research, 37 (7), 1581-1599.
    • (1999) International Journal of Production Research , vol.37 , Issue.7 , pp. 1581-1599
    • Chang, S.I.1    Ho, E.S.2
  • 9
    • 0026116468 scopus 로고
    • Orthogonal least squares learning algorithm for radial basis function networks
    • Chen, S., Cowan, C.F.N., and Grant, P.M., 1991. Orthogonal least squares learning algorithm for radial basis function networks. IEEE Transaction on Neural Networks, 2 (2), 302-309.
    • (1991) IEEE Transaction on Neural Networks , vol.2 , Issue.2 , pp. 302-309
    • Chen, S.1    Cowan, C.F.N.2    Grant, P.M.3
  • 10
    • 0029196273 scopus 로고
    • A multi-layer neural network model for detecting changes in the process mean
    • Cheng, C.S., 1995. A multi-layer neural network model for detecting changes in the process mean. Computer and Industrial Engineering, 28 (1), 51-61.
    • (1995) Computer and Industrial Engineering , vol.28 , Issue.1 , pp. 51-61
    • Cheng, C.S.1
  • 11
    • 45149101726 scopus 로고    scopus 로고
    • Identifying the source of variance shifts in the multivariate process using neural networks and support vector machines
    • Cheng, C.S. and Cheng, H.P., 2008. Identifying the source of variance shifts in the multivariate process using neural networks and support vector machines. Expert Systems with Applications, 35 (1-3), 198-206.
    • (2008) Expert Systems with Applications , vol.35 , Issue.1-3 , pp. 198-206
    • Cheng, C.S.1    Cheng, H.P.2
  • 12
    • 0037146388 scopus 로고    scopus 로고
    • Support vector machines for recognising shifts in correlated and other manufacturing processes
    • Chinnam, R.B., 2002. Support vector machines for recognising shifts in correlated and other manufacturing processes. International Journal of Production Research, 40 (17), 4449-4466.
    • (2002) International Journal of Production Research , vol.40 , Issue.17 , pp. 4449-4466
    • Chinnam, R.B.1
  • 13
    • 0032022864 scopus 로고    scopus 로고
    • Using basis function networks to recognize shifts in correlated process parameters
    • Cook, D.F. and Chiu, C.C., 1998. Using radial basis function neural networks to recognise shifts in correlated manufacturing process parameters. IIE Transactions, 30 (3), 227-234. (Pubitemid 128728199)
    • (1998) IIE Transactions (Institute of Industrial Engineers) , vol.30 , Issue.3 , pp. 227-234
    • Cook, D.F.1
  • 14
    • 0035923922 scopus 로고    scopus 로고
    • Utilization of neural networks for the recognition of variance shifts in correlated manufacturing process parameters
    • DOI 10.1080/00207540110071750
    • Cook, D.F., Zobel, C.W., and Nottingham, Q.J., 2001. Utilisation of neural networks for the recognition of variance shifts in correlated manufacturing process parameters. International Journal of Production Research, 39 (17), 3881-3887. (Pubitemid 35165489)
    • (2001) International Journal of Production Research , vol.39 , Issue.17 , pp. 3881-3887
    • Cook, D.F.1    Zobel, C.W.2    Nottingham, Q.J.3
  • 15
    • 34249753618 scopus 로고
    • Support vector network
    • Cortes, C. and Vapnik, V., 1995. Support vector network. Machine learning, 20 (3), 273-297.
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 16
    • 0036568032 scopus 로고    scopus 로고
    • On the learnability and design of output codes for multiclass problems
    • DOI 10.1023/A:1013637720281, Computational Learning Theory
    • Crammer, K. and Singer, Y., 2000. On the learnability and design of output codes for multiclass problems. Machine Learning, 47 (2-3), 201-233. (Pubitemid 34126110)
    • (2002) Machine Learning , vol.47 , Issue.2-3 , pp. 201-233
    • Crammer, K.1    Singer, Y.2
  • 18
    • 77952905251 scopus 로고    scopus 로고
    • An integrated system for on-line intelligent monitoring and identifying process variability and its application
    • Du, S. and Xi, L., 2010. An integrated system for on-line intelligent monitoring and identifying process variability and its application. International Journal of Computer Integrated Manufacturing, 23 (6), 529-542.
    • (2010) International Journal of Computer Integrated Manufacturing , vol.23 , Issue.6 , pp. 529-542
    • Du, S.1    Xi, L.2
  • 19
    • 37849017170 scopus 로고    scopus 로고
    • Product lifecycle-oriented quality and productivity improvement based on stream of variation methodology
    • Du, S., et al., 2008. Product lifecycle-oriented quality and productivity improvement based on stream of variation methodology. Computers in Industry, 59 (2-3), 180-192.
    • (2008) Computers in Industry , vol.59 , Issue.2-3 , pp. 180-192
    • Du, S.1
  • 22
    • 38749112231 scopus 로고    scopus 로고
    • AptaCDSS-E: A classifier ensemble based clinical decision support system for cardiovascular disease level prediction
    • Eom, J.H., Kim, S.C., and Zhang, B.T., 2008. AptaCDSS-E: A classifier ensemble based clinical decision support system for cardiovascular disease level prediction. Expert System with Application, 34 (4), 2465-2479.
    • (2008) Expert System with Application , vol.34 , Issue.4 , pp. 2465-2479
    • Eom, J.H.1    Kim, S.C.2    Zhang, B.T.3
  • 23
    • 0031211090 scopus 로고    scopus 로고
    • A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting
    • Freund, Y. and Schapire, R., 1997. A decision-theoretic generalisation of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55 (1), 119-139. (Pubitemid 127433398)
    • (1997) Journal of Computer and System Sciences , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 24
    • 0032648097 scopus 로고    scopus 로고
    • An integrated neural network approach for simultaneous monitoring of process mean and variance shifts - A comparative study
    • Ho, E. S. and Chang, S.I., 1999. An integrated neural network approach for simultaneous monitoring of process mean and variance shifts - a comparative study. International Journal of Production Research, 37 (8), 1881-1901.
    • (1999) International Journal of Production Research , vol.37 , Issue.8 , pp. 1881-1901
    • Ho, E.S.1    Chang, S.I.2
  • 25
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multiclass support vector machines
    • Hsu, C.W. and Lin, C.J., 2002. A comparison of methods for multiclass support vector machines. IEEE Transactions on Neural Networks, 13 (2), 415-425.
    • (2002) IEEE Transactions on Neural Networks , vol.13 , Issue.2 , pp. 415-425
    • Hsu, C.W.1    Lin, C.J.2
  • 26
    • 1342265964 scopus 로고    scopus 로고
    • Detecting process mean shift in the presence of autocorrelation: A neural-network based monitoring scheme
    • Hwarng, H.B., 2004. Detecting process mean shift in the presence of autocorrelation: A neural-network based monitoring scheme. International Journal of Production Research, 42 (3), 573-595.
    • (2004) International Journal of Production Research , vol.42 , Issue.3 , pp. 573-595
    • Hwarng, H.B.1
  • 27
    • 32144448660 scopus 로고    scopus 로고
    • Improved prediction of bacterial transcription start sites
    • DOI 10.1093/bioinformatics/bti771
    • Gordon, J.J., et al., 2006. Improved prediction of bacterial transcription start sites. Bioinformatics, 22 (2), 142-148. (Pubitemid 43205399)
    • (2006) Bioinformatics , vol.22 , Issue.2 , pp. 142-148
    • Gordon, J.J.1    Towsey, M.W.2    Hogan, J.M.3    Mathews, S.A.4    Timms, P.5
  • 28
    • 34047098687 scopus 로고    scopus 로고
    • On-line identification and quantification of mean shifts in bivariate processes using a neural network-based approach
    • Guh, R.S., 2007. On-line identification and quantification of mean shifts in bivariate processes using a neural network-based approach. Quality and Reliability Engineering International, 23 (3), 367-385.
    • (2007) Quality and Reliability Engineering International , vol.23 , Issue.3 , pp. 367-385
    • Guh, R.S.1
  • 29
    • 50349096476 scopus 로고    scopus 로고
    • An effective application of decision tree learning for on-line detection of mean shifts in multivariate control charts
    • Guh, R.S. and Shiue, Y.R., 2008. An effective application of decision tree learning for on-line detection of mean shifts in multivariate control charts. Computers & Industrial Engineering, 55 (2), 475-493.
    • (2008) Computers & Industrial Engineering , vol.55 , Issue.2 , pp. 475-493
    • Guh, R.S.1    Shiue, Y.R.2
  • 31
    • 74549139703 scopus 로고    scopus 로고
    • Predictive modelling of turning operations using response surface methodology, artificial neural networks and support vector regression
    • Gupta, A.K., 2010. Predictive modelling of turning operations using response surface methodology, artificial neural networks and support vector regression. International Journal of Product Research, 48 (3), 763-778.
    • (2010) International Journal of Product Research , vol.48 , Issue.3 , pp. 763-778
    • Gupta, A.K.1
  • 33
    • 0030262558 scopus 로고    scopus 로고
    • Multivariate SPC methods for process and product monitoring
    • Kourti, T. and MacGregor, J.F., 1996. Multivariate SPC methods for process and product monitoring. Journal of Quality Technology, 28 (4), 409-428. (Pubitemid 126588616)
    • (1996) Journal of Quality Technology , vol.28 , Issue.4 , pp. 409-428
    • Kourti, T.1    MacGregor, J.F.2
  • 35
    • 39449085018 scopus 로고    scopus 로고
    • Causation-based T2 decomposition for multivariate process monitoring and diagnosis
    • Li, J., Jin, J., and Shi, J., 2008. Causation-based T2 decomposition for multivariate process monitoring and diagnosis. Journal of Quality Technology, 40 (1), 46-68.
    • (2008) Journal of Quality Technology , vol.40 , Issue.1 , pp. 46-68
    • Li, J.1    Jin, J.2    Shi, J.3
  • 37
    • 0029293774 scopus 로고
    • Decomposition of it T2 for multivariate control chart interpretation
    • Mason, R.L., Tracy, N.D., and Yong, J.C., 1995. Decomposition of it T2 for multivariate control chart interpretation. Journal of Quality Technology, 27 (2), 140-143.
    • (1995) Journal of Quality Technology , vol.27 , Issue.2 , pp. 140-143
    • Mason, R.L.1    Tracy, N.D.2    Yong, J.C.3
  • 38
    • 0031249139 scopus 로고    scopus 로고
    • 2 control chart signals
    • Mason, R.L., Tracy, N.D., and Yong, J.C., 1997. A practical approach of interpreting multivariate T2 control chart signals. Journal of Quality Technology, 29 (4), 396-406. (Pubitemid 127581421)
    • (1997) Journal of Quality Technology , vol.29 , Issue.4 , pp. 396-406
    • Mason, R.L.1    Tracy, N.D.2    Young, J.C.3
  • 40
    • 28844486614 scopus 로고    scopus 로고
    • Fault diagnosis in multivariate control charts using artificial neural networks
    • DOI 10.1002/qre.689
    • Niaki, S.T.A. and Abbasi, B., 2005. Fault diagnosis in multivariate control charts using artificial neural networks. Quality and Reliability Engineering International, 21 (8), 825-840. (Pubitemid 41766868)
    • (2005) Quality and Reliability Engineering International , vol.21 , Issue.8 , pp. 825-840
    • Niaki, S.T.A.1    Abbasi, B.2
  • 41
    • 41849120766 scopus 로고    scopus 로고
    • Detection and classification mean-shifts in multi-attribute processes by artificial neural networks
    • DOI 10.1080/00207540601039809, PII 772296145
    • Niaki, S.T.A. and Abbasi, B., 2008. Detection and classification mean-shifts in multi-attribute processes by artificial neural networks. International Journal of Production Research, 46 (11), 2945-2963. (Pubitemid 351499528)
    • (2008) International Journal of Production Research , vol.46 , Issue.11 , pp. 2945-2963
    • Niaki, S.T.A.1    Abbasi, B.2
  • 42
    • 1242264850 scopus 로고    scopus 로고
    • Manufacturing quality control by means of a Fuzzy ART network trained on natural process data
    • Pacella, M., Semeraro, Q., and Anglani, A., 2004. Manufacturing quality control by means of a Fuzzy ART network trained on natural process data. Engineering Applications of Artificial Intelligence, 17 (1), 83-96.
    • (2004) Engineering Applications of Artificial Intelligence , vol.17 , Issue.1 , pp. 83-96
    • Pacella, M.1    Semeraro, Q.2    Anglani, A.3
  • 43
    • 0026927426 scopus 로고
    • Multilayer perceptron, fuzzy sets, and classification
    • DOI 10.1109/72.159058
    • Pal, S.K. and Mitra, S., 1992. Multilayer perceptron, fuzzy sets, and classification. IEEE Transaction on Neural Networks, 3 (5), 683-697. (Pubitemid 23555783)
    • (1992) IEEE Transactions on Neural Networks , vol.3 , Issue.5 , pp. 683-697
    • Pal Sankar, K.1    Mitra Sushmita2
  • 44
    • 33746218071 scopus 로고    scopus 로고
    • An interactive approach to solve the operation sequencing problem using simulated annealing
    • DOI 10.1007/s00170-005-0007-z
    • Pandey, V., Tiwari, M.K., and Kumar, S., 2006. An interactive approach to solve the operation sequencing problem using simulated annealing. International Journal of Advanced Manufacturing Technology, 29 (11-12), 1212-1231. (Pubitemid 44099800)
    • (2006) International Journal of Advanced Manufacturing Technology , vol.29 , Issue.11-12 , pp. 1212-1231
    • Pandey, V.1    Tiwari, M.K.2    Kumar, S.3
  • 45
    • 0024943235 scopus 로고
    • Synthetic neural networks for process control
    • Pugh, G.A., 1989. Synthetic neural networks for process control. Computer and Industrial Engineering, 17 (1-4), 24-26. (Pubitemid 20627091)
    • (1989) Computers and Industrial Engineering , vol.17 , Issue.1-4 , pp. 24-26
    • Pugh G.Allen1
  • 46
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • Schapire, R.E., 1990. The strength of weak learnability. Machine Learning, 5 (2), 197-227.
    • (1990) Machine Learning , vol.5 , Issue.2 , pp. 197-227
    • Schapire, R.E.1
  • 47
    • 0028377883 scopus 로고
    • X-Bar and R control chart interpretation using neural computing
    • Smith, A.E., 1994. X-Bar and R control chart interpretation using neural computing. International journal of Production Research, 32 (2), 309-320.
    • (1994) International Journal of Production Research , vol.32 , Issue.2 , pp. 309-320
    • Smith, A.E.1
  • 48
    • 0025206332 scopus 로고
    • Probabilistic neural networks
    • Specht, D.F., 1990. Probabilistic neural networks. Neural Networks, 3 (1), 109-118.
    • (1990) Neural Networks , vol.3 , Issue.1 , pp. 109-118
    • Specht, D.F.1
  • 49
    • 0242333191 scopus 로고    scopus 로고
    • A kernel-distance-based multivariate control chart using support vector methods
    • Sun, R. and Tsung, F., 2003. A kernel-distance-based multivariate control chart using support vector methods. International Journal of Production Research, 41 (13), 2975-2989.
    • (2003) International Journal of Production Research , vol.41 , Issue.13 , pp. 2975-2989
    • Sun, R.1    Tsung, F.2
  • 52
    • 77955511680 scopus 로고    scopus 로고
    • Fault detection and isolation of faults in a multivariate process with Bayesian network
    • Verron, S., Li., J., and Tiplica, T., 2010. Fault detection and isolation of faults in a multivariate process with Bayesian network. Journal of Process Control, 28 (8), 902-911.
    • (2010) Journal of Process Control , vol.28 , Issue.8 , pp. 902-911
    • Verron, S.1    Li., J.2    Tiplica, T.3
  • 53
    • 0001648555 scopus 로고    scopus 로고
    • Research issues and ideas in statistical process control
    • Woodall, W.H. and Montgomery, D.C., 1999. Research issues and ideas in statistical process control. Journal of Quality Technology, 31 (4), 376-386. (Pubitemid 129585019)
    • (1999) Journal of Quality Technology , vol.31 , Issue.4 , pp. 376-386
    • Woodall, W.H.1    Montgomery, D.C.2
  • 54
    • 70449590251 scopus 로고    scopus 로고
    • A hybrid learning-based model for on-line monitoring and diagnosis of outof- control signals in multivariate manufacturing processes
    • Yu, J.B. and Xi, L.F., 2009. A hybrid learning-based model for on-line monitoring and diagnosis of outof- control signals in multivariate manufacturing processes. International Journal of Production Research, 47 (15), 4077-4108.
    • (2009) International Journal of Production Research , vol.47 , Issue.15 , pp. 4077-4108
    • Yu, J.B.1    Xi, L.F.2
  • 55
    • 0036567392 scopus 로고    scopus 로고
    • Ensembling neural networks: Many could be better than all
    • DOI 10.1016/S0004-3702(02)00190-X, PII S000437020200190X
    • Zhou, Z.H., Wu, J.X., and Tang, W., 2002. Ensembling neural networks: many could be better than all. Artificial Intelligence, 137 (1-2), 239-263. (Pubitemid 34405220)
    • (2002) Artificial Intelligence , vol.137 , Issue.1-2 , pp. 239-263
    • Zhou, Z.-H.1    Wu, J.2    Tang, W.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.