메뉴 건너뛰기




Volumn 55, Issue 11, 2017, Pages 6287-6304

Spatial Group Sparsity Regularized Nonnegative Matrix Factorization for Hyperspectral Unmixing

Author keywords

Hyperspectral unmixing (HU); nonnegative matrix factorization (NMF); spatial group sparsity

Indexed keywords

BLIND SOURCE SEPARATION; FACTORIZATION; IMAGE SEGMENTATION; PIXELS; SPECTROSCOPY;

EID: 85035006286     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2017.2724944     Document Type: Article
Times cited : (209)

References (49)
  • 3
    • 84861772901 scopus 로고    scopus 로고
    • Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches
    • Apr.
    • J. M. Bioucas-Dias et al., "Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches, " IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 5, no. 2, pp. 354-379, Apr. 2012.
    • (2012) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.5 , Issue.2 , pp. 354-379
    • Bioucas-Dias, J.M.1
  • 5
    • 0033310314 scopus 로고    scopus 로고
    • N-FINDR: An algorithm for fast autonomous spectral end-member determination in hyperspectral data
    • Oct.
    • M. E. Winter, "N-FINDR: An algorithm for fast autonomous spectral end-member determination in hyperspectral data, " Proc. SPIE, vol. 3753, pp. 266-275, Oct. 1999.
    • (1999) Proc. SPIE , vol.3753 , pp. 266-275
    • Winter, M.E.1
  • 6
    • 16444373735 scopus 로고    scopus 로고
    • Vertex component analysis: A fast algorithm to unmix hyperspectral data
    • Apr.
    • J. M. P. Nascimento and J. M. Bioucas-Dias, "Vertex component analysis: A fast algorithm to unmix hyperspectral data, " IEEE Trans. Geosci. Remote Sens., vol. 43, no. 4, pp. 898-910, Apr. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , Issue.4 , pp. 898-910
    • Nascimento, J.M.P.1    Bioucas-Dias, J.M.2
  • 7
    • 84887415911 scopus 로고    scopus 로고
    • A new growing method for simplex-based endmember extraction algorithm
    • Oct.
    • C.-I. Chang, C.-C. Wu, W.-M. Liu, and Y.-C. Ouyang, "A new growing method for simplex-based endmember extraction algorithm, " IEEE Trans. Geosci. Remote Sens., vol. 44, no. 10, pp. 2804-2819, Oct. 2006.
    • (2006) IEEE Trans. Geosci. Remote Sens. , vol.44 , Issue.10 , pp. 2804-2819
    • Chang, C.-I.1    Wu, C.-C.2    Liu, W.-M.3    Ouyang, Y.-C.4
  • 8
    • 70350488509 scopus 로고    scopus 로고
    • A convex analysisbased minimum-volume enclosing simplex algorithm for hyperspectral unmixing
    • Nov.
    • T.-H. Chan, C.-Y. Chi, Y.-M. Huang, and W.-K. Ma, "A convex analysisbased minimum-volume enclosing simplex algorithm for hyperspectral unmixing, " IEEE Trans. Signal Process., vol. 57, no. 11, pp. 4418-4432, Nov. 2009.
    • (2009) IEEE Trans. Signal Process. , vol.57 , Issue.11 , pp. 4418-4432
    • Chan, T.-H.1    Chi, C.-Y.2    Huang, Y.-M.3    Ma, W.-K.4
  • 9
    • 0035273728 scopus 로고    scopus 로고
    • Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery
    • Mar.
    • D. C. Heinz and C.-I. Chang, "Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery, " IEEE Trans. Geosci. Remote Sens., vol. 39, no. 3, pp. 529-545, Mar. 2001.
    • (2001) IEEE Trans. Geosci. Remote Sens. , vol.39 , Issue.3 , pp. 529-545
    • Heinz, D.C.1    Chang, C.-I.2
  • 10
    • 12844266861 scopus 로고    scopus 로고
    • Does independent component analysis play a role in unmixing hyperspectral data
    • Jan.
    • J. M. P. Nascimento and J. M. B. Dias, "Does independent component analysis play a role in unmixing hyperspectral data" IEEE Trans. Geosci. Remote Sens., vol. 43, no. 1, pp. 175-187, Jan. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , Issue.1 , pp. 175-187
    • Nascimento, J.M.P.1    Dias, J.M.B.2
  • 11
    • 33748312145 scopus 로고    scopus 로고
    • Applications of independent component analysis in endmember extraction and abundance quantification for hyperspectral imagery
    • Sep.
    • J. Wang and C.-I. Chang, "Applications of independent component analysis in endmember extraction and abundance quantification for hyperspectral imagery, " IEEE Trans. Geosci. Remote Sens., vol. 44, no. 9, pp. 2601-2616, Sep. 2006.
    • (2006) IEEE Trans. Geosci. Remote Sens. , vol.44 , Issue.9 , pp. 2601-2616
    • Wang, J.1    Chang, C.-I.2
  • 13
    • 33847733865 scopus 로고    scopus 로고
    • Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization
    • Mar.
    • L. Miao and H. Qi, "Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization, " IEEE Trans. Geosci. Remote Sens., vol. 45, no. 3, pp. 765-777, Mar. 2007.
    • (2007) IEEE Trans. Geosci. Remote Sens. , vol.45 , Issue.3 , pp. 765-777
    • Miao, L.1    Qi, H.2
  • 15
    • 34547229626 scopus 로고    scopus 로고
    • Sparsity promoting iterated constrained endmember detection in hyperspectral imagery
    • Jul.
    • A. Zare and P. Gader, "Sparsity promoting iterated constrained endmember detection in hyperspectral imagery, " IEEE Geosci. Remote Sens. Lett., vol. 4, no. 3, pp. 446-450, Jul. 2007.
    • (2007) IEEE Geosci. Remote Sens. Lett. , vol.4 , Issue.3 , pp. 446-450
    • Zare, A.1    Gader, P.2
  • 17
    • 84973663811 scopus 로고    scopus 로고
    • Blind spectral unmixing based on sparse component analysis for hyperspectral remote sensing imagery
    • Sep.
    • Y. Zhong, X. Wang, L. Zhao, R. Feng, L. Zhang, and Y. Xu, "Blind spectral unmixing based on sparse component analysis for hyperspectral remote sensing imagery, " ISPRS J. Photogramm. Remote Sens., vol. 119, pp. 49-63, Sep. 2016.
    • (2016) ISPRS J. Photogramm. Remote Sens. , vol.119 , pp. 49-63
    • Zhong, Y.1    Wang, X.2    Zhao, L.3    Feng, R.4    Zhang, L.5    Xu, Y.6
  • 18
    • 80455174031 scopus 로고    scopus 로고
    • Hyperspectral unmixing via L1/2 sparsity-constrained nonnegative matrix factorization
    • Nov.
    • Y. Qian, S. Jia, J. Zhou, and A. Robles-Kelly, "Hyperspectral unmixing via L1/2 sparsity-constrained nonnegative matrix factorization, " IEEE Trans. Geosci. Remote Sens., vol. 49, no. 11, pp. 4282-4297, Nov. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.11 , pp. 4282-4297
    • Qian, Y.1    Jia, S.2    Zhou, J.3    Robles-Kelly, A.4
  • 19
    • 84885021995 scopus 로고    scopus 로고
    • Manifold regularized sparse NMF for hyperspectral unmixing
    • May
    • X. Lu, H. Wu, Y. Yuan, P. Yan, and X. Li, "Manifold regularized sparse NMF for hyperspectral unmixing, " IEEE Trans. Geosci. Remote Sens., vol. 51, no. 5, pp. 2815-2826, May 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , Issue.5 , pp. 2815-2826
    • Lu, X.1    Wu, H.2    Yuan, Y.3    Yan, P.4    Li, X.5
  • 20
    • 84896314517 scopus 로고    scopus 로고
    • Double constrained NMF for hyperspectral unmixing
    • May
    • X. Lu, H. Wu, and Y. Yuan, "Double constrained NMF for hyperspectral unmixing, " IEEE Trans. Geosci. Remote Sens., vol. 52, no. 5, pp. 2746-2758, May 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.5 , pp. 2746-2758
    • Lu, X.1    Wu, H.2    Yuan, Y.3
  • 21
    • 0032156917 scopus 로고    scopus 로고
    • Mapping chaparral in the Santa Monica Mountains using multiple endmember spectral mixture models
    • Sep.
    • D. A. Roberts, M. Gardner, R. Church, S. Ustin, G. Scheer, and R. O. Green, "Mapping chaparral in the Santa Monica Mountains using multiple endmember spectral mixture models, " Remote Sens. Environ., vol. 65, no. 3, pp. 267-279, Sep. 1998.
    • (1998) Remote Sens. Environ. , vol.65 , Issue.3 , pp. 267-279
    • Roberts, D.A.1    Gardner, M.2    Church, R.3    Ustin, S.4    Scheer, G.5    Green, R.O.6
  • 22
    • 79954622955 scopus 로고    scopus 로고
    • Endmember variability in spectral mixture analysis: A review
    • B. Somers, G. P. Asner, L. Tits, and P. Coppin, "Endmember variability in spectral mixture analysis: A review, " Remote Sens. Environ., vol. 115, no. 7, pp. 1603-1616, 2011.
    • (2011) Remote Sens. Environ. , vol.115 , Issue.7 , pp. 1603-1616
    • Somers, B.1    Asner, G.P.2    Tits, L.3    Coppin, P.4
  • 23
    • 85032750976 scopus 로고    scopus 로고
    • Endmember variability in hyperspectral analysis: Addressing spectral variability during spectral unmixing
    • Jan.
    • A. Zare and K. C. Ho, "Endmember variability in hyperspectral analysis: Addressing spectral variability during spectral unmixing, " IEEE Signal Process. Mag., vol. 31, no. 1, pp. 95-104, Jan. 2014.
    • (2014) IEEE Signal Process. Mag. , vol.31 , Issue.1 , pp. 95-104
    • Zare, A.1    Ho, K.C.2
  • 24
    • 84899702499 scopus 로고    scopus 로고
    • Incorporating spatial information in spectral unmixing: A review
    • Jun.
    • C. Shi and L. Wang, "Incorporating spatial information in spectral unmixing: A review, " Remote Sens. Environ., vol. 149, pp. 70-87, Jun. 2014.
    • (2014) Remote Sens. Environ. , vol.149 , pp. 70-87
    • Shi, C.1    Wang, L.2
  • 25
    • 0036762725 scopus 로고    scopus 로고
    • Spatial/spectral endmember extraction by multidimensional morphological operations
    • Sep.
    • A. Plaza, P. Martinez, R. Perez, and J. Plaza, "Spatial/spectral endmember extraction by multidimensional morphological operations, " IEEE Trans. Geosci. Remote Sens., vol. 40, no. 9, pp. 2025-2041, Sep. 2002.
    • (2002) IEEE Trans. Geosci. Remote Sens. , vol.40 , Issue.9 , pp. 2025-2041
    • Plaza, A.1    Martinez, P.2    Perez, R.3    Plaza, J.4
  • 26
    • 77956057087 scopus 로고    scopus 로고
    • Spatial purity based endmember extraction for spectral mixture analysis
    • Sep.
    • S. Mei, M. He, Z. Wang, and D. Feng, "Spatial purity based endmember extraction for spectral mixture analysis, " IEEE Trans. Geosci. Remote Sens., vol. 48, no. 9, pp. 3434-3445, Sep. 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.9 , pp. 3434-3445
    • Mei, S.1    He, M.2    Wang, Z.3    Feng, D.4
  • 27
    • 67949098957 scopus 로고    scopus 로고
    • Spatial preprocessing for endmember extraction
    • Aug.
    • M. Zortea and A. Plaza, "Spatial preprocessing for endmember extraction, " IEEE Trans. Geosci. Remote Sens., vol. 47, no. 8, pp. 2679-2693, Aug. 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.8 , pp. 2679-2693
    • Zortea, M.1    Plaza, A.2
  • 28
    • 84869498082 scopus 로고    scopus 로고
    • Total variation spatial regularization for sparse hyperspectral unmixing
    • Nov.
    • M.-D. Iordache, J. M. Bioucas-Dias, and A. Plaza, "Total variation spatial regularization for sparse hyperspectral unmixing, " IEEE Trans. Geosci. Remote Sens., vol. 50, no. 11, pp. 4484-4502, Nov. 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.11 , pp. 4484-4502
    • Iordache, M.-D.1    Bioucas-Dias, J.M.2    Plaza, A.3
  • 29
    • 85027952549 scopus 로고    scopus 로고
    • An approach based on constrained nonnegative matrix factorization to unmix hyperspectral data
    • Feb.
    • X. Liu, W. Xia, B. Wang, and L. Zhang, "An approach based on constrained nonnegative matrix factorization to unmix hyperspectral data, " IEEE Trans. Geosci. Remote Sens., vol. 49, no. 2, pp. 757-772, Feb. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.2 , pp. 757-772
    • Liu, X.1    Xia, W.2    Wang, B.3    Zhang, L.4
  • 31
    • 35548969471 scopus 로고    scopus 로고
    • Projected gradient methods for nonnegative matrix factorization
    • C.-J. Lin, "Projected gradient methods for nonnegative matrix factorization, " Neural Comput., vol. 19, no. 10, pp. 2756-2779, 2007.
    • (2007) Neural Comput. , vol.19 , Issue.10 , pp. 2756-2779
    • Lin, C.-J.1
  • 32
    • 85032751209 scopus 로고    scopus 로고
    • A signal processing perspective on hyperspectral unmixing: Insights from remote sensing
    • Jan.
    • W.-K. Ma et al., "A signal processing perspective on hyperspectral unmixing: Insights from remote sensing, " IEEE Signal Process. Mag., vol. 31, no. 1, pp. 67-81, Jan. 2014.
    • (2014) IEEE Signal Process. Mag. , vol.31 , Issue.1 , pp. 67-81
    • Ma, W.-K.1
  • 33
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • R. Tibshirani, "Regression shrinkage and selection via the lasso, " J. Roy. Statist. Soc. B (Statist. Methodol.), vol. 58, no. 1, pp. 267-288, 1996.
    • (1996) J. Roy. Statist. Soc. B (Statist. Methodol.) , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 35
    • 33645035051 scopus 로고    scopus 로고
    • Model selection and estimation in regression with grouped variables
    • M. Yuan and Y. Lin, "Model selection and estimation in regression with grouped variables, " J. Roy. Statist. Soc. B (Statist. Methodol.), vol. 68, no. 1, pp. 49-67, 2006.
    • (2006) J. Roy. Statist. Soc. B (Statist. Methodol.) , vol.68 , Issue.1 , pp. 49-67
    • Yuan, M.1    Lin, Y.2
  • 37
    • 84873125367 scopus 로고    scopus 로고
    • Collaborative nonnegative matrix factorization for remotely sensed hyperspectral unmixing
    • J. Li, J. M. Bioucas-Dias, and A. Plaza, "Collaborative nonnegative matrix factorization for remotely sensed hyperspectral unmixing, " in Proc. Int. Geosci. Remote Sens. Symp. (IGARSS), 2012, pp. 3078-3081.
    • (2012) Proc. Int. Geosci. Remote Sens. Symp. (IGARSS) , pp. 3078-3081
    • Li, J.1    Bioucas-Dias, J.M.2    Plaza, A.3
  • 38
    • 9644254228 scopus 로고    scopus 로고
    • Efficient graph-based image segmentation
    • Sep.
    • P. F. Felzenszwalb and D. P. Huttenlocher, "Efficient graph-based image segmentation, " Int. J. Comput. Vis., vol. 59, no. 2, pp. 167-181, Sep. 2004.
    • (2004) Int. J. Comput. Vis. , vol.59 , Issue.2 , pp. 167-181
    • Felzenszwalb, P.F.1    Huttenlocher, D.P.2
  • 39
    • 0036565814 scopus 로고    scopus 로고
    • Mean shift: A robust approach toward feature space analysis
    • May
    • D. Comaniciu and P. Meer, "Mean shift: A robust approach toward feature space analysis, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 5, pp. 603-619, May 2002.
    • (2002) IEEE Trans. Pattern Anal. Mach. Intell. , vol.24 , Issue.5 , pp. 603-619
    • Comaniciu, D.1    Meer, P.2
  • 40
    • 0016951029 scopus 로고
    • Distance on a hexagonal grid
    • May
    • E. Luczak and A. Rosenfeld, "Distance on a hexagonal grid, " IEEE Trans. Comput., vol. C-25, no. 5, pp. 532-533, May 1976.
    • (1976) IEEE Trans. Comput. , vol.C-25 , Issue.5 , pp. 532-533
    • Luczak, E.1    Rosenfeld, A.2
  • 41
    • 70049113231 scopus 로고    scopus 로고
    • Sparse regression using mixed norms
    • M. Kowalski, "Sparse regression using mixed norms, " Appl. Comput. Harmon. Anal., vol. 27, no. 3, pp. 303-324, 2009.
    • (2009) Appl. Comput. Harmon. Anal. , vol.27 , Issue.3 , pp. 303-324
    • Kowalski, M.1
  • 45
    • 1842481516 scopus 로고    scopus 로고
    • Estimation of number of spectrally distinct signal sources in hyperspectral imagery
    • Mar.
    • C.-I. Chang and Q. Du, "Estimation of number of spectrally distinct signal sources in hyperspectral imagery, " IEEE Trans. Geosci. Remote Sens., vol. 42, no. 3, pp. 608-619, Mar. 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , Issue.3 , pp. 608-619
    • Chang, C.-I.1    Du, Q.2
  • 47
    • 84862998205 scopus 로고    scopus 로고
    • A new minimum-volume enclosing algorithm for endmember identification and abundance estimation in hyperspectral data
    • Jul.
    • E. M. T. Hendrix, I. Garcia, J. Plaza, G. Martin, and A. Plaza, "A new minimum-volume enclosing algorithm for endmember identification and abundance estimation in hyperspectral data, " IEEE Trans. Geosci. Remote Sens., vol. 50, no. 7, pp. 2744-2757, Jul. 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.7 , pp. 2744-2757
    • Hendrix, E.M.T.1    Garcia, I.2    Plaza, J.3    Martin, G.4    Plaza, A.5
  • 48
    • 0001138328 scopus 로고
    • Algorithm AS 136: A K-means clustering algorithm
    • J. A. Hartigan and M. A. Wong, "Algorithm AS 136: A K-means clustering algorithm, " J. Roy. Statist. Soc. C (Appl. Statist.), vol. 28, no. 1, pp. 100-108, 1979.
    • (1979) J. Roy. Statist. Soc. C (Appl. Statist.) , vol.28 , Issue.1 , pp. 100-108
    • Hartigan, J.A.1    Wong, M.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.