메뉴 건너뛰기




Volumn , Issue , 2012, Pages 851-862

Group sparsity in nonnegative matrix factorization

Author keywords

[No Author keywords available]

Indexed keywords

CLUSTERING ALGORITHMS; CONVEX OPTIMIZATION; DATA MINING; FACTORIZATION;

EID: 84874090367     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1137/1.9781611972825.73     Document Type: Conference Paper
Times cited : (64)

References (35)
  • 1
    • 80052253522 scopus 로고    scopus 로고
    • Convex optimization with sparsity-inducing norms
    • S. Sra, S. Nowozin, and S. J. Wright. editors, MIT Press
    • F. Bach, R. Jenatton, J. Mairal, and G. Obozinski. Convex optimization with sparsity-inducing norms. In S. Sra, S. Nowozin, and S. J. Wright., editors, Optimization for Machine Learning, pages 19-54. MIT Press, 2011.
    • (2011) Optimization for Machine Learning , pp. 19-54
    • Bach, F.1    Jenatton, R.2    Mairal, J.3    Obozinski, G.4
  • 2
    • 40549140784 scopus 로고    scopus 로고
    • Extracting gene expression profiles common to colon and pancreatic adenocarcinoma using simultaneous nonnegative matrix factorization
    • L. Badea. Extracting gene expression profiles common to colon and pancreatic adenocarcinoma using simultaneous nonnegative matrix factorization. In Proceedings of the Pacific Symposium on Biocom- puting 2008, pages 267-278, 2008.
    • (2008) Proceedings of the Pacific Symposium on Biocom- Puting, 2008 , pp. 267-278
    • Badea, L.1
  • 6
    • 30344483178 scopus 로고    scopus 로고
    • Document clustering using locality preserving indexing
    • December
    • D. Cai, X. He, and J. Han. Document clustering using locality preserving indexing. IEEE Transactions on Knowledge and Data Engineering, 17(12):1624- 1637, December 2005.
    • (2005) IEEE Transactions on Knowledge and Data Engineering , vol.17 , Issue.12 , pp. 1624-1637
    • Cai, D.1    He, X.2    Han, J.3
  • 15
    • 77955908608 scopus 로고    scopus 로고
    • Sparse nonnegative matrix factorization for clustering
    • Technical Report GT-CSE- 08-01
    • J. Kim and H. Park. Sparse nonnegative matrix factorization for clustering. Technical report, Georgia Institute of Technology Technical Report GT-CSE- 08-01, 2008.
    • (2008) Technical Report, Georgia Institute of Technology
    • Kim, J.1    Park, H.2
  • 17
    • 84863012243 scopus 로고    scopus 로고
    • Fast nonnegative matrix factorization: An active-set-like method and comparisons
    • J. Kim and H. Park. Fast nonnegative matrix factorization: An active-set-like method and comparisons. SIAM Journal on Scientific Computing, 33(6):3261- 3281, 2011.
    • (2011) SIAM Journal on Scientific Computing , vol.33 , Issue.6 , pp. 3261-3281
    • Kim, J.1    Park, H.2
  • 19
    • 33746126624 scopus 로고    scopus 로고
    • Blockwise sparse regression
    • Y. Kim, J. Kim, and Y. Kim. Blockwise sparse regression. Statistica Sinica, 16(2):375-390, 2006.
    • (2006) Statistica Sinica , vol.16 , Issue.2 , pp. 375-390
    • Kim, Y.1    Kim, J.2    Kim, Y.3
  • 20
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative matrix factorization. Nature, 401(6755):788-791, 1999.
    • (1999) Nature , vol.401 , Issue.6755 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 22
    • 35548969471 scopus 로고    scopus 로고
    • Projected gradient methods for nonnegative matrix factorization
    • C.-J. Lin. Projected gradient methods for nonnegative matrix factorization. Neural Computation, 19(10):2756-2779, 2007.
    • (2007) Neural Computation , vol.19 , Issue.10 , pp. 2756-2779
    • Lin, C.-J.1
  • 24
    • 85161968806 scopus 로고    scopus 로고
    • Moreau-yosida regularization for grouped tree structure learning
    • J. Liu and J. Ye. Moreau-yosida regularization for grouped tree structure learning. In Advances in Neural Information Processing Systems 23, pages 1459-1467. 2010.
    • (2010) Advances in Neural Information Processing Systems , vol.23 , pp. 1459-1467
    • Liu, J.1    Ye, J.2
  • 26
  • 28
    • 0000859664 scopus 로고
    • An algorithm for a singly constrained class of quadratic programs subject to upper and lower bounds
    • P. M. Pardalos and N. Kovoor. An algorithm for a singly constrained class of quadratic programs subject to upper and lower bounds. Mathematical Programming, 46(1-3):321-328, 1990.
    • (1990) Mathematical Programming , vol.46 , Issue.1-3 , pp. 321-328
    • Pardalos, P.M.1    Kovoor, N.2
  • 31
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Series B (Methodological
    • R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological), 58(1):267-288, 1996.
    • (1996) Journal of the Royal Statistical Society , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 32
    • 70049111607 scopus 로고    scopus 로고
    • On accelerated proximal gradient methods for convex-concave optimization
    • P. Tseng. On accelerated proximal gradient methods for convex-concave optimization. submitted to SIAM Journal on Optimization, 2008.
    • (2008) Submitted to SIAM Journal on Optimization
    • Tseng, P.1
  • 35
    • 33645035051 scopus 로고    scopus 로고
    • Model selection and estimation in regression with grouped variables
    • Series B (Statistical Methodology)
    • M. Yuan and Y. Lin. Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68(1):49-67, 2006.
    • (2006) Journal of the Royal Statistical Society , vol.68 , Issue.1 , pp. 49-67
    • Yuan, M.1    Lin, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.