-
1
-
-
84875269406
-
An improved EEMD with multiwavelet packet for rotating machinery multi-fault diagnosis
-
Jiang, H.K., Li, C.L., Li, H.X., An improved EEMD with multiwavelet packet for rotating machinery multi-fault diagnosis. Mech. Syst. Signal Process. 36 (2013), 225–239.
-
(2013)
Mech. Syst. Signal Process.
, vol.36
, pp. 225-239
-
-
Jiang, H.K.1
Li, C.L.2
Li, H.X.3
-
2
-
-
85013647609
-
Application of an improved maximum correlated kurtosis deconvolution method for fault diagnosis of rolling element bearings
-
Miao, Y.H., Zhao, M., Lin, J., Lei, Y.G., Application of an improved maximum correlated kurtosis deconvolution method for fault diagnosis of rolling element bearings. Mech. Syst. Signal Process. 92 (2017), 173–195.
-
(2017)
Mech. Syst. Signal Process.
, vol.92
, pp. 173-195
-
-
Miao, Y.H.1
Zhao, M.2
Lin, J.3
Lei, Y.G.4
-
3
-
-
84955693855
-
Deep neural networks: a promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data
-
Jia, F., Lei, Y.G., Lin, J., Zhou, X., Lu, N., Deep neural networks: a promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data. Mech. Syst. Signal Process. 72–73 (2016), 303–315.
-
(2016)
Mech. Syst. Signal Process.
, vol.72-73
, pp. 303-315
-
-
Jia, F.1
Lei, Y.G.2
Lin, J.3
Zhou, X.4
Lu, N.5
-
4
-
-
85018771228
-
A novel deep autoencoder feature learning method for rotating machinery fault diagnosis
-
Shao, H.D., Jiang, H.K., Zhao, H.W., Wang, F.A., A novel deep autoencoder feature learning method for rotating machinery fault diagnosis. Mech. Syst. Signal Process. 98 (2017), 187–204.
-
(2017)
Mech. Syst. Signal Process.
, vol.98
, pp. 187-204
-
-
Shao, H.D.1
Jiang, H.K.2
Zhao, H.W.3
Wang, F.A.4
-
5
-
-
85006307176
-
A novel intelligent method for bearing fault diagnosis based on affinity propagation clustering and adaptive feature selection
-
Wei, Z.X., Wang, Y.X., He, S.L., Bao, J.D., A novel intelligent method for bearing fault diagnosis based on affinity propagation clustering and adaptive feature selection. Knowl.-Based Syst. 116 (2017), 1–12.
-
(2017)
Knowl.-Based Syst.
, vol.116
, pp. 1-12
-
-
Wei, Z.X.1
Wang, Y.X.2
He, S.L.3
Bao, J.D.4
-
6
-
-
84912032961
-
A fusion feature and its improvement based on locality preserving projections for rolling element bearing fault classification
-
Ding, X.X., He, Q.B., Luo, N.W., A fusion feature and its improvement based on locality preserving projections for rolling element bearing fault classification. J. Sound Vib. 335 (2015), 367–383.
-
(2015)
J. Sound Vib.
, vol.335
, pp. 367-383
-
-
Ding, X.X.1
He, Q.B.2
Luo, N.W.3
-
7
-
-
84905828170
-
Fault diagnosis of rotating machinery with a novel statistical feature extraction and evaluation method
-
Li, W., Zhu, Z.C., Jiang, F., Zhou, G.B., Chen, G.A., Fault diagnosis of rotating machinery with a novel statistical feature extraction and evaluation method. Mech. Syst. Signal Process. 50–51 (2015), 414–426.
-
(2015)
Mech. Syst. Signal Process.
, vol.50-51
, pp. 414-426
-
-
Li, W.1
Zhu, Z.C.2
Jiang, F.3
Zhou, G.B.4
Chen, G.A.5
-
8
-
-
84996671126
-
Bearing damage assessment using Jensen-Rényi Divergence based on EEMD
-
Singh, J., Darpe, A.K., Singh, S.P., Bearing damage assessment using Jensen-Rényi Divergence based on EEMD. Mech. Syst. Signal Process. 87 (2017), 307–339.
-
(2017)
Mech. Syst. Signal Process.
, vol.87
, pp. 307-339
-
-
Singh, J.1
Darpe, A.K.2
Singh, S.P.3
-
9
-
-
79951581707
-
EEMD method and WNN for fault diagnosis of locomotive roller bearings
-
Lei, Y.G., He, Z.J., Zi, Y.Y., EEMD method and WNN for fault diagnosis of locomotive roller bearings. Exp. Syst. Appl. 38 (2011), 7334–7341.
-
(2011)
Exp. Syst. Appl.
, vol.38
, pp. 7334-7341
-
-
Lei, Y.G.1
He, Z.J.2
Zi, Y.Y.3
-
10
-
-
84949970024
-
Intelligent fault diagnosis of rotating machinery using support vector machine with ant colony algorithm for synchronous feature selection and parameter optimization
-
Zhang, X.L., Chen, W., Wang, B.J., Chen, X.F., Intelligent fault diagnosis of rotating machinery using support vector machine with ant colony algorithm for synchronous feature selection and parameter optimization. Neurocomputing 167 (2015), 260–279.
-
(2015)
Neurocomputing
, vol.167
, pp. 260-279
-
-
Zhang, X.L.1
Chen, W.2
Wang, B.J.3
Chen, X.F.4
-
11
-
-
85008219650
-
An enhancement deep feature fusion method for rotating machinery fault diagnosis
-
Shao, H.D., Jiang, H.K., Wang, F.A., Zhao, H.W., An enhancement deep feature fusion method for rotating machinery fault diagnosis. Knowl.-Based Syst. 119 (2017), 200–220.
-
(2017)
Knowl.-Based Syst.
, vol.119
, pp. 200-220
-
-
Shao, H.D.1
Jiang, H.K.2
Wang, F.A.3
Zhao, H.W.4
-
12
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
Hinton, G.E., Salakhutdinov, R.R., Reducing the dimensionality of data with neural networks. Science 313:5786 (2006), 504–507.
-
(2006)
Science
, vol.313
, Issue.5786
, pp. 504-507
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
13
-
-
84910651844
-
Deep learning in neural networks: an overview
-
Schmidhuber, J., Deep learning in neural networks: an overview. Neural Networks 61 (2015), 85–117.
-
(2015)
Neural Networks
, vol.61
, pp. 85-117
-
-
Schmidhuber, J.1
-
14
-
-
84946064662
-
Rolling bearing fault diagnosis using an optimization deep belief network
-
Shao, H.D., Jiang, H.K., Zhang, X., Niu, M.G., Rolling bearing fault diagnosis using an optimization deep belief network. Meas. Sci. Technol., 26, 2015, 115002.
-
(2015)
Meas. Sci. Technol.
, vol.26
, pp. 115002
-
-
Shao, H.D.1
Jiang, H.K.2
Zhang, X.3
Niu, M.G.4
-
15
-
-
84955504842
-
Construction of hierarchical diagnosis network based on deep learning and its application in the fault pattern recognition of rolling element bearings
-
Gan, M., Wang, C., Zhu, C.A., Construction of hierarchical diagnosis network based on deep learning and its application in the fault pattern recognition of rolling element bearings. Mech. Syst. Signal Process. 72–73 (2016), 92–104.
-
(2016)
Mech. Syst. Signal Process.
, vol.72-73
, pp. 92-104
-
-
Gan, M.1
Wang, C.2
Zhu, C.A.3
-
16
-
-
84973470244
-
Convolutional neural network based fault detection for rotating machinery
-
Janssens, O., Slavkovikj, V., Vervisch, B., Stockman, K., Loccufier, M., Verstockt, S., Convolutional neural network based fault detection for rotating machinery. J. Sound Vib. 377 (2016), 331–345.
-
(2016)
J. Sound Vib.
, vol.377
, pp. 331-345
-
-
Janssens, O.1
Slavkovikj, V.2
Vervisch, B.3
Stockman, K.4
Loccufier, M.5
Verstockt, S.6
-
17
-
-
84995608735
-
Online sequential prediction of bearings imbalanced fault diagnosis by extreme learning machine
-
Mao, W.T., He, L., Yan, Y.J., Wang, J.W., Online sequential prediction of bearings imbalanced fault diagnosis by extreme learning machine. Mech. Syst. Signal Process. 83 (2017), 450–473.
-
(2017)
Mech. Syst. Signal Process.
, vol.83
, pp. 450-473
-
-
Mao, W.T.1
He, L.2
Yan, Y.J.3
Wang, J.W.4
-
18
-
-
84944355420
-
Intelligent fault diagnosis of roller bearings with multivariable ensemble-based incremental support vector machine
-
Zhang, X.L., Wang, B.J., Chen, X.F., Intelligent fault diagnosis of roller bearings with multivariable ensemble-based incremental support vector machine. Knowl.-Based Syst. 89 (2015), 56–85.
-
(2015)
Knowl.-Based Syst.
, vol.89
, pp. 56-85
-
-
Zhang, X.L.1
Wang, B.J.2
Chen, X.F.3
-
19
-
-
84995467084
-
Rolling bearing fault detection and diagnosis based on composite multiscale fuzzy entropy and ensemble support vector machines
-
Zheng, J.D., Pan, H.Y., Cheng, J.S., Rolling bearing fault detection and diagnosis based on composite multiscale fuzzy entropy and ensemble support vector machines. Mech. Syst. Signal Process. 85 (2017), 746–759.
-
(2017)
Mech. Syst. Signal Process.
, vol.85
, pp. 746-759
-
-
Zheng, J.D.1
Pan, H.Y.2
Cheng, J.S.3
-
20
-
-
84961051737
-
Fault diagnosis in spur gears based on genetic algorithm and random forest
-
Cerrada, M., Zurita, G., Cabrera, D., Sánchez, R.V., Artés, M., Li, C., Fault diagnosis in spur gears based on genetic algorithm and random forest. Mech. Syst. Signal Process. 70–71 (2016), 87–103.
-
(2016)
Mech. Syst. Signal Process.
, vol.70-71
, pp. 87-103
-
-
Cerrada, M.1
Zurita, G.2
Cabrera, D.3
Sánchez, R.V.4
Artés, M.5
Li, C.6
-
21
-
-
84961163563
-
Classification of acoustic emission signals using wavelets and Random Forests
-
Morizet, N., Godin, N., Tang, J., Maillet, E., Fregonese, M., Normand, B., Classification of acoustic emission signals using wavelets and Random Forests. Mech. Syst. Signal Process. 70–71 (2016), 1026–1037.
-
(2016)
Mech. Syst. Signal Process.
, vol.70-71
, pp. 1026-1037
-
-
Morizet, N.1
Godin, N.2
Tang, J.3
Maillet, E.4
Fregonese, M.5
Normand, B.6
-
22
-
-
84930630277
-
Review: deep learning
-
LeCun, Y., Bengio, Y., Hinton, G.E., Review: deep learning. Nature 521 (2015), 436–444.
-
(2015)
Nature
, vol.521
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.E.3
-
23
-
-
84922351373
-
Two-layer contractive encodings for learning stable nonlinear features
-
Schulza, H., Chob, K., Raikob, T., Behnkea, S., Two-layer contractive encodings for learning stable nonlinear features. Neural Network 64 (2015), 4–11.
-
(2015)
Neural Network
, vol.64
, pp. 4-11
-
-
Schulza, H.1
Chob, K.2
Raikob, T.3
Behnkea, S.4
-
24
-
-
85032880315
-
-
Neural Networks and Deep Learning, Determination Press.
-
M. Nielsen, Neural Networks and Deep Learning, Determination Press, 2015.
-
(2015)
-
-
Nielsen, M.1
-
25
-
-
85016949552
-
Robust fixed-time synchronization for uncertain complex-valued neural networks with discontinuous activation functions
-
Ding, X.S., Cao, J.D., Alsaedi, A., Alsaadi, F.E., Hayat, T., Robust fixed-time synchronization for uncertain complex-valued neural networks with discontinuous activation functions. Neural Networks 90 (2017), 42–55.
-
(2017)
Neural Networks
, vol.90
, pp. 42-55
-
-
Ding, X.S.1
Cao, J.D.2
Alsaedi, A.3
Alsaadi, F.E.4
Hayat, T.5
-
26
-
-
84994477344
-
Bounded activation functions for enhanced training stability of deep neural networks on visual pattern recognition problems
-
Liew, S.S., Khalil-Hani, M., Bakhteri, R., Bounded activation functions for enhanced training stability of deep neural networks on visual pattern recognition problems. Neurocomputing 216 (2016), 718–734.
-
(2016)
Neurocomputing
, vol.216
, pp. 718-734
-
-
Liew, S.S.1
Khalil-Hani, M.2
Bakhteri, R.3
-
27
-
-
84971596871
-
Fuzzy stochastic neural network model for structural system identification
-
Jiang, X.M., Mahadevan, S., Yuan, Y., Fuzzy stochastic neural network model for structural system identification. Mech. Syst. Signal Process. 82 (2017), 394–411.
-
(2017)
Mech. Syst. Signal Process.
, vol.82
, pp. 394-411
-
-
Jiang, X.M.1
Mahadevan, S.2
Yuan, Y.3
-
28
-
-
77956509090
-
Rectified linear units improve restricted Boltzmann machines
-
Vinod, N., Hinton, G.E., Rectified linear units improve restricted Boltzmann machines. Int. Conf. Mach. Learn., 2010, 807–814.
-
(2010)
Int. Conf. Mach. Learn.
, pp. 807-814
-
-
Vinod, N.1
Hinton, G.E.2
-
29
-
-
85032870825
-
Deep learning with S-shaped Rectified linear activation units
-
Jin, X.J., Xu, C.Y., Feng, J.S., Wei, Y.C., Xiong, J.J., Yan, S.C., Deep learning with S-shaped Rectified linear activation units. Comput. Sci. 3 (2015), 1–8.
-
(2015)
Comput. Sci.
, vol.3
, pp. 1-8
-
-
Jin, X.J.1
Xu, C.Y.2
Feng, J.S.3
Wei, Y.C.4
Xiong, J.J.5
Yan, S.C.6
-
30
-
-
84973911419
-
Delving deep into rectifiers: surpassing human-Level performance on ImageNet classification
-
He, K.M., Zhang, X.Y., Ren, S.Q., Sun, J., Delving deep into rectifiers: surpassing human-Level performance on ImageNet classification. IEEE Int. Conf. Comput. Vis. IEEE, 2016, 1026–1034.
-
(2016)
IEEE Int. Conf. Comput. Vis. IEEE
, pp. 1026-1034
-
-
He, K.M.1
Zhang, X.Y.2
Ren, S.Q.3
Sun, J.4
-
31
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
Hinton, G.E., Osindero, S., The, Y.W., A fast learning algorithm for deep belief nets. Neural Comput. 18 (2006), 1527–1554.
-
(2006)
Neural Comput.
, vol.18
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
The, Y.W.3
-
32
-
-
84955735244
-
Selective ensemble modeling load parameters of ball mill based on multi-scale frequency spectral features and sphere criterion
-
Tang, J., Yu, W., Chai, T.Y., Liu, Z., Zhou, X.J., Selective ensemble modeling load parameters of ball mill based on multi-scale frequency spectral features and sphere criterion. Mech. Syst. Signal Process. 66–67 (2016), 485–504.
-
(2016)
Mech. Syst. Signal Process.
, vol.66-67
, pp. 485-504
-
-
Tang, J.1
Yu, W.2
Chai, T.Y.3
Liu, Z.4
Zhou, X.J.5
-
33
-
-
85009751221
-
Business failure prediction based on two-stage selective ensemble with manifold learning algorithm and kernel-based fuzzy self-organizing map
-
Wang, L., Wu, C., Business failure prediction based on two-stage selective ensemble with manifold learning algorithm and kernel-based fuzzy self-organizing map. Knowl.-Based Syst. 121 (2017), 99–110.
-
(2017)
Knowl.-Based Syst.
, vol.121
, pp. 99-110
-
-
Wang, L.1
Wu, C.2
-
34
-
-
85032863567
-
-
http://csegroups.case.edu/bearingdatacenter/pages/welcome-case-western-reserve-university-bearing-data-center-website.
-
-
-
-
35
-
-
84947036429
-
A novel intelligent method for mechanical fault diagnosis based on dual-tree complex wavelet packet transform and multiple classifier fusion
-
Qu, J.X., Zhang, Z.S., Gong, T., A novel intelligent method for mechanical fault diagnosis based on dual-tree complex wavelet packet transform and multiple classifier fusion. Neurocomputing 171 (2016), 837–853.
-
(2016)
Neurocomputing
, vol.171
, pp. 837-853
-
-
Qu, J.X.1
Zhang, Z.S.2
Gong, T.3
-
36
-
-
84963934455
-
An intelligent fault diagnosis method using unsupervised feature learning towards mechanical big data
-
Lei, Y.G., Jia, F., Lin, J., Xing, S.B., Ding, S.X., An intelligent fault diagnosis method using unsupervised feature learning towards mechanical big data. IEEE Trans. Industr. Electron. 63 (2016), 3137–3147.
-
(2016)
IEEE Trans. Industr. Electron.
, vol.63
, pp. 3137-3147
-
-
Lei, Y.G.1
Jia, F.2
Lin, J.3
Xing, S.B.4
Ding, S.X.5
|