메뉴 건너뛰기




Volumn 102, Issue , 2018, Pages 278-297

A novel method for intelligent fault diagnosis of rolling bearings using ensemble deep auto-encoders

Author keywords

Activation functions; Combination strategy; Ensemble deep auto encoders; Intelligent fault diagnosis; Rolling bearings

Indexed keywords

BEARINGS (MACHINE PARTS); CHEMICAL ACTIVATION; FAILURE ANALYSIS; LEARNING SYSTEMS; MACHINERY; ROLLER BEARINGS; SIGNAL ENCODING; VIBRATION ANALYSIS;

EID: 85032874032     PISSN: 08883270     EISSN: 10961216     Source Type: Journal    
DOI: 10.1016/j.ymssp.2017.09.026     Document Type: Article
Times cited : (440)

References (36)
  • 1
    • 84875269406 scopus 로고    scopus 로고
    • An improved EEMD with multiwavelet packet for rotating machinery multi-fault diagnosis
    • Jiang, H.K., Li, C.L., Li, H.X., An improved EEMD with multiwavelet packet for rotating machinery multi-fault diagnosis. Mech. Syst. Signal Process. 36 (2013), 225–239.
    • (2013) Mech. Syst. Signal Process. , vol.36 , pp. 225-239
    • Jiang, H.K.1    Li, C.L.2    Li, H.X.3
  • 2
    • 85013647609 scopus 로고    scopus 로고
    • Application of an improved maximum correlated kurtosis deconvolution method for fault diagnosis of rolling element bearings
    • Miao, Y.H., Zhao, M., Lin, J., Lei, Y.G., Application of an improved maximum correlated kurtosis deconvolution method for fault diagnosis of rolling element bearings. Mech. Syst. Signal Process. 92 (2017), 173–195.
    • (2017) Mech. Syst. Signal Process. , vol.92 , pp. 173-195
    • Miao, Y.H.1    Zhao, M.2    Lin, J.3    Lei, Y.G.4
  • 3
    • 84955693855 scopus 로고    scopus 로고
    • Deep neural networks: a promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data
    • Jia, F., Lei, Y.G., Lin, J., Zhou, X., Lu, N., Deep neural networks: a promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data. Mech. Syst. Signal Process. 72–73 (2016), 303–315.
    • (2016) Mech. Syst. Signal Process. , vol.72-73 , pp. 303-315
    • Jia, F.1    Lei, Y.G.2    Lin, J.3    Zhou, X.4    Lu, N.5
  • 4
    • 85018771228 scopus 로고    scopus 로고
    • A novel deep autoencoder feature learning method for rotating machinery fault diagnosis
    • Shao, H.D., Jiang, H.K., Zhao, H.W., Wang, F.A., A novel deep autoencoder feature learning method for rotating machinery fault diagnosis. Mech. Syst. Signal Process. 98 (2017), 187–204.
    • (2017) Mech. Syst. Signal Process. , vol.98 , pp. 187-204
    • Shao, H.D.1    Jiang, H.K.2    Zhao, H.W.3    Wang, F.A.4
  • 5
    • 85006307176 scopus 로고    scopus 로고
    • A novel intelligent method for bearing fault diagnosis based on affinity propagation clustering and adaptive feature selection
    • Wei, Z.X., Wang, Y.X., He, S.L., Bao, J.D., A novel intelligent method for bearing fault diagnosis based on affinity propagation clustering and adaptive feature selection. Knowl.-Based Syst. 116 (2017), 1–12.
    • (2017) Knowl.-Based Syst. , vol.116 , pp. 1-12
    • Wei, Z.X.1    Wang, Y.X.2    He, S.L.3    Bao, J.D.4
  • 6
    • 84912032961 scopus 로고    scopus 로고
    • A fusion feature and its improvement based on locality preserving projections for rolling element bearing fault classification
    • Ding, X.X., He, Q.B., Luo, N.W., A fusion feature and its improvement based on locality preserving projections for rolling element bearing fault classification. J. Sound Vib. 335 (2015), 367–383.
    • (2015) J. Sound Vib. , vol.335 , pp. 367-383
    • Ding, X.X.1    He, Q.B.2    Luo, N.W.3
  • 7
    • 84905828170 scopus 로고    scopus 로고
    • Fault diagnosis of rotating machinery with a novel statistical feature extraction and evaluation method
    • Li, W., Zhu, Z.C., Jiang, F., Zhou, G.B., Chen, G.A., Fault diagnosis of rotating machinery with a novel statistical feature extraction and evaluation method. Mech. Syst. Signal Process. 50–51 (2015), 414–426.
    • (2015) Mech. Syst. Signal Process. , vol.50-51 , pp. 414-426
    • Li, W.1    Zhu, Z.C.2    Jiang, F.3    Zhou, G.B.4    Chen, G.A.5
  • 8
    • 84996671126 scopus 로고    scopus 로고
    • Bearing damage assessment using Jensen-Rényi Divergence based on EEMD
    • Singh, J., Darpe, A.K., Singh, S.P., Bearing damage assessment using Jensen-Rényi Divergence based on EEMD. Mech. Syst. Signal Process. 87 (2017), 307–339.
    • (2017) Mech. Syst. Signal Process. , vol.87 , pp. 307-339
    • Singh, J.1    Darpe, A.K.2    Singh, S.P.3
  • 9
    • 79951581707 scopus 로고    scopus 로고
    • EEMD method and WNN for fault diagnosis of locomotive roller bearings
    • Lei, Y.G., He, Z.J., Zi, Y.Y., EEMD method and WNN for fault diagnosis of locomotive roller bearings. Exp. Syst. Appl. 38 (2011), 7334–7341.
    • (2011) Exp. Syst. Appl. , vol.38 , pp. 7334-7341
    • Lei, Y.G.1    He, Z.J.2    Zi, Y.Y.3
  • 10
    • 84949970024 scopus 로고    scopus 로고
    • Intelligent fault diagnosis of rotating machinery using support vector machine with ant colony algorithm for synchronous feature selection and parameter optimization
    • Zhang, X.L., Chen, W., Wang, B.J., Chen, X.F., Intelligent fault diagnosis of rotating machinery using support vector machine with ant colony algorithm for synchronous feature selection and parameter optimization. Neurocomputing 167 (2015), 260–279.
    • (2015) Neurocomputing , vol.167 , pp. 260-279
    • Zhang, X.L.1    Chen, W.2    Wang, B.J.3    Chen, X.F.4
  • 11
    • 85008219650 scopus 로고    scopus 로고
    • An enhancement deep feature fusion method for rotating machinery fault diagnosis
    • Shao, H.D., Jiang, H.K., Wang, F.A., Zhao, H.W., An enhancement deep feature fusion method for rotating machinery fault diagnosis. Knowl.-Based Syst. 119 (2017), 200–220.
    • (2017) Knowl.-Based Syst. , vol.119 , pp. 200-220
    • Shao, H.D.1    Jiang, H.K.2    Wang, F.A.3    Zhao, H.W.4
  • 12
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Hinton, G.E., Salakhutdinov, R.R., Reducing the dimensionality of data with neural networks. Science 313:5786 (2006), 504–507.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 13
    • 84910651844 scopus 로고    scopus 로고
    • Deep learning in neural networks: an overview
    • Schmidhuber, J., Deep learning in neural networks: an overview. Neural Networks 61 (2015), 85–117.
    • (2015) Neural Networks , vol.61 , pp. 85-117
    • Schmidhuber, J.1
  • 14
    • 84946064662 scopus 로고    scopus 로고
    • Rolling bearing fault diagnosis using an optimization deep belief network
    • Shao, H.D., Jiang, H.K., Zhang, X., Niu, M.G., Rolling bearing fault diagnosis using an optimization deep belief network. Meas. Sci. Technol., 26, 2015, 115002.
    • (2015) Meas. Sci. Technol. , vol.26 , pp. 115002
    • Shao, H.D.1    Jiang, H.K.2    Zhang, X.3    Niu, M.G.4
  • 15
    • 84955504842 scopus 로고    scopus 로고
    • Construction of hierarchical diagnosis network based on deep learning and its application in the fault pattern recognition of rolling element bearings
    • Gan, M., Wang, C., Zhu, C.A., Construction of hierarchical diagnosis network based on deep learning and its application in the fault pattern recognition of rolling element bearings. Mech. Syst. Signal Process. 72–73 (2016), 92–104.
    • (2016) Mech. Syst. Signal Process. , vol.72-73 , pp. 92-104
    • Gan, M.1    Wang, C.2    Zhu, C.A.3
  • 17
    • 84995608735 scopus 로고    scopus 로고
    • Online sequential prediction of bearings imbalanced fault diagnosis by extreme learning machine
    • Mao, W.T., He, L., Yan, Y.J., Wang, J.W., Online sequential prediction of bearings imbalanced fault diagnosis by extreme learning machine. Mech. Syst. Signal Process. 83 (2017), 450–473.
    • (2017) Mech. Syst. Signal Process. , vol.83 , pp. 450-473
    • Mao, W.T.1    He, L.2    Yan, Y.J.3    Wang, J.W.4
  • 18
    • 84944355420 scopus 로고    scopus 로고
    • Intelligent fault diagnosis of roller bearings with multivariable ensemble-based incremental support vector machine
    • Zhang, X.L., Wang, B.J., Chen, X.F., Intelligent fault diagnosis of roller bearings with multivariable ensemble-based incremental support vector machine. Knowl.-Based Syst. 89 (2015), 56–85.
    • (2015) Knowl.-Based Syst. , vol.89 , pp. 56-85
    • Zhang, X.L.1    Wang, B.J.2    Chen, X.F.3
  • 19
    • 84995467084 scopus 로고    scopus 로고
    • Rolling bearing fault detection and diagnosis based on composite multiscale fuzzy entropy and ensemble support vector machines
    • Zheng, J.D., Pan, H.Y., Cheng, J.S., Rolling bearing fault detection and diagnosis based on composite multiscale fuzzy entropy and ensemble support vector machines. Mech. Syst. Signal Process. 85 (2017), 746–759.
    • (2017) Mech. Syst. Signal Process. , vol.85 , pp. 746-759
    • Zheng, J.D.1    Pan, H.Y.2    Cheng, J.S.3
  • 22
    • 84930630277 scopus 로고    scopus 로고
    • Review: deep learning
    • LeCun, Y., Bengio, Y., Hinton, G.E., Review: deep learning. Nature 521 (2015), 436–444.
    • (2015) Nature , vol.521 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.E.3
  • 23
    • 84922351373 scopus 로고    scopus 로고
    • Two-layer contractive encodings for learning stable nonlinear features
    • Schulza, H., Chob, K., Raikob, T., Behnkea, S., Two-layer contractive encodings for learning stable nonlinear features. Neural Network 64 (2015), 4–11.
    • (2015) Neural Network , vol.64 , pp. 4-11
    • Schulza, H.1    Chob, K.2    Raikob, T.3    Behnkea, S.4
  • 24
    • 85032880315 scopus 로고    scopus 로고
    • Neural Networks and Deep Learning, Determination Press.
    • M. Nielsen, Neural Networks and Deep Learning, Determination Press, 2015.
    • (2015)
    • Nielsen, M.1
  • 25
    • 85016949552 scopus 로고    scopus 로고
    • Robust fixed-time synchronization for uncertain complex-valued neural networks with discontinuous activation functions
    • Ding, X.S., Cao, J.D., Alsaedi, A., Alsaadi, F.E., Hayat, T., Robust fixed-time synchronization for uncertain complex-valued neural networks with discontinuous activation functions. Neural Networks 90 (2017), 42–55.
    • (2017) Neural Networks , vol.90 , pp. 42-55
    • Ding, X.S.1    Cao, J.D.2    Alsaedi, A.3    Alsaadi, F.E.4    Hayat, T.5
  • 26
    • 84994477344 scopus 로고    scopus 로고
    • Bounded activation functions for enhanced training stability of deep neural networks on visual pattern recognition problems
    • Liew, S.S., Khalil-Hani, M., Bakhteri, R., Bounded activation functions for enhanced training stability of deep neural networks on visual pattern recognition problems. Neurocomputing 216 (2016), 718–734.
    • (2016) Neurocomputing , vol.216 , pp. 718-734
    • Liew, S.S.1    Khalil-Hani, M.2    Bakhteri, R.3
  • 27
    • 84971596871 scopus 로고    scopus 로고
    • Fuzzy stochastic neural network model for structural system identification
    • Jiang, X.M., Mahadevan, S., Yuan, Y., Fuzzy stochastic neural network model for structural system identification. Mech. Syst. Signal Process. 82 (2017), 394–411.
    • (2017) Mech. Syst. Signal Process. , vol.82 , pp. 394-411
    • Jiang, X.M.1    Mahadevan, S.2    Yuan, Y.3
  • 28
    • 77956509090 scopus 로고    scopus 로고
    • Rectified linear units improve restricted Boltzmann machines
    • Vinod, N., Hinton, G.E., Rectified linear units improve restricted Boltzmann machines. Int. Conf. Mach. Learn., 2010, 807–814.
    • (2010) Int. Conf. Mach. Learn. , pp. 807-814
    • Vinod, N.1    Hinton, G.E.2
  • 30
    • 84973911419 scopus 로고    scopus 로고
    • Delving deep into rectifiers: surpassing human-Level performance on ImageNet classification
    • He, K.M., Zhang, X.Y., Ren, S.Q., Sun, J., Delving deep into rectifiers: surpassing human-Level performance on ImageNet classification. IEEE Int. Conf. Comput. Vis. IEEE, 2016, 1026–1034.
    • (2016) IEEE Int. Conf. Comput. Vis. IEEE , pp. 1026-1034
    • He, K.M.1    Zhang, X.Y.2    Ren, S.Q.3    Sun, J.4
  • 31
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton, G.E., Osindero, S., The, Y.W., A fast learning algorithm for deep belief nets. Neural Comput. 18 (2006), 1527–1554.
    • (2006) Neural Comput. , vol.18 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    The, Y.W.3
  • 32
    • 84955735244 scopus 로고    scopus 로고
    • Selective ensemble modeling load parameters of ball mill based on multi-scale frequency spectral features and sphere criterion
    • Tang, J., Yu, W., Chai, T.Y., Liu, Z., Zhou, X.J., Selective ensemble modeling load parameters of ball mill based on multi-scale frequency spectral features and sphere criterion. Mech. Syst. Signal Process. 66–67 (2016), 485–504.
    • (2016) Mech. Syst. Signal Process. , vol.66-67 , pp. 485-504
    • Tang, J.1    Yu, W.2    Chai, T.Y.3    Liu, Z.4    Zhou, X.J.5
  • 33
    • 85009751221 scopus 로고    scopus 로고
    • Business failure prediction based on two-stage selective ensemble with manifold learning algorithm and kernel-based fuzzy self-organizing map
    • Wang, L., Wu, C., Business failure prediction based on two-stage selective ensemble with manifold learning algorithm and kernel-based fuzzy self-organizing map. Knowl.-Based Syst. 121 (2017), 99–110.
    • (2017) Knowl.-Based Syst. , vol.121 , pp. 99-110
    • Wang, L.1    Wu, C.2
  • 34
    • 85032863567 scopus 로고    scopus 로고
    • http://csegroups.case.edu/bearingdatacenter/pages/welcome-case-western-reserve-university-bearing-data-center-website.
  • 35
    • 84947036429 scopus 로고    scopus 로고
    • A novel intelligent method for mechanical fault diagnosis based on dual-tree complex wavelet packet transform and multiple classifier fusion
    • Qu, J.X., Zhang, Z.S., Gong, T., A novel intelligent method for mechanical fault diagnosis based on dual-tree complex wavelet packet transform and multiple classifier fusion. Neurocomputing 171 (2016), 837–853.
    • (2016) Neurocomputing , vol.171 , pp. 837-853
    • Qu, J.X.1    Zhang, Z.S.2    Gong, T.3
  • 36
    • 84963934455 scopus 로고    scopus 로고
    • An intelligent fault diagnosis method using unsupervised feature learning towards mechanical big data
    • Lei, Y.G., Jia, F., Lin, J., Xing, S.B., Ding, S.X., An intelligent fault diagnosis method using unsupervised feature learning towards mechanical big data. IEEE Trans. Industr. Electron. 63 (2016), 3137–3147.
    • (2016) IEEE Trans. Industr. Electron. , vol.63 , pp. 3137-3147
    • Lei, Y.G.1    Jia, F.2    Lin, J.3    Xing, S.B.4    Ding, S.X.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.