메뉴 건너뛰기




Volumn 116, Issue , 2017, Pages 1-12

A novel intelligent method for bearing fault diagnosis based on affinity propagation clustering and adaptive feature selection

Author keywords

Adaptive feature selection; Affinity propagation; Intelligent fault diagnosis; Rolling element bearing

Indexed keywords

BEARINGS (MACHINE PARTS); CLUSTERING ALGORITHMS; FAILURE ANALYSIS; FEATURE EXTRACTION; ROLLER BEARINGS; WAVELET DECOMPOSITION;

EID: 85006307176     PISSN: 09507051     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.knosys.2016.10.022     Document Type: Article
Times cited : (188)

References (29)
  • 1
    • 84945246972 scopus 로고    scopus 로고
    • Spectral kurtosis for fault detection, diagnosis and prognostics of rotating machines: a review with applications
    • [1] Wang, Y.X., Xiang, J.W., Markert, R., et al. Spectral kurtosis for fault detection, diagnosis and prognostics of rotating machines: a review with applications. Mech. Syst. Signal Process. 66:January (2016), 679–698.
    • (2016) Mech. Syst. Signal Process. , vol.66 , Issue.January , pp. 679-698
    • Wang, Y.X.1    Xiang, J.W.2    Markert, R.3
  • 2
    • 84867846656 scopus 로고    scopus 로고
    • A rule-based intelligent method for fault diagnosis of rotating machinery
    • [2] Dou, D.Y., Yang, J.G., Liu, J.T., et al. A rule-based intelligent method for fault diagnosis of rotating machinery. Knowl. Based Syst. 36:1(December) (2012), 18–27.
    • (2012) Knowl. Based Syst. , vol.36 , Issue.1(December) , pp. 18-27
    • Dou, D.Y.1    Yang, J.G.2    Liu, J.T.3
  • 3
    • 48749115318 scopus 로고    scopus 로고
    • A new approach to intelligent fault diagnosis of rotating machinery
    • [3] Lei, Y., He, Z., Zi, Y., A new approach to intelligent fault diagnosis of rotating machinery. Expert Syst. Appl. 35:4 (November) (2008), 1593–1600.
    • (2008) Expert Syst. Appl. , vol.35 , Issue.4 (November) , pp. 1593-1600
    • Lei, Y.1    He, Z.2    Zi, Y.3
  • 4
    • 34047251505 scopus 로고    scopus 로고
    • Fault diagnosis of rotating machinery based on multiple ANFIS combination with GAS
    • [4] Lei, Y., He, Z., Zi, Y., et al. Fault diagnosis of rotating machinery based on multiple ANFIS combination with GAS. Mech. Syst. Signal Process. 21:5 (July) (2007), 2280–2294.
    • (2007) Mech. Syst. Signal Process. , vol.21 , Issue.5 (July) , pp. 2280-2294
    • Lei, Y.1    He, Z.2    Zi, Y.3
  • 5
    • 36048939640 scopus 로고    scopus 로고
    • New clustering algorithm-based fault diagnosis using compensation distance evaluation technique
    • [5] Lei, Y., He, Z., Zi, Y., et al. New clustering algorithm-based fault diagnosis using compensation distance evaluation technique. Mech. Syst. Signal Process. 22:2 (February) (2008), 419–435.
    • (2008) Mech. Syst. Signal Process. , vol.22 , Issue.2 (February) , pp. 419-435
    • Lei, Y.1    He, Z.2    Zi, Y.3
  • 6
    • 64049098473 scopus 로고    scopus 로고
    • Application of an intelligent classification method to mechanical fault diagnosis
    • [6] Lei, Y., He, Z., Zi, Y., Application of an intelligent classification method to mechanical fault diagnosis. Expert Syst. Appl. 36:6 (August) (2009), 9941–9948.
    • (2009) Expert Syst. Appl. , vol.36 , Issue.6 (August) , pp. 9941-9948
    • Lei, Y.1    He, Z.2    Zi, Y.3
  • 7
    • 84944355420 scopus 로고    scopus 로고
    • Intelligent fault diagnosis of roller bearings with multivariable ensemble-based incremental support vector machine
    • [7] Zhang, X.L., Wang, B.J., Chen, X.F, Intelligent fault diagnosis of roller bearings with multivariable ensemble-based incremental support vector machine. Knowl. Based Syst. 89:c (November) (2015), 56–85.
    • (2015) Knowl. Based Syst. , vol.89 , Issue.c (November) , pp. 56-85
    • Zhang, X.L.1    Wang, B.J.2    Chen, X.F.3
  • 8
    • 84947036429 scopus 로고    scopus 로고
    • A novel intelligent method for mechanical fault diagnosis based on dual-tree complex wavelet packet transform and multiple classifier fusion
    • [8] Qu, J.X., Zhang, Z.S., Gong, T., A novel intelligent method for mechanical fault diagnosis based on dual-tree complex wavelet packet transform and multiple classifier fusion. Neurocomputing 171:c (January) (2016), 837–853.
    • (2016) Neurocomputing , vol.171 , Issue.c (January) , pp. 837-853
    • Qu, J.X.1    Zhang, Z.S.2    Gong, T.3
  • 9
    • 84971299226 scopus 로고    scopus 로고
    • Comparison of four direct classification methods for intelligent fault diagnosis of rotating machinery
    • [9] Dou, D.Y., Zhou, S.S., Comparison of four direct classification methods for intelligent fault diagnosis of rotating machinery. Appl. Soft. Comput. 46:September (2016), 459–468.
    • (2016) Appl. Soft. Comput. , vol.46 , Issue.September , pp. 459-468
    • Dou, D.Y.1    Zhou, S.S.2
  • 10
    • 33847172327 scopus 로고    scopus 로고
    • Clustering by passing messages between data points
    • [10] Frey, B.J., Dueck, D., Clustering by passing messages between data points. Science 315:5814 (February) (2007), 972–976.
    • (2007) Science , vol.315 , Issue.5814 (February) , pp. 972-976
    • Frey, B.J.1    Dueck, D.2
  • 13
    • 78650434730 scopus 로고    scopus 로고
    • An evolving machinery fault diagnosis approach based on affinity propagation algorithm
    • [13] Li, N., Li, Y.M., Liu, H.N., An evolving machinery fault diagnosis approach based on affinity propagation algorithm. Intelligent Robotics and Applications, 2010, 654–664.
    • (2010) Intelligent Robotics and Applications , pp. 654-664
    • Li, N.1    Li, Y.M.2    Liu, H.N.3
  • 14
    • 79955612833 scopus 로고    scopus 로고
    • A hybrid feature selection scheme for unsupervised learning and its application in bearing fault diagnosis
    • [14] Yang, Y., Liao, Y., Meng, G., A hybrid feature selection scheme for unsupervised learning and its application in bearing fault diagnosis. Expert Syst. Appl. 38:9 (2011), 11311–11320.
    • (2011) Expert Syst. Appl. , vol.38 , Issue.9 , pp. 11311-11320
    • Yang, Y.1    Liao, Y.2    Meng, G.3
  • 15
    • 77955239049 scopus 로고    scopus 로고
    • A comparative study on the local mean decomposition and empirical mode decomposition and their applications to rotating machinery health diagnosis
    • [15] Wang, Y., He, Z., Zi, Y., A comparative study on the local mean decomposition and empirical mode decomposition and their applications to rotating machinery health diagnosis. J. Vib. Acoust. 132:2 (2010), 613–624.
    • (2010) J. Vib. Acoust. , vol.132 , Issue.2 , pp. 613-624
    • Wang, Y.1    He, Z.2    Zi, Y.3
  • 16
    • 84905816480 scopus 로고    scopus 로고
    • A hybrid fault diagnosis method using morphological filter–translation invariant wavelet and improved ensemble empirical mode decomposition
    • [16] Meng, L., Xiang, J., Wang, Y., et al. A hybrid fault diagnosis method using morphological filter–translation invariant wavelet and improved ensemble empirical mode decomposition. Mech. Syst. Signal Process. s50–51 (2015), 101–115.
    • (2015) Mech. Syst. Signal Process. , vol.s50–51 , pp. 101-115
    • Meng, L.1    Xiang, J.2    Wang, Y.3
  • 17
    • 33750503791 scopus 로고    scopus 로고
    • Fault diagnosis of rotating machinery based on improved wavelet package transform and SVMs ensemble
    • [17] Hu, Q., He, Z., Zhang, Z.S., et al. Fault diagnosis of rotating machinery based on improved wavelet package transform and SVMs ensemble. Mech. Syst. Signal Process 21:2 (February) (2007), 688–705.
    • (2007) Mech. Syst. Signal Process , vol.21 , Issue.2 (February) , pp. 688-705
    • Hu, Q.1    He, Z.2    Zhang, Z.S.3
  • 18
    • 84925956911 scopus 로고    scopus 로고
    • Research on variational mode decomposition and its application in detecting rub-impact fault of the rotor system
    • [18] Wang, Y., Markert, R., Xiang, J., et al. Research on variational mode decomposition and its application in detecting rub-impact fault of the rotor system. Mech. Syst. Signal Process. 60 (2015), 243–251.
    • (2015) Mech. Syst. Signal Process. , vol.60 , pp. 243-251
    • Wang, Y.1    Markert, R.2    Xiang, J.3
  • 19
    • 84955586031 scopus 로고    scopus 로고
    • Sparse regularization for force identification using dictionaries
    • [19] Qiao, B., Zhang, X., Wang, C., et al. Sparse regularization for force identification using dictionaries. J. Sound Vib. 368 (2016), 71–86.
    • (2016) J. Sound Vib. , vol.368 , pp. 71-86
    • Qiao, B.1    Zhang, X.2    Wang, C.3
  • 20
    • 0942289508 scopus 로고    scopus 로고
    • ART-KOHONEN neural network for fault diagnosis of rotating machinery
    • [20] Yang, B.S., Han, T., An, J.L., ART-KOHONEN neural network for fault diagnosis of rotating machinery. Mech. Syst. Signal Process. 18:May (2004), 645–657.
    • (2004) Mech. Syst. Signal Process. , vol.18 , Issue.May , pp. 645-657
    • Yang, B.S.1    Han, T.2    An, J.L.3
  • 21
    • 33847166276 scopus 로고    scopus 로고
    • A decision tree-based attribute weighting filter for naive Bayes
    • [21] Hall, M., A decision tree-based attribute weighting filter for naive Bayes. Knowl. Based Syst. 20:2 (March) (2007), 120–126.
    • (2007) Knowl. Based Syst. , vol.20 , Issue.2 (March) , pp. 120-126
    • Hall, M.1
  • 23
    • 0036538165 scopus 로고    scopus 로고
    • Improving performance of similarity-based clustering by feature weight learning
    • [23] Yeung, D.S., Wang, X.Z., Improving performance of similarity-based clustering by feature weight learning. IEEE Trans. Pattern Anal. Mach. Intell. 24:4 (2002), 556–561.
    • (2002) IEEE Trans. Pattern Anal. Mach. Intell. , vol.24 , Issue.4 , pp. 556-561
    • Yeung, D.S.1    Wang, X.Z.2
  • 24
    • 2942534051 scopus 로고    scopus 로고
    • Improving fuzzy c -means clustering based on feature-weight learning
    • [24] Wang, X., Wang, Y., Wang, L., Improving fuzzy c -means clustering based on feature-weight learning. Pattern Recognit. Lett. 25:10 (2004), 1123–1132.
    • (2004) Pattern Recognit. Lett. , vol.25 , Issue.10 , pp. 1123-1132
    • Wang, X.1    Wang, Y.2    Wang, L.3
  • 25
    • 33745176186 scopus 로고    scopus 로고
    • Attribute weighted mercer kernel based fuzzy clustering algorithm for general non-spherical datasets
    • [25] Shen, H., Yang, J., Wang, S., et al. Attribute weighted mercer kernel based fuzzy clustering algorithm for general non-spherical datasets. Soft. Comput. 10:11 (2006), 1061–1073.
    • (2006) Soft. Comput. , vol.10 , Issue.11 , pp. 1061-1073
    • Shen, H.1    Yang, J.2    Wang, S.3
  • 26
    • 34247622378 scopus 로고    scopus 로고
    • Iterative RELIEF for feature weighting: algorithms, theories, and applications
    • [26] Sun, Y., Iterative RELIEF for feature weighting: algorithms, theories, and applications. IEEE Trans. Pattern Anal. Mach. Intell. 29:6 (2007), 1035–1051.
    • (2007) IEEE Trans. Pattern Anal. Mach. Intell. , vol.29 , Issue.6 , pp. 1035-1051
    • Sun, Y.1
  • 27
    • 84871924112 scopus 로고    scopus 로고
    • Ranked k-medoids: A fast and accurate rank-based partitioning algorithm for clustering large datasets
    • [27] Razavi Zadegan, S.M., Mirzaie, M., Sadoughi, F., Ranked k-medoids: A fast and accurate rank-based partitioning algorithm for clustering large datasets. Knowl. Based Syst. vol. 39:2 (2013), 133–143.
    • (2013) Knowl. Based Syst. vol. , vol.39 , Issue.2 , pp. 133-143
    • Razavi Zadegan, S.M.1    Mirzaie, M.2    Sadoughi, F.3
  • 28
    • 85006294786 scopus 로고    scopus 로고
    • [28] http://archive.ics.uci.edu/ml/datasets.html.
  • 29
    • 85006259445 scopus 로고    scopus 로고
    • [29] http://csegroups.case.edu/bearingdatacenter/pages/download-data-file.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.