메뉴 건너뛰기




Volumn 87, Issue , 2017, Pages 307-339

Bearing damage assessment using Jensen-Rényi Divergence based on EEMD

Author keywords

Bearing damage; Confidence value; Ensemble empirical mode decomposition; Jensen R nyi divergence; R nyi entropy

Indexed keywords

BEARINGS (MACHINE PARTS); DEFECTS; PROBABILITY DISTRIBUTIONS; ROLLER BEARINGS; SIGNAL PROCESSING; TESTING;

EID: 84996671126     PISSN: 08883270     EISSN: 10961216     Source Type: Journal    
DOI: 10.1016/j.ymssp.2016.10.028     Document Type: Article
Times cited : (122)

References (55)
  • 1
    • 78649600770 scopus 로고    scopus 로고
    • Rolling element bearing diagnostics—a tutorial
    • [1] Randall, R.B., Antoni, J., Rolling element bearing diagnostics—a tutorial. Mech. Syst. Signal Process. 25 (2011), 485–520.
    • (2011) Mech. Syst. Signal Process. , vol.25 , pp. 485-520
    • Randall, R.B.1    Antoni, J.2
  • 2
    • 70350764824 scopus 로고    scopus 로고
    • Bearing performance degradation assessment based on lifting wavelet packet decomposition and fuzzy c-means
    • [2] Pan, Y.N., Chen, J., Li, X.L., Bearing performance degradation assessment based on lifting wavelet packet decomposition and fuzzy c-means. Mech. Syst. Signal Process. 24 (2010), 559–566.
    • (2010) Mech. Syst. Signal Process. , vol.24 , pp. 559-566
    • Pan, Y.N.1    Chen, J.2    Li, X.L.3
  • 3
    • 0031674597 scopus 로고    scopus 로고
    • Statistical analysis of sound and vibration signals for monitoring rolling element bearing condition
    • [3] Heng, R.B.W., Nor, M.J.M., Statistical analysis of sound and vibration signals for monitoring rolling element bearing condition. Appl. Acoust. 53 (1998), 211–226.
    • (1998) Appl. Acoust. , vol.53 , pp. 211-226
    • Heng, R.B.W.1    Nor, M.J.M.2
  • 4
    • 0033721855 scopus 로고    scopus 로고
    • Prognosis of remaining bearing life using neural networks
    • [4] Shao, Y., Nezu, K., Prognosis of remaining bearing life using neural networks. Proc. Inst. Mech. Eng. I: J. Syst. Control Eng., 214(3), 2000, 217.
    • (2000) Proc. Inst. Mech. Eng. I: J. Syst. Control Eng. , vol.214 , Issue.3 , pp. 217
    • Shao, Y.1    Nezu, K.2
  • 5
    • 5044252073 scopus 로고    scopus 로고
    • Robust performance degradation assessment methods for enhanced rolling element bearing prognostics
    • [5] Qiu, H., Lee, J., Lin, J., Yu, G., Robust performance degradation assessment methods for enhanced rolling element bearing prognostics. Adv. Eng. Inform. 17 (2003), 127–140.
    • (2003) Adv. Eng. Inform. , vol.17 , pp. 127-140
    • Qiu, H.1    Lee, J.2    Lin, J.3    Yu, G.4
  • 6
    • 0012020346 scopus 로고    scopus 로고
    • Wavelet analysis and envelope detection for rolling bearing fault diagnosis—their effectiveness and flexibilities
    • [6] Tse, P.W., Peng, Y.H., Yam, R., Wavelet analysis and envelope detection for rolling bearing fault diagnosis—their effectiveness and flexibilities. J. Vib. Acoust. 123 (2001), 303–310.
    • (2001) J. Vib. Acoust. , vol.123 , pp. 303-310
    • Tse, P.W.1    Peng, Y.H.2    Yam, R.3
  • 7
    • 2942659638 scopus 로고    scopus 로고
    • Residual life predictions from vibration-based degradation signals: a neural network approach
    • [7] Gebraeel, N., Lawley, M., Liu, R., Parmeshwaran, V., Residual life predictions from vibration-based degradation signals: a neural network approach. IEEE Trans. Ind. Electron. 51 (2004), 694–700.
    • (2004) IEEE Trans. Ind. Electron. , vol.51 , pp. 694-700
    • Gebraeel, N.1    Lawley, M.2    Liu, R.3    Parmeshwaran, V.4
  • 8
    • 82255174981 scopus 로고    scopus 로고
    • Early fault diagnosis of rotating machinery based on wavelet packets—empirical mode decomposition feature extraction and neural network
    • [8] Bin, G.F., Gao, J.J., Li, X.J., et al. Early fault diagnosis of rotating machinery based on wavelet packets—empirical mode decomposition feature extraction and neural network. Mech. Syst. Signal Process. 27 (2012), 696–711.
    • (2012) Mech. Syst. Signal Process. , vol.27 , pp. 696-711
    • Bin, G.F.1    Gao, J.J.2    Li, X.J.3
  • 9
    • 33749663808 scopus 로고    scopus 로고
    • Residual life predictions for ball bearings based on self-organizing map and back propagation neural network methods
    • [9] Huang, R., Xi, L., Li, X., Richard Liu, C., Qiu, H., Lee, J., Residual life predictions for ball bearings based on self-organizing map and back propagation neural network methods. Mech. Syst. Signal Process. 21 (2007), 193–207.
    • (2007) Mech. Syst. Signal Process. , vol.21 , pp. 193-207
    • Huang, R.1    Xi, L.2    Li, X.3    Richard Liu, C.4    Qiu, H.5    Lee, J.6
  • 10
    • 58049182562 scopus 로고    scopus 로고
    • Robust bearing performance degradation assessment method based on improved wavelet packet-support vector data description
    • [10] Pan, Y.N., Chen, J., Guo, L., Robust bearing performance degradation assessment method based on improved wavelet packet-support vector data description. Mech. Syst. Signal Process. 23 (2009), 669–681.
    • (2009) Mech. Syst. Signal Process. , vol.23 , pp. 669-681
    • Pan, Y.N.1    Chen, J.2    Guo, L.3
  • 11
    • 69249117793 scopus 로고    scopus 로고
    • Spectral entropy: a complementary index for rolling element bearing performance degradation assessment
    • [11] Pan, Y.N., Chen, J., Li, X.L., Spectral entropy: a complementary index for rolling element bearing performance degradation assessment. Proc. Inst. Mech. Eng. C: J. Mech. Eng. Sci. 223 (2009), 1223–1231.
    • (2009) Proc. Inst. Mech. Eng. C: J. Mech. Eng. Sci. , vol.223 , pp. 1223-1231
    • Pan, Y.N.1    Chen, J.2    Li, X.L.3
  • 12
    • 79951579854 scopus 로고    scopus 로고
    • Bearing performance degradation assessment using locality preserving projections
    • [12] Yu, J., Bearing performance degradation assessment using locality preserving projections. Expert Syst. Appl. 38 (2011), 7440–7450.
    • (2011) Expert Syst. Appl. , vol.38 , pp. 7440-7450
    • Yu, J.1
  • 13
    • 79960043301 scopus 로고    scopus 로고
    • Bearing performance degradation assessment using locality preserving projections and Gaussian mixture models
    • [13] Yu, J., Bearing performance degradation assessment using locality preserving projections and Gaussian mixture models. Mech. Syst. Signal Process. 25 (2011), 2573–2588.
    • (2011) Mech. Syst. Signal Process. , vol.25 , pp. 2573-2588
    • Yu, J.1
  • 14
    • 79955827452 scopus 로고    scopus 로고
    • A hybrid feature selection scheme and self-organizing map model for machine health assessment
    • [14] Yu, J., A hybrid feature selection scheme and self-organizing map model for machine health assessment. Appl. Soft Comput. 11:5 (2011), 4041–4054.
    • (2011) Appl. Soft Comput. , vol.11 , Issue.5 , pp. 4041-4054
    • Yu, J.1
  • 15
    • 84883383725 scopus 로고    scopus 로고
    • Multi-steps degradation process prediction for bearing based on improved back propagation neural network
    • [15] Mi, L., Tan, W., Chen, R., Multi-steps degradation process prediction for bearing based on improved back propagation neural network. Proc. Inst. Mech. Eng. C.-J. Mech. Eng. Sci. 227 (2012), 1544–1553.
    • (2012) Proc. Inst. Mech. Eng. C.-J. Mech. Eng. Sci. , vol.227 , pp. 1544-1553
    • Mi, L.1    Tan, W.2    Chen, R.3
  • 16
    • 84880321805 scopus 로고    scopus 로고
    • Fault diagnosis and health assessment for bearings using the Mahalanobis-Taguchi system based on EMD-SVD
    • [16] Wang, Z., Lu, C., Wang, Z., Liu, H., Fan, H., Fault diagnosis and health assessment for bearings using the Mahalanobis-Taguchi system based on EMD-SVD. Trans. Inst. Meas. Control 35 (2013), 798–807.
    • (2013) Trans. Inst. Meas. Control , vol.35 , pp. 798-807
    • Wang, Z.1    Lu, C.2    Wang, Z.3    Liu, H.4    Fan, H.5
  • 17
    • 84862232350 scopus 로고    scopus 로고
    • Fault features extraction for bearing prognostics
    • (ISSN 0956-5515)
    • [17] Li, R., Sopon, P., He, D., Fault features extraction for bearing prognostics. J. Intell. Manuf. 23 (2012), 313–321 (ISSN 0956-5515).
    • (2012) J. Intell. Manuf. , vol.23 , pp. 313-321
    • Li, R.1    Sopon, P.2    He, D.3
  • 18
    • 84897588168 scopus 로고    scopus 로고
    • Condition assessment for the performance degradation of bearing based on a combinatorial feature extraction method
    • [18] Hong, S., Zhou, Z., Zio, E., Hong, K., Condition assessment for the performance degradation of bearing based on a combinatorial feature extraction method. Digit. Signal Process. 27 (2014), 159–166.
    • (2014) Digit. Signal Process. , vol.27 , pp. 159-166
    • Hong, S.1    Zhou, Z.2    Zio, E.3    Hong, K.4
  • 19
    • 84916629302 scopus 로고    scopus 로고
    • A novel methodology for online detection of bearing health status for naturally progressing defect
    • [19] Shakya, P., Kulkarni, M.S., Darpe, A.K., A novel methodology for online detection of bearing health status for naturally progressing defect. J. Sound Vib. 333 (2014), 5614–5629.
    • (2014) J. Sound Vib. , vol.333 , pp. 5614-5629
    • Shakya, P.1    Kulkarni, M.S.2    Darpe, A.K.3
  • 20
    • 84907486966 scopus 로고    scopus 로고
    • Application of empirical mode decomposition and artificial neural network for automatic bearing fault diagnosis based on vibration signals
    • [20] Ben Ali, J., Fnaiech, N., Saidi, L., Chebel-Morello, B., Fnaiech, F., Application of empirical mode decomposition and artificial neural network for automatic bearing fault diagnosis based on vibration signals. Appl. Acoust. 89 (2015), 16–27.
    • (2015) Appl. Acoust. , vol.89 , pp. 16-27
    • Ben Ali, J.1    Fnaiech, N.2    Saidi, L.3    Chebel-Morello, B.4    Fnaiech, F.5
  • 21
    • 84875254721 scopus 로고    scopus 로고
    • Dynamic degradation observer for bearing fault by MTS-SOM system
    • [21] Hu, J., Zhang, L., Liang, W., Dynamic degradation observer for bearing fault by MTS-SOM system. Mech. Syst. Signal Process. 36:2 (2013), 385–400.
    • (2013) Mech. Syst. Signal Process. , vol.36 , Issue.2 , pp. 385-400
    • Hu, J.1    Zhang, L.2    Liang, W.3
  • 22
    • 33646519024 scopus 로고    scopus 로고
    • A roller bearing fault diagnosis method based on EMD energy entropy and ANN
    • [22] Yang, Y., Yu, D.J., Cheng, J.S., A roller bearing fault diagnosis method based on EMD energy entropy and ANN. J. Sound Vib. 294 (2006), 269–277.
    • (2006) J. Sound Vib. , vol.294 , pp. 269-277
    • Yang, Y.1    Yu, D.J.2    Cheng, J.S.3
  • 23
    • 84885661664 scopus 로고    scopus 로고
    • Feature extraction based on semi-supervised kernel Marginal Fisher analysis and its application in bearing fault diagnosis
    • [23] Jiang, L., Xuan, J., Shi, T., Feature extraction based on semi-supervised kernel Marginal Fisher analysis and its application in bearing fault diagnosis. Mech. Syst. Signal Process. 41 (2013), 113–126.
    • (2013) Mech. Syst. Signal Process. , vol.41 , pp. 113-126
    • Jiang, L.1    Xuan, J.2    Shi, T.3
  • 24
    • 48749115318 scopus 로고    scopus 로고
    • A new approach to intelligent fault diagnosis of rotating machinery
    • (160)
    • [24] Lei, Y.G., He, Z.J., Zi, Y.Y., A new approach to intelligent fault diagnosis of rotating machinery. Expert Syst. Appl., 35, 2008, 1593 (160).
    • (2008) Expert Syst. Appl. , vol.35 , pp. 1593
    • Lei, Y.G.1    He, Z.J.2    Zi, Y.Y.3
  • 25
    • 84861610053 scopus 로고    scopus 로고
    • Fault detection of mechanical drives under variable operating conditions based on wavelet packet Rényi entropy signatures
    • [25] Boškoski, P., Juričić, Đ., Fault detection of mechanical drives under variable operating conditions based on wavelet packet Rényi entropy signatures. Mech. Syst. Signal Process 31 (2012), 369–381.
    • (2012) Mech. Syst. Signal Process , vol.31 , pp. 369-381
    • Boškoski, P.1    Juričić, Đ.2
  • 26
    • 84923061820 scopus 로고    scopus 로고
    • Bearing fault prognostics using Rényi entropy based features and Gaussian process models
    • [26] Boškoski, P., Gašperin, M., Petelin, D., Juričić, Đ., Bearing fault prognostics using Rényi entropy based features and Gaussian process models. Mech. Syst. Signal Process 52–53 (2015), 327–337.
    • (2015) Mech. Syst. Signal Process , vol.52-53 , pp. 327-337
    • Boškoski, P.1    Gašperin, M.2    Petelin, D.3    Juričić, Đ.4
  • 27
    • 78651346442 scopus 로고    scopus 로고
    • RT Services Bearing data set
    • U.O. Cincinnati IMS, University of Cincinnati
    • [27] Lee, J., Qiu, H., Yu, G., Lin, J., RT Services Bearing data set. Cincinnati, U.O., (eds.) NASA Ames Prognostics Data Repository, 2007, IMS, University of Cincinnati.
    • (2007) NASA Ames Prognostics Data Repository
    • Lee, J.1    Qiu, H.2    Yu, G.3    Lin, J.4
  • 28
    • 5444236478 scopus 로고    scopus 로고
    • The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
    • [28] Huang, N.E., Shen, Z., Long, S.R., et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. A 454 (1998), 903–995.
    • (1998) Proc. R. Soc. Lond. A , vol.454 , pp. 903-995
    • Huang, N.E.1    Shen, Z.2    Long, S.R.3
  • 29
    • 80052078099 scopus 로고    scopus 로고
    • Ensemble empirical mode decomposition: a noise-assisted data analysis method
    • [29] Wu, Z.H., Huang, N.E., Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv. Adapt. Data Anal. 1 (2009), 1–41.
    • (2009) Adv. Adapt. Data Anal. , vol.1 , pp. 1-41
    • Wu, Z.H.1    Huang, N.E.2
  • 30
    • 72149130282 scopus 로고    scopus 로고
    • Fault diagnosis of rotating machinery using an improved HHT based on EEMD and sensitive IMFs
    • [30] Lei, Y.G., Zuo, M.J., Fault diagnosis of rotating machinery using an improved HHT based on EEMD and sensitive IMFs. Meas. Sci. Technol. 20 (2009), 2280–2294.
    • (2009) Meas. Sci. Technol. , vol.20 , pp. 2280-2294
    • Lei, Y.G.1    Zuo, M.J.2
  • 31
    • 2542525254 scopus 로고    scopus 로고
    • A study of the characteristics of white noise using the empirical mode decomposition method
    • [31] Wu, Z.H., Huang, N.E., A study of the characteristics of white noise using the empirical mode decomposition method. Proc. R. Soc. Lond. 460 A (2004), 1597–1611.
    • (2004) Proc. R. Soc. Lond. , vol.460 A , pp. 1597-1611
    • Wu, Z.H.1    Huang, N.E.2
  • 32
    • 34249751601 scopus 로고    scopus 로고
    • Bearing fault diagnosis using FFT of intrinsic mode functions in Hilbert–Huang transform
    • [32] Rai, V., Mohanty, A., Bearing fault diagnosis using FFT of intrinsic mode functions in Hilbert–Huang transform. Mech. Syst. Signal Process. 21 (2007), 2607–2615.
    • (2007) Mech. Syst. Signal Process. , vol.21 , pp. 2607-2615
    • Rai, V.1    Mohanty, A.2
  • 33
    • 84916634726 scopus 로고    scopus 로고
    • Vibration-based fault diagnosis in rolling element bearings: ranking of various time, frequency and time-frequency domain data-based damage identification parameters
    • [33] Shakya, P., Darpe, A.K., Kulkarni, M.S., Vibration-based fault diagnosis in rolling element bearings: ranking of various time, frequency and time-frequency domain data-based damage identification parameters. Int. J. Cond. Monit. 3 (2013), 53–62.
    • (2013) Int. J. Cond. Monit. , vol.3 , pp. 53-62
    • Shakya, P.1    Darpe, A.K.2    Kulkarni, M.S.3
  • 34
    • 0035334271 scopus 로고    scopus 로고
    • Measuring time-frequency information content using the Renyi entropies
    • [34] Baraniuk, R., Flandrin, P., Janssen, A., Michel, O., Measuring time-frequency information content using the Renyi entropies. IEEE Trans. Inform. Theory 47 (2001), 1391–1409.
    • (2001) IEEE Trans. Inform. Theory , vol.47 , pp. 1391-1409
    • Baraniuk, R.1    Flandrin, P.2    Janssen, A.3    Michel, O.4
  • 35
    • 33846262061 scopus 로고    scopus 로고
    • An alternative time-domain index for condition monitoring of rolling element bearings—A comparison study
    • [35] Tao, B., Zhu, L., Ding, H., Xiong, Y., An alternative time-domain index for condition monitoring of rolling element bearings—A comparison study. Reliab. Eng. Syst. Saf. 92 (2007), 660–670.
    • (2007) Reliab. Eng. Syst. Saf. , vol.92 , pp. 660-670
    • Tao, B.1    Zhu, L.2    Ding, H.3    Xiong, Y.4
  • 36
    • 37049246034 scopus 로고
    • Fourth Berkeley Symposium on Mathematical Statistics and Probability Announced
    • [36] Neyman, J., Fourth Berkeley Symposium on Mathematical Statistics and Probability Announced. Science 131 (1960), 1595–1596.
    • (1960) Science , vol.131 , pp. 1595-1596
    • Neyman, J.1
  • 37
    • 0003808941 scopus 로고    scopus 로고
    • Alpha-Divergence for Classification, Indexing and Retrieval
    • (Technical Report CSPL-328) Communications and Signal Processing Laboratory, The University of Michigan
    • [37] Hero, A.O., Ma, B., Michel, O., Gorman, J., Alpha-Divergence for Classification, Indexing and Retrieval. (Technical Report CSPL-328), 2002, Communications and Signal Processing Laboratory, The University of Michigan.
    • (2002)
    • Hero, A.O.1    Ma, B.2    Michel, O.3    Gorman, J.4
  • 38
    • 84890083847 scopus 로고    scopus 로고
    • Novel multimodality segmentation using level sets and Jensen-Renyi divergence
    • [38] Markel, D., Zaidi, H., El Naqa, I., Novel multimodality segmentation using level sets and Jensen-Renyi divergence. Med. Phys., 40, 2013, 121908.
    • (2013) Med. Phys. , vol.40 , pp. 121908
    • Markel, D.1    Zaidi, H.2    El Naqa, I.3
  • 39
    • 0141904535 scopus 로고    scopus 로고
    • Jensen–Rényi divergence measure: theoretical and computational perspectives, in: Proceedings of the IEEE International Symp. on Inform. Theory., 2003, 257.
    • [39] A. Ben-Hamza, H. Krim, Jensen–Rényi divergence measure: theoretical and computational perspectives, in: Proceedings of the IEEE International Symp. on Inform. Theory., 2003, 257.
    • Ben-Hamza, A.1    Krim, H.2
  • 40
    • 33845299971 scopus 로고    scopus 로고
    • Information Theoretic Learning
    • Springer New York
    • [40] Príncipe, J., Information Theoretic Learning. 2010, Springer, New York.
    • (2010)
    • Príncipe, J.1
  • 41
    • 0037721741 scopus 로고    scopus 로고
    • A generalized divergence measure for robust image registration
    • [41] He, Y., Hamza, A.B., Krim, H., A generalized divergence measure for robust image registration. IEEE Trans. Signal Process. 51 (2003), 1211–1220.
    • (2003) IEEE Trans. Signal Process. , vol.51 , pp. 1211-1220
    • He, Y.1    Hamza, A.B.2    Krim, H.3
  • 42
    • 85041722693 scopus 로고    scopus 로고
    • Đ. Juričić, Robust information indices for diagnosing mechanical drives under non-stationary operating conditions, In: Proceedings of CMMNO, 2014, pp. 139–149
    • [42] B. Dolenc, P. Boškoski, Đ. Juričić, Robust information indices for diagnosing mechanical drives under non-stationary operating conditions, In: Proceedings of CMMNO, 2014, pp. 139–149.
    • Dolenc, B.1    Boškoski, P.2
  • 43
    • 0141740980 scopus 로고    scopus 로고
    • Probability and Statistics for Engineers and Scientists
    • PWS Publishing Co. Boston, MA
    • [43] Hayter, A., Probability and Statistics for Engineers and Scientists. 1996, PWS Publishing Co., Boston, MA.
    • (1996)
    • Hayter, A.1
  • 44
    • 0021377369 scopus 로고
    • Vibration monitoring of rolling element bearings by the high-frequency resonance technique—a review
    • [44] McFadden, P.D., Smith, J.D., Vibration monitoring of rolling element bearings by the high-frequency resonance technique—a review. Tribol. Int. 17:1 (1984), 3–10.
    • (1984) Tribol. Int. , vol.17 , Issue.1 , pp. 3-10
    • McFadden, P.D.1    Smith, J.D.2
  • 45
    • 0035273597 scopus 로고    scopus 로고
    • Application of the envelope and wavelet transform analyses for the diagnosis of incipient faults in ball bearings
    • [45] Rubini, R., Meneghetti, U., Application of the envelope and wavelet transform analyses for the diagnosis of incipient faults in ball bearings. Mech. Syst. Signal Process. 15 (2001), 287–302.
    • (2001) Mech. Syst. Signal Process. , vol.15 , pp. 287-302
    • Rubini, R.1    Meneghetti, U.2
  • 46
    • 34848858238 scopus 로고    scopus 로고
    • A fault diagnosis approach for roller bearing based on IMF envelope spectrum and SVM
    • [46] Yang, Y., Yu, D., Cheng, J., A fault diagnosis approach for roller bearing based on IMF envelope spectrum and SVM. Measurement 40 (2007), 943–950.
    • (2007) Measurement , vol.40 , pp. 943-950
    • Yang, Y.1    Yu, D.2    Cheng, J.3
  • 47
    • 52149098418 scopus 로고    scopus 로고
    • EMD based envelope analysis for bearing faults detection
    • (in:)
    • [47] Zhang, Y., Ai, S., EMD based envelope analysis for bearing faults detection. (in:) Intell. Control Autom., 2008, 4257–4260.
    • (2008) Intell. Control Autom. , pp. 4257-4260
    • Zhang, Y.1    Ai, S.2
  • 48
    • 34249718434 scopus 로고    scopus 로고
    • Application of the EMD method in the vibration analysis of ball bearings
    • [48] Du, Q.H., Yang, S.N., Application of the EMD method in the vibration analysis of ball bearings. Mech. Syst. Signal Process. 21 (2007), 2634–2644.
    • (2007) Mech. Syst. Signal Process. , vol.21 , pp. 2634-2644
    • Du, Q.H.1    Yang, S.N.2
  • 49
    • 84860484047 scopus 로고    scopus 로고
    • An insight concept to select appropriate IMFs for envelope analysis of bearing fault diagnosis
    • [49] Tsao, W.C., Li, Y.F., D.L, An insight concept to select appropriate IMFs for envelope analysis of bearing fault diagnosis. Measurement 45 (2012), 1489–1498.
    • (2012) Measurement , vol.45 , pp. 1489-1498
    • Tsao, W.C.1    Li, Y.F.2
  • 50
    • 84875833449 scopus 로고    scopus 로고
    • Using appropriate IMFs for envelope analysis in multiple fault diagnosis of ball bearings
    • [50] Pan, M.C., Tsao, W.C., Using appropriate IMFs for envelope analysis in multiple fault diagnosis of ball bearings. Int. J. Mech. Sci. 69 (2013), 114–124.
    • (2013) Int. J. Mech. Sci. , vol.69 , pp. 114-124
    • Pan, M.C.1    Tsao, W.C.2
  • 51
    • 84870669188 scopus 로고    scopus 로고
    • Automatic bearing fault diagnosis based on one-class ν-SVM
    • [51] Diego, F.F., David, M.R., Oscar, F.R., et al. Automatic bearing fault diagnosis based on one-class ν-SVM. Comput. Ind. Eng. 64 (2013), 357–365.
    • (2013) Comput. Ind. Eng. , vol.64 , pp. 357-365
    • Diego, F.F.1    David, M.R.2    Oscar, F.R.3
  • 52
    • 0033880843 scopus 로고    scopus 로고
    • Plant machinery working life prediction method utilizing reliability and condition-monitoring data
    • [52] Goode, K.B., Moore, J., Roylance, B.J., Plant machinery working life prediction method utilizing reliability and condition-monitoring data. Proc. Inst. Mech. Eng. E: J. Process Mech. Eng. 214 (2000), 109–122.
    • (2000) Proc. Inst. Mech. Eng. E: J. Process Mech. Eng. , vol.214 , pp. 109-122
    • Goode, K.B.1    Moore, J.2    Roylance, B.J.3
  • 53
    • 19044395347 scopus 로고    scopus 로고
    • Residual-life distributions from component degradation signals: a Bayesian approach
    • [53] Gebraeel, N., Lawley, M., Li, R., Ryan, J., Residual-life distributions from component degradation signals: a Bayesian approach. IIE Trans. 37 (2005), 543–557.
    • (2005) IIE Trans. , vol.37 , pp. 543-557
    • Gebraeel, N.1    Lawley, M.2    Li, R.3    Ryan, J.4
  • 54
    • 84997052014 scopus 로고    scopus 로고
    • Bearing damage classification using instantaneous energy density
    • [54] Shakya, P., Darpe, A.K., Kulkarni, M.S., Bearing damage classification using instantaneous energy density. J. Vib. Control., 2015.
    • (2015) J. Vib. Control.
    • Shakya, P.1    Darpe, A.K.2    Kulkarni, M.S.3
  • 55
    • 33644547646 scopus 로고    scopus 로고
    • Wavelet filter-based weak signature detection method and its application on rolling element bearing prognostics
    • [55] Qiu, H., Lee, J., Lin, J., Yu, G., Wavelet filter-based weak signature detection method and its application on rolling element bearing prognostics. J. Sound. Vib. 289:4–5 (2006), 1066–1090.
    • (2006) J. Sound. Vib. , vol.289 , Issue.4-5 , pp. 1066-1090
    • Qiu, H.1    Lee, J.2    Lin, J.3    Yu, G.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.