메뉴 건너뛰기




Volumn 50-51, Issue , 2015, Pages 414-426

Fault diagnosis of rotating machinery with a novel statistical feature extraction and evaluation method

Author keywords

Fault classification; Fault diagnosis; Feature extraction; Rotating machinery

Indexed keywords

FAILURE ANALYSIS; FEATURE EXTRACTION; NEURAL NETWORKS; NORMAL DISTRIBUTION; ROTATING MACHINERY; SIGNAL PROCESSING; SUPPORT VECTOR MACHINES; ALGEBRA; CLASSIFICATION (OF INFORMATION); COMPUTATION THEORY; COMPUTER AIDED DIAGNOSIS; EXTRACTION; MACHINERY; VIBRATION ANALYSIS;

EID: 84905828170     PISSN: 08883270     EISSN: 10961216     Source Type: Journal    
DOI: 10.1016/j.ymssp.2014.05.034     Document Type: Article
Times cited : (128)

References (34)
  • 1
    • 33646534620 scopus 로고    scopus 로고
    • A review on machinery diagnostics and prognostics implementing condition-based maintenance
    • A.K.S. Jardine, D. Lin, and D. Banjevic A review on machinery diagnostics and prognostics implementing condition-based maintenance Mech. Syst. Signal Process. 20 7 2006 1483 1510
    • (2006) Mech. Syst. Signal Process. , vol.20 , Issue.7 , pp. 1483-1510
    • Jardine, A.K.S.1    Lin, D.2    Banjevic, D.3
  • 2
    • 34249661124 scopus 로고    scopus 로고
    • Support vector machine in machine condition monitoring and fault diagnosis
    • A. Widodo, and B.S. Yang Support vector machine in machine condition monitoring and fault diagnosis Mech. Syst. Signal Process. 21 6 2007 2560 2574
    • (2007) Mech. Syst. Signal Process. , vol.21 , Issue.6 , pp. 2560-2574
    • Widodo, A.1    Yang, B.S.2
  • 3
    • 78650707295 scopus 로고    scopus 로고
    • Multi component fault diagnosis of rotational mechanical system based on decision tree and support vector machine
    • M. Saimurugan, K.I. Ramachandran, V. Sugumaran, and N.R. Sakthivel Multi component fault diagnosis of rotational mechanical system based on decision tree and support vector machine Expert Syst. Appl. 38 4 2011 3819 3826
    • (2011) Expert Syst. Appl. , vol.38 , Issue.4 , pp. 3819-3826
    • Saimurugan, M.1    Ramachandran, K.I.2    Sugumaran, V.3    Sakthivel, N.R.4
  • 4
    • 50149090206 scopus 로고    scopus 로고
    • Feature-based classifier ensembles for diagnosing multiple faults in rotating machinery
    • E. Zio, P. Baraldi, and G. Gola Feature-based classifier ensembles for diagnosing multiple faults in rotating machinery Appl. Comput. 8 4 2008 1365 1380
    • (2008) Appl. Comput. , vol.8 , Issue.4 , pp. 1365-1380
    • Zio, E.1    Baraldi, P.2    Gola, G.3
  • 7
    • 0030145203 scopus 로고    scopus 로고
    • Using the correlation dimension for vibration fault diagnosis of rolling element bearings I basic concepts
    • D. Logan, and J. Mathew Using the correlation dimension for vibration fault diagnosis of rolling element bearings I basic concepts Mech. Syst. Signal Process. 10 1996 241 250
    • (1996) Mech. Syst. Signal Process. , vol.10 , pp. 241-250
    • Logan, D.1    Mathew, J.2
  • 8
    • 34047275789 scopus 로고    scopus 로고
    • Intelligent fault diagnosis of rolling element bearing based on SVMs and fractal dimension
    • J. Yang, Y. Zhang, and Y. Zhu Intelligent fault diagnosis of rolling element bearing based on SVMs and fractal dimension Mech. Syst. Signal Process. 21 2007 2012 2024
    • (2007) Mech. Syst. Signal Process. , vol.21 , pp. 2012-2024
    • Yang, J.1    Zhang, Y.2    Zhu, Y.3
  • 9
    • 34249751601 scopus 로고    scopus 로고
    • Bearing fault diagnosis using FFT of intrinsic mode functions in Hilbert-Huang transform
    • V.K. Rai, and A.R. Mohanty Bearing fault diagnosis using FFT of intrinsic mode functions in Hilbert-Huang transform Mech. Syst. Signal Process. 21 8 2007 3030 3041
    • (2007) Mech. Syst. Signal Process. , vol.21 , Issue.8 , pp. 3030-3041
    • Rai, V.K.1    Mohanty, A.R.2
  • 10
    • 34848858238 scopus 로고    scopus 로고
    • A fault diagnosis approach for roller bearing based on IMF envelope spectrum and SVM
    • Y. Yang, D.J. Yu, and J.S. Cheng A fault diagnosis approach for roller bearing based on IMF envelope spectrum and SVM Measurement 40 9-10 2007 943 950
    • (2007) Measurement , vol.40 , Issue.9-10 , pp. 943-950
    • Yang, Y.1    Yu, D.J.2    Cheng, J.S.3
  • 12
    • 0343240948 scopus 로고
    • Early detection of gear failure by vibration analysis I calculation of the time-frequency distribution
    • W.J. Wang, and P.D. McFadden Early detection of gear failure by vibration analysis I calculation of the time-frequency distribution Mech. Syst. Signal Process. 7 1993 193 203
    • (1993) Mech. Syst. Signal Process. , vol.7 , pp. 193-203
    • Wang, W.J.1    McFadden, P.D.2
  • 13
    • 0031177176 scopus 로고    scopus 로고
    • Higher-order time-frequency analysis and its application to fault detection in rotating machinery
    • S.K. Lee, and P.R. White Higher-order time-frequency analysis and its application to fault detection in rotating machinery Mech. Syst. Signal Process. 11 1997 637 650
    • (1997) Mech. Syst. Signal Process. , vol.11 , pp. 637-650
    • Lee, S.K.1    White, P.R.2
  • 14
    • 0035520683 scopus 로고    scopus 로고
    • A comparative study of acoustic and vibration signals in detection of gear failures using Wigner-Ville distribution
    • N. Baydar, and A. Ball A comparative study of acoustic and vibration signals in detection of gear failures using Wigner-Ville distribution Mech. Syst. Signal Process. 15 2001 1091 1107
    • (2001) Mech. Syst. Signal Process. , vol.15 , pp. 1091-1107
    • Baydar, N.1    Ball, A.2
  • 15
    • 0035273597 scopus 로고    scopus 로고
    • Application of the envelope and wavelet transform analyses for the diagnosis of incipient faults in ball bearings
    • R. Rubini, and U. Meneghetti Application of the envelope and wavelet transform analyses for the diagnosis of incipient faults in ball bearings Mech. Syst. Signal Process. 15 2001 287 302
    • (2001) Mech. Syst. Signal Process. , vol.15 , pp. 287-302
    • Rubini, R.1    Meneghetti, U.2
  • 16
    • 84857366453 scopus 로고    scopus 로고
    • Mechanical fault diagnosis based on redundant second generation wavelet packet transform, neighborhood rough set and support vector machine
    • N. Li, R. Zhou, Q. Hu, and X. Liu Mechanical fault diagnosis based on redundant second generation wavelet packet transform, neighborhood rough set and support vector machine Mech. Syst. Signal Process. 28 2012 608 621
    • (2012) Mech. Syst. Signal Process. , vol.28 , pp. 608-621
    • Li, N.1    Zhou, R.2    Hu, Q.3    Liu, X.4
  • 17
    • 84870404381 scopus 로고    scopus 로고
    • A review on empirical mode decomposition in fault diagnosis of rotating machinery
    • Y. Lei, J. Lin, Z. He, and M.J. Zuo A review on empirical mode decomposition in fault diagnosis of rotating machinery Mech. Syst. Signal Process. 35 2013 108 126
    • (2013) Mech. Syst. Signal Process. , vol.35 , pp. 108-126
    • Lei, Y.1    Lin, J.2    He, Z.3    Zuo, M.J.4
  • 18
    • 67349214658 scopus 로고    scopus 로고
    • Fault diagnosis of pneumatic systems with artificial neural network algorithms
    • M. Demetgul, I.N. Tansel, and S. Taskin Fault diagnosis of pneumatic systems with artificial neural network algorithms Expert Syst. Appl. 36 7 2009 10512 10519
    • (2009) Expert Syst. Appl. , vol.36 , Issue.7 , pp. 10512-10519
    • Demetgul, M.1    Tansel, I.N.2    Taskin, S.3
  • 19
    • 58349111323 scopus 로고    scopus 로고
    • An expert system for fault diagnosis in internal combustion engines using wavelet packet transform and neural network
    • J.D. Wu, and C.H. Liu An expert system for fault diagnosis in internal combustion engines using wavelet packet transform and neural network Expert Syst. Appl. 36 3 2009 4278 4286
    • (2009) Expert Syst. Appl. , vol.36 , Issue.3 , pp. 4278-4286
    • Wu, J.D.1    Liu, C.H.2
  • 20
    • 70349285991 scopus 로고    scopus 로고
    • Automated diagnosis of rolling bearings using MRA and neural networks
    • C. Castejn, O. Lara, and J.C. Garca-Prada Automated diagnosis of rolling bearings using MRA and neural networks Mech. Syst. Signal Process. 24 1 2010 289 299
    • (2010) Mech. Syst. Signal Process. , vol.24 , Issue.1 , pp. 289-299
    • Castejn, C.1    Lara, O.2    Garca-Prada, J.C.3
  • 21
    • 82255174981 scopus 로고    scopus 로고
    • Early fault diagnosis of rotating machinery based on wavelet packets-empirical mode decomposition feature extraction and neural network
    • G.F. Bin, J.J. Gao, X.J. Li, and B.S. Dhillon Early fault diagnosis of rotating machinery based on wavelet packets-empirical mode decomposition feature extraction and neural network Mech. Syst. Signal Process. 27 2012 696 711
    • (2012) Mech. Syst. Signal Process. , vol.27 , pp. 696-711
    • Bin, G.F.1    Gao, J.J.2    Li, X.J.3    Dhillon, B.S.4
  • 23
    • 33750503791 scopus 로고    scopus 로고
    • Fault diagnosis of rotating machinery based on improved wavelet package transform and SVMs ensemble
    • Q. Hu, Z. He, Z. Zhang, and Y. Zi Fault diagnosis of rotating machinery based on improved wavelet package transform and SVMs ensemble Mech. Syst. Signal Process. 21 2007 688 705
    • (2007) Mech. Syst. Signal Process. , vol.21 , pp. 688-705
    • Hu, Q.1    He, Z.2    Zhang, Z.3    Zi, Y.4
  • 24
    • 34548035641 scopus 로고    scopus 로고
    • Rolling element bearings multi-fault classification based on the wavelet denoising and support vector machine
    • S. Abbasion, A. Rafsanjani, A. Farshidianfar, and N. Irani Rolling element bearings multi-fault classification based on the wavelet denoising and support vector machine Mech. Syst. Signal Process. 21 7 2007 2933 2945
    • (2007) Mech. Syst. Signal Process. , vol.21 , Issue.7 , pp. 2933-2945
    • Abbasion, S.1    Rafsanjani, A.2    Farshidianfar, A.3    Irani, N.4
  • 25
    • 45549087797 scopus 로고    scopus 로고
    • General support vector representation machine for one-class classification of non-stationary classes
    • F. Camci, and R.B. Chinnam General support vector representation machine for one-class classification of non-stationary classes Pattern Recognit. 41 10 2008 3021 3034
    • (2008) Pattern Recognit. , vol.41 , Issue.10 , pp. 3021-3034
    • Camci, F.1    Chinnam, R.B.2
  • 26
    • 79151481501 scopus 로고    scopus 로고
    • Fuzzy fault diagnosis based on fuzzy robust v-support vector classifier and modified genetic algorithm
    • Q. Wu Fuzzy fault diagnosis based on fuzzy robust v-support vector classifier and modified genetic algorithm Expert Syst. Appl. 38 5 2011 4882 4888
    • (2011) Expert Syst. Appl. , vol.38 , Issue.5 , pp. 4882-4888
    • Wu, Q.1
  • 27
    • 81855201771 scopus 로고    scopus 로고
    • A novel intelligent gear fault diagnosis model based on EMD and multi-class TSVM
    • Z. Shen, X. Chen, X. Zhang, and Z. He A novel intelligent gear fault diagnosis model based on EMD and multi-class TSVM Measurement 45 1 2012 30 40
    • (2012) Measurement , vol.45 , Issue.1 , pp. 30-40
    • Shen, Z.1    Chen, X.2    Zhang, X.3    He, Z.4
  • 28
    • 84874337245 scopus 로고    scopus 로고
    • Fault diagnosis of bearings based on a sensitive feature decoupling technique
    • W. Li, F. Jiang, Z. Zhu, G. Zhou, and G. Chen Fault diagnosis of bearings based on a sensitive feature decoupling technique Measur. Sci. Technol. 24 2013 035602
    • (2013) Measur. Sci. Technol. , vol.24 , pp. 035602
    • Li, W.1    Jiang, F.2    Zhu, Z.3    Zhou, G.4    Chen, G.5
  • 29
    • 2942525326 scopus 로고    scopus 로고
    • Bearing fault diagnosis based on wavelet transform and fuzzy inference
    • X. Lou, and K.A. Loparo Bearing fault diagnosis based on wavelet transform and fuzzy inference Mech. Syst. Signal Process. 18 5 2004 1077 1095
    • (2004) Mech. Syst. Signal Process. , vol.18 , Issue.5 , pp. 1077-1095
    • Lou, X.1    Loparo, K.A.2
  • 30
    • 34047251505 scopus 로고    scopus 로고
    • Fault diagnosis of rotating machinery based on multiple ANFIS combination with GAs
    • Y. Lei, Z. He, Y. Zi, and Q. Hu Fault diagnosis of rotating machinery based on multiple ANFIS combination with GAs Mech. Syst. Signal Process. 21 5 2007 2280 2294
    • (2007) Mech. Syst. Signal Process. , vol.21 , Issue.5 , pp. 2280-2294
    • Lei, Y.1    He, Z.2    Zi, Y.3    Hu, Q.4
  • 31
    • 3543151400 scopus 로고    scopus 로고
    • Hidden Markov model-based process monitoring system
    • Y. Xu, and M. Ge Hidden Markov model-based process monitoring system J. Intell. Manuf. 15 2004 337 350
    • (2004) J. Intell. Manuf. , vol.15 , pp. 337-350
    • Xu, Y.1    Ge, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.