메뉴 건너뛰기




Volumn 171, Issue , 2016, Pages 837-853

A novel intelligent method for mechanical fault diagnosis based on dual-tree complex wavelet packet transform and multiple classifier fusion

Author keywords

Bayesian belief method; Dual tree complex wavelet packet transform; Fault diagnosis; Multiple classifier fusion; Neighborhood rough set

Indexed keywords

CLASSIFIERS; COMPUTER AIDED DIAGNOSIS; FAILURE ANALYSIS; FEATURE EXTRACTION; FREQUENCY BANDS; FREQUENCY DOMAIN ANALYSIS; INFORMATION FUSION; PACKET NETWORKS; PARTIAL DISCHARGES; ROLLER BEARINGS; ROUGH SET THEORY; TIME DOMAIN ANALYSIS; WAVELET TRANSFORMS;

EID: 84947036429     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2015.07.020     Document Type: Article
Times cited : (136)

References (41)
  • 1
    • 34047251505 scopus 로고    scopus 로고
    • Fault diagnosis of rotating machinery based on multiple ANFIS combination with GAs
    • Lei Y.G., He Z.J, Zi Y.Y., Hu Q. Fault diagnosis of rotating machinery based on multiple ANFIS combination with GAs. Mech. Syst. Signal Process. 2007, 21:2280-2294.
    • (2007) Mech. Syst. Signal Process. , vol.21 , pp. 2280-2294
    • Lei, Y.G.1    He, Z.J.2    Zi, Y.Y.3    Hu, Q.4
  • 2
    • 84867863746 scopus 로고    scopus 로고
    • Multi-fault classification based on wavelet SVM with PSO algorithm to analyze vibration signals from rolling element bearings
    • Liu Z.W., Cao H.R., Chen X.F., He Z.J., Shen Z.J. Multi-fault classification based on wavelet SVM with PSO algorithm to analyze vibration signals from rolling element bearings. Neurocomputing 2013, 99:399-410.
    • (2013) Neurocomputing , vol.99 , pp. 399-410
    • Liu, Z.W.1    Cao, H.R.2    Chen, X.F.3    He, Z.J.4    Shen, Z.J.5
  • 3
    • 84876134288 scopus 로고    scopus 로고
    • Fault diagnosis of rolling element bearing using cyclic autocorrelation and wavelet transform
    • Kankar P.K., Sharma Satish C., Harsha S.P. Fault diagnosis of rolling element bearing using cyclic autocorrelation and wavelet transform. Neurocomputing 2013, 110:9-17.
    • (2013) Neurocomputing , vol.110 , pp. 9-17
    • Kankar, P.K.1    Sharma, S.C.2    Harsha, S.P.3
  • 4
    • 84880108300 scopus 로고    scopus 로고
    • LMD method and multi-class RWSVM of fault diagnosis for rotating machinery using condition monitoring information
    • Liu Z.W., Chen X.F., He Z.J., Shen Z.J. LMD method and multi-class RWSVM of fault diagnosis for rotating machinery using condition monitoring information. Sensors 2013, 13:8679-8694.
    • (2013) Sensors , vol.13 , pp. 8679-8694
    • Liu, Z.W.1    Chen, X.F.2    He, Z.J.3    Shen, Z.J.4
  • 5
    • 84894572547 scopus 로고    scopus 로고
    • Reliable fault diagnosis method using ensemble fuzzy ARTMAP based on improved Bayesian belief method
    • Jin M., Li R., Xu Z.B., Zhao X.D. Reliable fault diagnosis method using ensemble fuzzy ARTMAP based on improved Bayesian belief method. Neurocomputing 2014, 133:309-316.
    • (2014) Neurocomputing , vol.133 , pp. 309-316
    • Jin, M.1    Li, R.2    Xu, Z.B.3    Zhao, X.D.4
  • 6
    • 0346306460 scopus 로고    scopus 로고
    • Application of the wavelet transform in machine condition monitoring and fault diagnostics: a review with bibliography
    • Peng Z.K., Chu F.L. Application of the wavelet transform in machine condition monitoring and fault diagnostics: a review with bibliography. Mech. Syst. Signal Process. 2004, 18:199-221.
    • (2004) Mech. Syst. Signal Process. , vol.18 , pp. 199-221
    • Peng, Z.K.1    Chu, F.L.2
  • 7
    • 77349127319 scopus 로고    scopus 로고
    • Incipient gear fault diagnosis using discrete wavelet transform (DWT) for feature extraction and classification using artificial neural network (ANN)
    • Saravanan N., Ramachandran K.I. Incipient gear fault diagnosis using discrete wavelet transform (DWT) for feature extraction and classification using artificial neural network (ANN). Expert Syst. Appl. 2010, 37:4168-4181.
    • (2010) Expert Syst. Appl. , vol.37 , pp. 4168-4181
    • Saravanan, N.1    Ramachandran, K.I.2
  • 8
    • 84887433963 scopus 로고    scopus 로고
    • Wavelets for fault diagnosis of rotary machines: a review with applications
    • Yan R.Q., Gao R.X., Chen X.F. Wavelets for fault diagnosis of rotary machines: a review with applications. Signal Process. 2014, 96:1-15.
    • (2014) Signal Process. , vol.96 , pp. 1-15
    • Yan, R.Q.1    Gao, R.X.2    Chen, X.F.3
  • 9
    • 12444330487 scopus 로고    scopus 로고
    • New method for weak fault feature extraction based on second generation wavelet transform and its application
    • Duan C.D., He Z.J., Jiang H.K. New method for weak fault feature extraction based on second generation wavelet transform and its application. Chin. J. Mech. Eng. 2005, 17:543-547.
    • (2005) Chin. J. Mech. Eng. , vol.17 , pp. 543-547
    • Duan, C.D.1    He, Z.J.2    Jiang, H.K.3
  • 10
    • 82255174981 scopus 로고    scopus 로고
    • Early fault diagnosis of rotating machinery based on wavelet packets-empirical mode decomposition feature extraction and neural network
    • Bin G.F., Gao J.J., Li X.J., Dhillon B.S. Early fault diagnosis of rotating machinery based on wavelet packets-empirical mode decomposition feature extraction and neural network. Mech. Syst. Signal Process. 2012, 27:696-711.
    • (2012) Mech. Syst. Signal Process. , vol.27 , pp. 696-711
    • Bin, G.F.1    Gao, J.J.2    Li, X.J.3    Dhillon, B.S.4
  • 11
    • 81855201771 scopus 로고    scopus 로고
    • A novel intelligent gear fault diagnosis model based on EMD and multi-class TSVM
    • Shen Z.J., Chen X.F., Zhang X.L., He Z.J. A novel intelligent gear fault diagnosis model based on EMD and multi-class TSVM. Measurement 2012, 45:30-40.
    • (2012) Measurement , vol.45 , pp. 30-40
    • Shen, Z.J.1    Chen, X.F.2    Zhang, X.L.3    He, Z.J.4
  • 12
    • 84870404381 scopus 로고    scopus 로고
    • A review on empirical mode decomposition in fault diagnosis of rotating machinery
    • Lei Y.G., Lin J., He Z.J., Zuo M.J. A review on empirical mode decomposition in fault diagnosis of rotating machinery. Mech. Syst. Signal Process. 2013, 35:108-126.
    • (2013) Mech. Syst. Signal Process. , vol.35 , pp. 108-126
    • Lei, Y.G.1    Lin, J.2    He, Z.J.3    Zuo, M.J.4
  • 13
    • 1642312519 scopus 로고    scopus 로고
    • The dual-tree complex wavelet transform: a new technique for shift invariance and directional filters
    • N.G. Kingsbury, The dual-tree complex wavelet transform: a new technique for shift invariance and directional filters, in: Proceedings of the 8th IEEE DSP Workshop, 1998.
    • (1998) Proceedings of the 8th IEEE DSP Workshop
    • Kingsbury, N.G.1
  • 15
    • 70349272168 scopus 로고    scopus 로고
    • Enhancement of signal denoising and multiple fault signatures detecting in rotating machinery using dual-tree complex wavelet transform
    • Wang Y.X., He Z.J., Zi Y.Y. Enhancement of signal denoising and multiple fault signatures detecting in rotating machinery using dual-tree complex wavelet transform. Mech. Syst. Signal Process. 2010, 24:119-137.
    • (2010) Mech. Syst. Signal Process. , vol.24 , pp. 119-137
    • Wang, Y.X.1    He, Z.J.2    Zi, Y.Y.3
  • 16
    • 44849142642 scopus 로고    scopus 로고
    • Seismic signal analysis based on the dual-tree complex wavelet packet transform
    • Xie Z.M., Wang E.F., Zhang G.H., Zhao G.C., Chen X.G. Seismic signal analysis based on the dual-tree complex wavelet packet transform. Acta Seismol. Sin. 2004, 17(1):117-122.
    • (2004) Acta Seismol. Sin. , vol.17 , Issue.1 , pp. 117-122
    • Xie, Z.M.1    Wang, E.F.2    Zhang, G.H.3    Zhao, G.C.4    Chen, X.G.5
  • 17
    • 34249661124 scopus 로고    scopus 로고
    • Support vector machine in machine condition monitoring and fault diagnosis
    • Widodo A., Yang B.S. Support vector machine in machine condition monitoring and fault diagnosis. Mech. Syst. Signal Process. 2007, 21:2560-2574.
    • (2007) Mech. Syst. Signal Process. , vol.21 , pp. 2560-2574
    • Widodo, A.1    Yang, B.S.2
  • 18
    • 64049098473 scopus 로고    scopus 로고
    • Application of an intelligent classification method to mechanical fault diagnosis
    • Lei Y.G., He Z.J., Zi Y.Y. Application of an intelligent classification method to mechanical fault diagnosis. Expert Syst. Appl. 2009, 36:9941-9948.
    • (2009) Expert Syst. Appl. , vol.36 , pp. 9941-9948
    • Lei, Y.G.1    He, Z.J.2    Zi, Y.Y.3
  • 19
    • 71749083809 scopus 로고    scopus 로고
    • Mechanical equipment fault diagnosis based on redundant second generation wavelet packet transform
    • Zhou R., Bao W., Li N., Huang X., Yu D.R. Mechanical equipment fault diagnosis based on redundant second generation wavelet packet transform. Digit. Signal Process. 2010, 20:276-288.
    • (2010) Digit. Signal Process. , vol.20 , pp. 276-288
    • Zhou, R.1    Bao, W.2    Li, N.3    Huang, X.4    Yu, D.R.5
  • 20
    • 79953286182 scopus 로고    scopus 로고
    • Fault detection and diagnosis of a gearbox in marine propulsion systems using bispectrum analysis and artificial neural networks
    • Li Z.X., Yan X.P., Yuan C.Q., Zhao J.B., Peng Z.X. Fault detection and diagnosis of a gearbox in marine propulsion systems using bispectrum analysis and artificial neural networks. J. Mar. Sci. Appl. 2011, 10:17-24.
    • (2011) J. Mar. Sci. Appl. , vol.10 , pp. 17-24
    • Li, Z.X.1    Yan, X.P.2    Yuan, C.Q.3    Zhao, J.B.4    Peng, Z.X.5
  • 21
    • 80052944609 scopus 로고    scopus 로고
    • Feature selection for high-dimensional machinery fault diagnosis data using multiple models and radial basis function networks
    • Zhang K., Li Y.H., Scarf Philip, Ball Andrew Feature selection for high-dimensional machinery fault diagnosis data using multiple models and radial basis function networks. Neurocomputing 2011, 74:2941-2952.
    • (2011) Neurocomputing , vol.74 , pp. 2941-2952
    • Zhang, K.1    Li, Y.H.2    Scarf, P.3    Ball, A.4
  • 22
    • 71749106872 scopus 로고    scopus 로고
    • A multidimensional hybrid intelligent method for gear fault diagnosis
    • Lei Y.G., Zuo M.J., He Z.J., Zi Y.Y. A multidimensional hybrid intelligent method for gear fault diagnosis. Expert Syst. Appl. 2010, 37:1419-1430.
    • (2010) Expert Syst. Appl. , vol.37 , pp. 1419-1430
    • Lei, Y.G.1    Zuo, M.J.2    He, Z.J.3    Zi, Y.Y.4
  • 23
    • 58049136406 scopus 로고    scopus 로고
    • Machinery fault diagnosis based on fuzzy measure and fuzzy integral data fusion techniques
    • Liu X.F., Ma L., Mathew J. Machinery fault diagnosis based on fuzzy measure and fuzzy integral data fusion techniques. Mech. Syst. Signal Process. 2009, 23:690-700.
    • (2009) Mech. Syst. Signal Process. , vol.23 , pp. 690-700
    • Liu, X.F.1    Ma, L.2    Mathew, J.3
  • 24
    • 75049085356 scopus 로고    scopus 로고
    • Fault diagnosis in railway track circuits using Dempster-Shafer classifier fusion
    • Oukhellou L., Debiolles A., Denœux T., Aknin P. Fault diagnosis in railway track circuits using Dempster-Shafer classifier fusion. Eng. Appl. Artif. Intell. 2010, 23:117-128.
    • (2010) Eng. Appl. Artif. Intell. , vol.23 , pp. 117-128
    • Oukhellou, L.1    Debiolles, A.2    Denœux, T.3    Aknin, P.4
  • 25
    • 84881274659 scopus 로고    scopus 로고
    • Divisional fault diagnosis of large-scale power systems based on radial basis function neural network and fuzzy integral
    • Xiong G.J., Shi D.Y., Chen J.F., Zhu L., Duan X.Z. Divisional fault diagnosis of large-scale power systems based on radial basis function neural network and fuzzy integral. Elec. Power Syst. Res. 2013, 105:9-19.
    • (2013) Elec. Power Syst. Res. , vol.105 , pp. 9-19
    • Xiong, G.J.1    Shi, D.Y.2    Chen, J.F.3    Zhu, L.4    Duan, X.Z.5
  • 26
    • 84890451709 scopus 로고    scopus 로고
    • Granular computing: practices, theories, and future directions
    • Lin T.Y. Granular computing: practices, theories, and future directions. Comput. Complex 2012, 1404-1420.
    • (2012) Comput. Complex , pp. 1404-1420
    • Lin, T.Y.1
  • 27
    • 46749140199 scopus 로고    scopus 로고
    • Neighborhood rough set based heterogeneous feature subset selection
    • Hu Q.H., Yu D.R., Liu J.F., Wu C.X. Neighborhood rough set based heterogeneous feature subset selection. Inform. Sci. 2008, 178:3577-3594.
    • (2008) Inform. Sci. , vol.178 , pp. 3577-3594
    • Hu, Q.H.1    Yu, D.R.2    Liu, J.F.3    Wu, C.X.4
  • 28
    • 42949087870 scopus 로고    scopus 로고
    • Mixed feature selection based on granulation and approximation
    • Hu Q.H., Liu J.F., Yu D.R. Mixed feature selection based on granulation and approximation. Knowledge-Based Syst. 2008, 21:294-304.
    • (2008) Knowledge-Based Syst. , vol.21 , pp. 294-304
    • Hu, Q.H.1    Liu, J.F.2    Yu, D.R.3
  • 29
    • 84857366453 scopus 로고    scopus 로고
    • Mechanical fault diagnosis based on redundant second generation wavelet packet transform, neighborhood rough set and support vector machine
    • Li N., Zhou R., Hu Q.H., Liu X.H. Mechanical fault diagnosis based on redundant second generation wavelet packet transform, neighborhood rough set and support vector machine. Mech. Syst. Signal Process. 2012, 28:608-621.
    • (2012) Mech. Syst. Signal Process. , vol.28 , pp. 608-621
    • Li, N.1    Zhou, R.2    Hu, Q.H.3    Liu, X.H.4
  • 30
    • 84858000742 scopus 로고    scopus 로고
    • Class-dependent rough-fuzzy granular space, dispersion index and classification
    • Pal S.K., Meher S.K., Dutta S. Class-dependent rough-fuzzy granular space, dispersion index and classification. Pattern Recog. 2012, 45:2690-2707.
    • (2012) Pattern Recog. , vol.45 , pp. 2690-2707
    • Pal, S.K.1    Meher, S.K.2    Dutta, S.3
  • 32
    • 0035369170 scopus 로고    scopus 로고
    • Hilbert transform pairs of wavelet bases
    • Selecnick I.W. Hilbert transform pairs of wavelet bases. IEEE Signal Process. Lett. 2001, 8:170-173.
    • (2001) IEEE Signal Process. Lett. , vol.8 , pp. 170-173
    • Selecnick, I.W.1
  • 33
    • 0036571110 scopus 로고    scopus 로고
    • The design of approximate Hilbert transform pairs of wavelet bases
    • Selesnick I.W. The design of approximate Hilbert transform pairs of wavelet bases. IEEE Trans. Signal Process. 2002, 50:1144-1152.
    • (2002) IEEE Trans. Signal Process. , vol.50 , pp. 1144-1152
    • Selesnick, I.W.1
  • 34
    • 29144510465 scopus 로고    scopus 로고
    • Hilbert transform pairs of orthogonal wavelet bases: necessary and sufficient conditions
    • Yu R., Ozkaramanli H. Hilbert transform pairs of orthogonal wavelet bases: necessary and sufficient conditions. IEEE Trans. Signal Process. 2005, 53:4723-4725.
    • (2005) IEEE Trans. Signal Process. , vol.53 , pp. 4723-4725
    • Yu, R.1    Ozkaramanli, H.2
  • 35
    • 67650180219 scopus 로고    scopus 로고
    • Optimization of symmetric self-Hilbertian filters for the dual-tree complex wavelet transform
    • Dumitrescu B., Bayram I., Selesnick I.W. Optimization of symmetric self-Hilbertian filters for the dual-tree complex wavelet transform. IEEE Signal Process. Lett. 2008, 15:146-149.
    • (2008) IEEE Signal Process. Lett. , vol.15 , pp. 146-149
    • Dumitrescu, B.1    Bayram, I.2    Selesnick, I.W.3
  • 36
    • 46649117658 scopus 로고    scopus 로고
    • Sampled-data design of FIR dual filter banks for dual-tree complex wavelet transforms via LMI optimization
    • Yu R., Baradarani A. Sampled-data design of FIR dual filter banks for dual-tree complex wavelet transforms via LMI optimization. IEEE Trans. Signal Process. 2008, 56:3369-3375.
    • (2008) IEEE Trans. Signal Process. , vol.56 , pp. 3369-3375
    • Yu, R.1    Baradarani, A.2
  • 38
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multiclass support vector machines
    • Hsu C.W., Lin C.J. A comparison of methods for multiclass support vector machines. IEEE Trans. Neural Networks 2002, 13:415-425.
    • (2002) IEEE Trans. Neural Networks , vol.13 , pp. 415-425
    • Hsu, C.W.1    Lin, C.J.2
  • 40
    • 0029373189 scopus 로고
    • Optimal combination of pattern classifiers
    • Lam L., Suen C Optimal combination of pattern classifiers. Pattern Recognit. Lett. 1995, 16:945-954.
    • (1995) Pattern Recognit. Lett. , vol.16 , pp. 945-954
    • Lam, L.1    Suen, C.2
  • 41
    • 1542581452 scopus 로고    scopus 로고
    • Improved computation of beliefs based on confusion matrix for combining multiple classifiers
    • Chen L., Tang H.L Improved computation of beliefs based on confusion matrix for combining multiple classifiers. Electron. Lett. 2004, 40:238-239.
    • (2004) Electron. Lett. , vol.40 , pp. 238-239
    • Chen, L.1    Tang, H.L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.