-
1
-
-
84912528864
-
Emerging drugs and vaccines for candidemia
-
Moriyama B, Gordon LA, McCarthy M, Henning SA, Walsh TJ, Penzak SR. Emerging drugs and vaccines for candidemia. Mycoses 2014; 57:718–33.
-
(2014)
Mycoses
, vol.57
, pp. 718-733
-
-
Moriyama, B.1
Gordon, L.A.2
McCarthy, M.3
Henning, S.A.4
Walsh, T.J.5
Penzak, S.R.6
-
2
-
-
84926058258
-
Infectious disease. How to bolster the antifungal pipeline
-
Denning DW, Bromley MJ. Infectious disease. How to bolster the antifungal pipeline. Science 2015; 347:1414–6.
-
(2015)
Science
, vol.347
, pp. 1414-1416
-
-
Denning, D.W.1
Bromley, M.J.2
-
4
-
-
77956343542
-
An insight into the antifungal pipeline: Selected new molecules and beyond
-
Ostrosky-Zeichner L, Casadevall A, Galgiani JN, Odds FC, Rex JH. An insight into the antifungal pipeline: selected new molecules and beyond. Nat Rev Drug Discov 2010; 9:719–27.
-
(2010)
Nat Rev Drug Discov
, vol.9
, pp. 719-727
-
-
Ostrosky-Zeichner, L.1
Casadevall, A.2
Galgiani, J.N.3
Odds, F.C.4
Rex, J.H.5
-
5
-
-
80051558724
-
How I treat mucormycosis
-
Kontoyiannis DP, Lewis RE. How I treat mucormycosis. Blood 2011; 118:1216–24.
-
(2011)
Blood
, vol.118
, pp. 1216-1224
-
-
Kontoyiannis, D.P.1
Lewis, R.E.2
-
6
-
-
85028063850
-
Emerging threats in antifungal-resistant fungal pathogens
-
Sanglard D. Emerging threats in antifungal-resistant fungal pathogens. Front Med (Lausanne) 2016; 3:11.
-
(2016)
Front Med (Lausanne)
, vol.3
, pp. 11
-
-
Sanglard, D.1
-
7
-
-
79955789192
-
Epidemiology and antifungal resistance in invasive aspergillosis according to primary disease: Review of the literature
-
Mayr A, Lass-Flörl C. Epidemiology and antifungal resistance in invasive aspergillosis according to primary disease: review of the literature. Eur J Med Res 2011; 16:153–7.
-
(2011)
Eur J Med Res
, vol.16
, pp. 153-157
-
-
Mayr, A.1
Lass-Flörl, C.2
-
8
-
-
85015953904
-
The anti-Aspergillus drug pipeline: Is the glass half full or empty?
-
Osherov N, Kontoyiannis DP. The anti-Aspergillus drug pipeline: is the glass half full or empty? Med Mycol 2017; 55:118–24.
-
(2017)
Med Mycol
, vol.55
, pp. 118-124
-
-
Osherov, N.1
Kontoyiannis, D.P.2
-
9
-
-
84875467898
-
Systems-level antimicrobial drug and drug synergy discovery
-
Roemer T, Boone C. Systems-level antimicrobial drug and drug synergy discovery. Nat Chem Biol 2013; 9:222–31.
-
(2013)
Nat Chem Biol
, vol.9
, pp. 222-231
-
-
Roemer, T.1
Boone, C.2
-
11
-
-
0038662549
-
Medicinal genetics approach towards identifying the molecular target of a novel inhibitor of fungal cell wall assembly
-
Tsukahara K, Hata K, Nakamoto K, et al. Medicinal genetics approach towards identifying the molecular target of a novel inhibitor of fungal cell wall assembly. Mol Microbiol 2003; 48:1029–42.
-
(2003)
Mol Microbiol
, vol.48
, pp. 1029-1042
-
-
Tsukahara, K.1
Hata, K.2
Nakamoto, K.3
-
12
-
-
0037593245
-
GWT1 gene is required for inositol acylation of glycosylphosphatidylinositol anchors in yeast
-
Umemura M, Okamoto M, Nakayama K, et al. GWT1 gene is required for inositol acylation of glycosylphosphatidylinositol anchors in yeast. J Biol Chem 2003; 278:23639–47.
-
(2003)
J Biol Chem
, vol.278
, pp. 23639-23647
-
-
Umemura, M.1
Okamoto, M.2
Nakayama, K.3
-
13
-
-
84856073587
-
E1210, a new broad-spectrum antifungal, suppresses Candida albicans hyphal growth through inhibition of glycosylphosphatidylinositol biosynthesis
-
Watanabe NA, Miyazaki M, Horii T, Sagane K, Tsukahara K, Hata K. E1210, a new broad-spectrum antifungal, suppresses Candida albicans hyphal growth through inhibition of glycosylphosphatidylinositol biosynthesis. Antimicrob Agents Chemother 2012; 56:960–71.
-
(2012)
Antimicrob Agents Chemother
, vol.56
, pp. 960-971
-
-
Watanabe, N.A.1
Miyazaki, M.2
Horii, T.3
Sagane, K.4
Tsukahara, K.5
Hata, K.6
-
14
-
-
80052854203
-
In vitro activity of E1210, a novel antifungal, against clinically important yeasts and molds
-
Miyazaki M, Horii T, Hata K, et al. In vitro activity of E1210, a novel antifungal, against clinically important yeasts and molds. Antimicrob Agents Chemother 2011; 55:4652–8.
-
(2011)
Antimicrob Agents Chemother
, vol.55
, pp. 4652-4658
-
-
Miyazaki, M.1
Horii, T.2
Hata, K.3
-
15
-
-
80054695206
-
Pre-clinical development of antifungal susceptibility test methods for the testing of the novel antifungal agent E1210 versus Candida: Comparison of CLSI and European Committee on Antimicrobial Susceptibility Testing methods
-
Pfaller MA, Watanabe N, Castanheira M, Messer SA, Jones RN. Pre-clinical development of antifungal susceptibility test methods for the testing of the novel antifungal agent E1210 versus Candida: comparison of CLSI and European Committee on Antimicrobial Susceptibility Testing methods. J Antimicrob Chemother 2011; 66:2581–4.
-
(2011)
J Antimicrob Chemother
, vol.66
, pp. 2581-2584
-
-
Pfaller, M.A.1
Watanabe, N.2
Castanheira, M.3
Messer, S.A.4
Jones, R.N.5
-
16
-
-
80052856780
-
Efficacy of oral E1210, a new broad-spectrum antifungal with a novel mechanism of action, in murine models of candidiasis, aspergillosis, and fusariosis
-
Hata K, Horii T, Miyazaki M, et al. Efficacy of oral E1210, a new broad-spectrum antifungal with a novel mechanism of action, in murine models of candidiasis, aspergillosis, and fusariosis. Antimicrob Agents Chemother 2011; 55:4543–51.
-
(2011)
Antimicrob Agents Chemother
, vol.55
, pp. 4543-4551
-
-
Hata, K.1
Horii, T.2
Miyazaki, M.3
-
17
-
-
84868159204
-
Inhibiting GPI anchor biosynthesis in fungi stresses the endoplasmic reticulum and enhances immunogenicity
-
McLellan CA, Whitesell L, King OD, Lancaster AK, Mazitschek R, Lindquist S. Inhibiting GPI anchor biosynthesis in fungi stresses the endoplasmic reticulum and enhances immunogenicity. ACS Chem Biol 2012; 7:1520–8.
-
(2012)
ACS Chem Biol
, vol.7
, pp. 1520-1528
-
-
McLellan, C.A.1
Whitesell, L.2
King, O.D.3
Lancaster, A.K.4
Mazitschek, R.5
Lindquist, S.6
-
18
-
-
84866953429
-
Antifungal drug discovery: Something old and something new
-
Butts A, Krysan DJ. Antifungal drug discovery: something old and something new. PLoS Pathog 2012; 8:e1002870.
-
(2012)
PLoS Pathog
, vol.8
, pp. e1002870
-
-
Butts, A.1
Krysan, D.J.2
-
19
-
-
0027439619
-
Compounds active against cell walls of medically important fungi
-
Hector RF. Compounds active against cell walls of medically important fungi. Clin Microbiol Rev 1993; 6:1–21.
-
(1993)
Clin Microbiol Rev
, vol.6
, pp. 1-21
-
-
Hector, R.F.1
-
20
-
-
0030730483
-
Echinocandins and pneumocandins—a new antifungal class with a novel mode of action
-
Denning DW. Echinocandins and pneumocandins—a new antifungal class with a novel mode of action. J Antimicrob Chemother 1997; 40:611–4.
-
(1997)
J Antimicrob Chemother
, vol.40
, pp. 611-614
-
-
Denning, D.W.1
-
21
-
-
0141863188
-
Echinocandin antifungal drugs
-
Denning DW. Echinocandin antifungal drugs. Lancet 2003; 362:1142–51.
-
(2003)
Lancet
, vol.362
, pp. 1142-1151
-
-
Denning, D.W.1
-
22
-
-
85010952095
-
Structure-activity relationships of a series of echinocandins and the discovery of CD101, a highly stable and soluble echinocandin with distinctive pharmacokinetic properties
-
James KD, Laudeman CP, Malkar NB, Krishnan R, Polowy K. Structure-activity relationships of a series of echinocandins and the discovery of CD101, a highly stable and soluble echinocandin with distinctive pharmacokinetic properties. Antimicrob Agents Chemother 2017; 61. pii:e01541-16.
-
(2017)
Antimicrob Agents Chemother
, vol.61
, pp. e01541-e01616
-
-
James, K.D.1
Laudeman, C.P.2
Malkar, N.B.3
Krishnan, R.4
Polowy, K.5
-
23
-
-
84994528732
-
Preclinical evaluation of the stability, safety, and efficacy of CD101, a novel echinocandin
-
Ong V, Hough G, Schlosser M, et al. Preclinical evaluation of the stability, safety, and efficacy of CD101, a novel echinocandin. Antimicrob Agents Chemother 2016; 60:6872–9.
-
(2016)
Antimicrob Agents Chemother
, vol.60
, pp. 6872-6879
-
-
Ong, V.1
Hough, G.2
Schlosser, M.3
-
24
-
-
84994711538
-
Activity of a long-acting echinocandin, CD101, determined using CLSI and EUCAST reference methods, against Candida and Aspergillus spp., including echinocandin- And azole-resistant isolates
-
Pfaller MA, Messer SA, Rhomberg PR, Jones RN, Castanheira M. Activity of a long-acting echinocandin, CD101, determined using CLSI and EUCAST reference methods, against Candida and Aspergillus spp., including echinocandin- and azole-resistant isolates. J Antimicrob Chemother 2016; 71: 2868–73.
-
(2016)
J Antimicrob Chemother
, vol.71
, pp. 2868-2873
-
-
Pfaller, M.A.1
Messer, S.A.2
Rhomberg, P.R.3
Jones, R.N.4
Castanheira, M.5
-
26
-
-
85011103211
-
Safety and pharmacokinetics of CD101 IV, a novel echinocandin, in healthy adults
-
Sandison T, Ong V, Lee J, Thye D. Safety and pharmacokinetics of CD101 IV, a novel echinocandin, in healthy adults. Antimicrob Agents Chemother 2017; 61. pii:e01627-16.
-
(2017)
Antimicrob Agents Chemother
, vol.61
, pp. e01627-e01716
-
-
Sandison, T.1
Ong, V.2
Lee, J.3
Thye, D.4
-
27
-
-
85020112406
-
In vitro activity of the novel echinocandin CD101 at pH 7 and 4 against Candida spp. Isolates from patients with vulvovaginal candidiasis
-
Boikov DA, Locke JB, James KD, Bartizal K, Sobel JD. In vitro activity of the novel echinocandin CD101 at pH 7 and 4 against Candida spp. isolates from patients with vulvovaginal candidiasis. J Antimicrob Chemother 2017. doi:10.1093/jac/ dkx008.
-
(2017)
J Antimicrob Chemother
-
-
Boikov, D.A.1
Locke, J.B.2
James, K.D.3
Bartizal, K.4
Sobel, J.D.5
-
28
-
-
85011818132
-
New developments and directions in the clinical application of the echinocandins
-
Chang CC, Slavin MA, Chen SC. New developments and directions in the clinical application of the echinocandins. Arch Toxicol 2017. doi:10.1007/ s00204-016-1916-3.
-
(2017)
Arch Toxicol
-
-
Chang, C.C.1
Slavin, M.A.2
Chen, S.C.3
-
29
-
-
84921820378
-
Pharmacodynamic target evaluation of a novel oral glucan synthase inhibitor, SCY-078 (MK-3118), using an in vivo murine invasive candidiasis model
-
Lepak AJ, Marchillo K, Andes DR. Pharmacodynamic target evaluation of a novel oral glucan synthase inhibitor, SCY-078 (MK-3118), using an in vivo murine invasive candidiasis model. Antimicrob Agents Chemother 2015; 59:1265–72.
-
(2015)
Antimicrob Agents Chemother
, vol.59
, pp. 1265-1272
-
-
Lepak, A.J.1
Marchillo, K.2
Andes, D.R.3
-
30
-
-
84995467472
-
Systemic antifungal agents: Current status and projected future developments
-
Seyedmousavi S, Rafati H, Ilkit M, Tolooe A, Hedayati MT, Verweij P. Systemic antifungal agents: current status and projected future developments. Methods Mol Biol 2017; 1508:107–39.
-
(2017)
Methods Mol Biol
, vol.1508
, pp. 107-139
-
-
Seyedmousavi, S.1
Rafati, H.2
Ilkit, M.3
Tolooe, A.4
Hedayati, M.T.5
Verweij, P.6
-
31
-
-
84931287884
-
Antifungal activities of SCY-078 (MK-3118) and standard antifungal agents against clinical non-Aspergillus mold isolates
-
Lamoth F, Alexander BD. Antifungal activities of SCY-078 (MK-3118) and standard antifungal agents against clinical non-Aspergillus mold isolates. Antimicrob Agents Chemother 2015; 59:4308–11.
-
(2015)
Antimicrob Agents Chemother
, vol.59
, pp. 4308-4311
-
-
Lamoth, F.1
Alexander, B.D.2
-
32
-
-
85017012850
-
SCY-078 a first in class orally active antifungal glucan synthesis inhibitor: Pre-clinical pharmacokinetics and pharmaco-dynamic target in murine models of disseminated candidiasis
-
pii:AAC.02068-16
-
Wring SA, Randolph R, Park S, et al. SCY-078 a first in class orally active antifungal glucan synthesis inhibitor: pre-clinical pharmacokinetics and pharmaco-dynamic target in murine models of disseminated candidiasis. Antimicrob Agents Chemother 2017. pii:AAC.02068-16.
-
(2017)
Antimicrob Agents Chemother
-
-
Wring, S.A.1
Randolph, R.2
Park, S.3
-
33
-
-
85014128069
-
SCY-078 is fungicidal in time-kill studies against Candida species
-
Scorneaux B, Angulo D, Borroto-Esoda K, Ghannoum M, Peel M, Wring S. SCY-078 is fungicidal in time-kill studies against Candida species. Antimicrob Agents Chemother 2017; 61. pii:e01961-16.
-
(2017)
Antimicrob Agents Chemother
, vol.61
, pp. e01961-e02016
-
-
Scorneaux, B.1
Angulo, D.2
Borroto-Esoda, K.3
Ghannoum, M.4
Peel, M.5
Wring, S.6
-
35
-
-
84939445135
-
Cell wall protection by the Candida albicans class I chitin synthases
-
Preechasuth K, Anderson JC, Peck SC, Brown AJ, Gow NA, Lenardon MD. Cell wall protection by the Candida albicans class I chitin synthases. Fungal Genet Biol 2015; 82:264–76.
-
(2015)
Fungal Genet Biol
, vol.82
, pp. 264-276
-
-
Preechasuth, K.1
Anderson, J.C.2
Peck, S.C.3
Brown, A.J.4
Gow, N.A.5
Lenardon, M.D.6
-
36
-
-
84866101261
-
Structural and functional characterization of NikO, an enolpyruvyl transferase essential in nikkomycin biosynthesis
-
Oberdorfer G, Binter A, Ginj C, Macheroux P, Gruber K. Structural and functional characterization of NikO, an enolpyruvyl transferase essential in nikkomycin biosynthesis. J Biol Chem 2012; 287:31427–36.
-
(2012)
J Biol Chem
, vol.287
, pp. 31427-31436
-
-
Oberdorfer, G.1
Binter, A.2
Ginj, C.3
Macheroux, P.4
Gruber, K.5
-
37
-
-
0030771531
-
Efficacy of nikkomycin Z against experimental pulmonary blastomycosis
-
Clemons KV, Stevens DA. Efficacy of nikkomycin Z against experimental pulmonary blastomycosis. Antimicrob Agents Chemother 1997; 41:2026–8.
-
(1997)
Antimicrob Agents Chemother
, vol.41
, pp. 2026-2028
-
-
Clemons, K.V.1
Stevens, D.A.2
-
38
-
-
84901759593
-
Modeling nikkomycin Z dosing and pharmacology in murine pulmonary coccidioidomycosis preparatory to phase 2 clinical trials
-
Shubitz LF, Trinh HT, Perrill RH, et al. Modeling nikkomycin Z dosing and pharmacology in murine pulmonary coccidioidomycosis preparatory to phase 2 clinical trials. J Infect Dis 2014; 209:1949–54.
-
(2014)
J Infect Dis
, vol.209
, pp. 1949-1954
-
-
Shubitz, L.F.1
Trinh, H.T.2
Perrill, R.H.3
-
39
-
-
84899653514
-
Novel nikkomycin analogues generated by mutasynthesis in streptomyces ansochromogenes
-
Feng C, Ling H, Du D, Zhang J, Niu G, Tan H. Novel nikkomycin analogues generated by mutasynthesis in streptomyces ansochromogenes. Microb Cell Fact 2014; 13:59.
-
(2014)
Microb Cell Fact
, vol.13
, pp. 59
-
-
Feng, C.1
Ling, H.2
Du, D.3
Zhang, J.4
Niu, G.5
Tan, H.6
-
41
-
-
84907022653
-
Structural diversity and biological significance of glycosphingolipids in pathogenic and opportunistic fungi
-
Guimarães LL, Toledo MS, Ferreira FA, Straus AH, Takahashi HK. Structural diversity and biological significance of glycosphingolipids in pathogenic and opportunistic fungi. Front Cell Infect Microbiol 2014; 4:138.
-
(2014)
Front Cell Infect Microbiol
, vol.4
, pp. 138
-
-
Guimarães, L.L.1
Toledo, M.S.2
Ferreira, F.A.3
Straus, A.H.4
Takahashi, H.K.5
-
42
-
-
0037077684
-
Disruption of the glucosylceramide biosynthetic pathway in Aspergillus nidulans and Aspergillus fumigatus by inhibitors of UDP-Glc:ceramide glucosyltransferase strongly affects spore germination, cell cycle, and hyphal growth
-
Levery SB, Momany M, Lindsey R, et al. Disruption of the glucosylceramide biosynthetic pathway in Aspergillus nidulans and Aspergillus fumigatus by inhibitors of UDP-Glc:ceramide glucosyltransferase strongly affects spore germination, cell cycle, and hyphal growth. FEBS Lett 2002; 525:59–64.
-
(2002)
FEBS Lett
, vol.525
, pp. 59-64
-
-
Levery, S.B.1
Momany, M.2
Lindsey, R.3
-
43
-
-
85053765884
-
-
Accessed 19 April 2017
-
American Society for Microbiology. Researchers identify new class of antifungal agents. https://www.asm.org/index.php/journal-press-releases/93560-researchers-identify-new-class-of-antifungal-agents. Accessed 19 April 2017.
-
Researchers Identify New Class of Antifungal Agents
-
-
-
44
-
-
84936980438
-
Identification of a new class of antifungals targeting the synthesis of fungal sphingolipids
-
Mor V, Rella A, Farnoud AM, et al. Identification of a new class of antifungals targeting the synthesis of fungal sphingolipids. MBio 2015; 6:e00647.
-
(2015)
MBio
, vol.6
, pp. e00647
-
-
Mor, V.1
Rella, A.2
Farnoud, A.M.3
-
45
-
-
0036777063
-
Life and death in a macrophage: Role of the glyoxylate cycle in virulence
-
Lorenz MC, Fink GR. Life and death in a macrophage: role of the glyoxylate cycle in virulence. Eukaryot Cell 2002; 1:657–62.
-
(2002)
Eukaryot Cell
, vol.1
, pp. 657-662
-
-
Lorenz, M.C.1
Fink, G.R.2
-
46
-
-
71049115075
-
Major roles of isocitrate lyase and malate synthase in bacterial and fungal pathogenesis
-
Dunn MF, Ramírez-Trujillo JA, Hernández-Lucas I. Major roles of isocitrate lyase and malate synthase in bacterial and fungal pathogenesis. Microbiology 2009; 155:3166–75.
-
(2009)
Microbiology
, vol.155
, pp. 3166-3175
-
-
Dunn, M.F.1
Ramírez-Trujillo, J.A.2
Hernández-Lucas, I.3
-
47
-
-
55549099259
-
The activity of the glyoxylate cycle in per-oxisomes of Candida albicans depends on a functional beta-oxidation pathway: Evidence for reduced metabolite transport across the peroxisomal membrane
-
Piekarska K, Hardy G, Mol E, et al. The activity of the glyoxylate cycle in per-oxisomes of Candida albicans depends on a functional beta-oxidation pathway: evidence for reduced metabolite transport across the peroxisomal membrane. Microbiology 2008; 154:3061–72.
-
(2008)
Microbiology
, vol.154
, pp. 3061-3072
-
-
Piekarska, K.1
Hardy, G.2
Mol, E.3
-
48
-
-
33646575320
-
Analysis of the regulation, expression, and localisation of the isocitrate lyase from Aspergillus fumigatus, a potential target for antifungal drug development
-
Ebel F, Schwienbacher M, Beyer J, Heesemann J, Brakhage AA, Brock M. Analysis of the regulation, expression, and localisation of the isocitrate lyase from Aspergillus fumigatus, a potential target for antifungal drug development. Fungal Genet Biol 2006; 43:476–89.
-
(2006)
Fungal Genet Biol
, vol.43
, pp. 476-489
-
-
Ebel, F.1
Schwienbacher, M.2
Beyer, J.3
Heesemann, J.4
Brakhage, A.A.5
Brock, M.6
-
49
-
-
59649114534
-
5-Hydroxyindole-type alkaloids, as Candida albicans isocitrate lyase inhibitors, from the tropical sponge Hyrtios sp
-
Lee HS, Yoon KM, Han YR, et al. 5-Hydroxyindole-type alkaloids, as Candida albicans isocitrate lyase inhibitors, from the tropical sponge Hyrtios sp. Bioorg Med Chem Lett 2009; 19:1051–3.
-
(2009)
Bioorg Med Chem Lett
, vol.19
, pp. 1051-1053
-
-
Lee, H.S.1
Yoon, K.M.2
Han, Y.R.3
-
50
-
-
84899731549
-
Inhibitors of the glyoxylate cycle enzyme ICL1 in Candida albicans for potential use as antifungal agents
-
Cheah HL, Lim V, Sandai D. Inhibitors of the glyoxylate cycle enzyme ICL1 in Candida albicans for potential use as antifungal agents. PLoS One 2014; 9: e95951.
-
(2014)
PLoS One
, vol.9
, pp. e95951
-
-
Cheah, H.L.1
Lim, V.2
Sandai, D.3
-
51
-
-
84922615549
-
Mohangamides A and B, new dilactone-tethered pseudo-dimeric peptides inhibiting Candida albicans isocitrate lyase
-
Bae M, Kim H, Moon K, et al. Mohangamides A and B, new dilactone-tethered pseudo-dimeric peptides inhibiting Candida albicans isocitrate lyase. Org Lett 2015; 17:712–5.
-
(2015)
Org Lett
, vol.17
, pp. 712-715
-
-
Bae, M.1
Kim, H.2
Moon, K.3
-
52
-
-
85053814565
-
F901318, a novel antifungal agent from the orotomide class: Discovery and mechanism of action
-
Poster 749
-
Oliver J, Law D, Sibley G, Kennedy A, Birch M. F901318, a novel antifungal agent from the orotomide class: discovery and mechanism of action. In: Advances Against Aspergillosis, 2016. Poster 749.
-
(2016)
Advances Against Aspergillosis
-
-
Oliver, J.1
Law, D.2
Sibley, G.3
Kennedy, A.4
Birch, M.5
-
53
-
-
85015975133
-
The efficacy of F901318 a novel antifungal drug in an animal model of aspergillosis
-
American Society for Microbiology, Boston, MA
-
Law D. The efficacy of F901318 a novel antifungal drug in an animal model of aspergillosis. In: Interscience Conference on Antimicrobial Agents and Chemotherapy, American Society for Microbiology, Boston, MA, 2016.
-
(2016)
Interscience Conference on Antimicrobial Agents and Chemotherapy
-
-
Law, D.1
-
54
-
-
0036890399
-
The cytochrome P450 superfamily: Biochemistry, evolution and drug metabolism in humans
-
Danielson PB. The cytochrome P450 superfamily: biochemistry, evolution and drug metabolism in humans. Curr Drug Metab 2002; 3:561–97.
-
(2002)
Curr Drug Metab
, vol.3
, pp. 561-597
-
-
Danielson, P.B.1
-
55
-
-
58149173952
-
How do azoles inhibit cytochrome P450 enzymes? A density functional study
-
Balding PR, Porro CS, McLean KJ, et al. How do azoles inhibit cytochrome P450 enzymes? A density functional study. J Phys Chem A 2008; 112:12911–8.
-
(2008)
J Phys Chem A
, vol.112
, pp. 12911-12918
-
-
Balding, P.R.1
Porro, C.S.2
McLean, K.J.3
-
57
-
-
84904044317
-
Design and optimization of highly-selective fungal CYP51 inhibitors
-
Hoekstra WJ, Garvey EP, Moore WR, Rafferty SW, Yates CM, Schotzinger RJ. Design and optimization of highly-selective fungal CYP51 inhibitors. Bioorg Med Chem Lett 2014; 24:3455–8.
-
(2014)
Bioorg Med Chem Lett
, vol.24
, pp. 3455-3458
-
-
Hoekstra, W.J.1
Garvey, E.P.2
Moore, W.R.3
Rafferty, S.W.4
Yates, C.M.5
Schotzinger, R.J.6
-
58
-
-
84954519328
-
Evaluation of VT-1161 for treatment of coccidioidomycosis in murine infection models
-
Shubitz LF, Trinh HT, Galgiani JN, et al. Evaluation of VT-1161 for treatment of coccidioidomycosis in murine infection models. Antimicrob Agents Chemother 2015; 59:7249–54.
-
(2015)
Antimicrob Agents Chemother
, vol.59
, pp. 7249-7254
-
-
Shubitz, L.F.1
Trinh, H.T.2
Galgiani, J.N.3
-
59
-
-
84912083880
-
The clinical candidate VT-1161 is a highly potent inhibitor of Candida albicans CYP51 but fails to bind the human enzyme
-
Warrilow AG, Hull CM, Parker JE, et al. The clinical candidate VT-1161 is a highly potent inhibitor of Candida albicans CYP51 but fails to bind the human enzyme. Antimicrob Agents Chemother 2014; 58:7121–7.
-
(2014)
Antimicrob Agents Chemother
, vol.58
, pp. 7121-7127
-
-
Warrilow, A.G.1
Hull, C.M.2
Parker, J.E.3
-
60
-
-
84957900380
-
In vitro activity of ASP2397 against Aspergillus isolates with or without acquired azole resistance mechanisms
-
Arendrup MC, Jensen RH, Cuenca-Estrella M. In vitro activity of ASP2397 against Aspergillus isolates with or without acquired azole resistance mechanisms. Antimicrob Agents Chemother 2016; 60:532–6.
-
(2016)
Antimicrob Agents Chemother
, vol.60
, pp. 532-536
-
-
Arendrup, M.C.1
Jensen, R.H.2
Cuenca-Estrella, M.3
-
61
-
-
84868007836
-
T-2307 causes collapse of mitochondrial membrane potential in yeast
-
Shibata T, Takahashi T, Yamada E, et al. T-2307 causes collapse of mitochondrial membrane potential in yeast. Antimicrob Agents Chemother 2012; 56:5892–7.
-
(2012)
Antimicrob Agents Chemother
, vol.56
, pp. 5892-5897
-
-
Shibata, T.1
Takahashi, T.2
Yamada, E.3
-
62
-
-
42049087374
-
In vitro and in vivo antifungal activities of T-2307, a novel arylamidine
-
Mitsuyama J, Nomura N, Hashimoto K, et al. In vitro and in vivo antifungal activities of T-2307, a novel arylamidine. Antimicrob Agents Chemother 2008; 52:1318–24.
-
(2008)
Antimicrob Agents Chemother
, vol.52
, pp. 1318-1324
-
-
Mitsuyama, J.1
Nomura, N.2
Hashimoto, K.3
-
63
-
-
77956097960
-
T-2307 shows efficacy in a murine model of Candida glabrata infection despite in vitro trailing growth phenomena
-
Yamada E, Nishikawa H, Nomura N, Mitsuyama J. T-2307 shows efficacy in a murine model of Candida glabrata infection despite in vitro trailing growth phenomena. Antimicrob Agents Chemother 2010; 54:3630–4.
-
(2010)
Antimicrob Agents Chemother
, vol.54
, pp. 3630-3634
-
-
Yamada, E.1
Nishikawa, H.2
Nomura, N.3
Mitsuyama, J.4
-
64
-
-
84960798992
-
The novel arylamidine T-2307 demonstrates in vitro and in vivo activity against echinocandin-resistant Candida glabrata
-
Wiederhold NP, Najvar LK, Fothergill AW, et al. The novel arylamidine T-2307 demonstrates in vitro and in vivo activity against echinocandin-resistant Candida glabrata. J Antimicrob Chemother 2016; 71:692–5.
-
(2016)
J Antimicrob Chemother
, vol.71
, pp. 692-695
-
-
Wiederhold, N.P.1
Najvar, L.K.2
Fothergill, A.W.3
-
65
-
-
84940908922
-
Identification and characterization of a novel family of selective antifungal compounds (CANBEFs) that interfere with fungal protein synthesis
-
Mircus G, Albert N, Ben-Yaakov D, et al. Identification and characterization of a novel family of selective antifungal compounds (CANBEFs) that interfere with fungal protein synthesis. Antimicrob Agents Chemother 2015; 59:5631–40.
-
(2015)
Antimicrob Agents Chemother
, vol.59
, pp. 5631-5640
-
-
Mircus, G.1
Albert, N.2
Ben-Yaakov, D.3
-
66
-
-
84964319912
-
Identification and characterization of haemofungin, a novel antifungal compound that inhibits the final step of haem biosynthesis
-
Ben Yaakov D, Rivkin A, Mircus G, et al. Identification and characterization of haemofungin, a novel antifungal compound that inhibits the final step of haem biosynthesis. J Antimicrob Chemother 2016; 71:946–52.
-
(2016)
J Antimicrob Chemother
, vol.71
, pp. 946-952
-
-
Ben Yaakov, D.1
Rivkin, A.2
Mircus, G.3
-
67
-
-
80155136212
-
Sampangine inhibits heme biosynthesis in both yeast and human
-
Huang Z, Chen K, Xu T, et al. Sampangine inhibits heme biosynthesis in both yeast and human. Eukaryot Cell 2011; 10:1536–44.
-
(2011)
Eukaryot Cell
, vol.10
, pp. 1536-1544
-
-
Huang, Z.1
Chen, K.2
Xu, T.3
-
68
-
-
84953340653
-
Sampangine (a copyrine alkaloid) exerts biological activities through cellular redox cycling of its quinone and semiquinone intermediates
-
Mahdi F, Morgan JB, Liu W, et al. Sampangine (a copyrine alkaloid) exerts biological activities through cellular redox cycling of its quinone and semiquinone intermediates. J Nat Prod 2015; 78:3018–23.
-
(2015)
J Nat Prod
, vol.78
, pp. 3018-3023
-
-
Mahdi, F.1
Morgan, J.B.2
Liu, W.3
-
69
-
-
84941902254
-
The discovery of novel antifungal scaffolds by structural simplification of the natural product sampangine
-
Jiang Z, Liu N, Hu D, et al. The discovery of novel antifungal scaffolds by structural simplification of the natural product sampangine. Chem Commun (Camb) 2015; 51:14648–51.
-
(2015)
Chem Commun (Camb)
, vol.51
, pp. 14648-14651
-
-
Jiang, Z.1
Liu, N.2
Hu, D.3
-
70
-
-
79961098039
-
Functional analyses of two acetyl coenzyme A synthe-tases in the ascomycete Gibberella zeae
-
Lee S, Son H, Lee J, et al. Functional analyses of two acetyl coenzyme A synthe-tases in the ascomycete Gibberella zeae. Eukaryot Cell 2011; 10:1043–52.
-
(2011)
Eukaryot Cell
, vol.10
, pp. 1043-1052
-
-
Lee, S.1
Son, H.2
Lee, J.3
-
71
-
-
85019538504
-
Antitumor/antifungal celecoxib derivative AR-12 is a non-nucleoside inhibitor of the ANL-family adenylating enzyme acetyl CoA synthetase
-
Koselny K, Green J, Favazzo L, et al. Antitumor/antifungal celecoxib derivative AR-12 is a non-nucleoside inhibitor of the ANL-family adenylating enzyme acetyl CoA synthetase. ACS Infect Dis 2016; 2:268–80.
-
(2016)
ACS Infect Dis
, vol.2
, pp. 268-280
-
-
Koselny, K.1
Green, J.2
Favazzo, L.3
-
72
-
-
84996599717
-
The celecoxib derivative AR-12 has broad-spectrum antifungal activity in vitro and improves the activity of fluconazole in a murine model of cryptococcosis
-
Koselny K, Green J, DiDone L, et al. The celecoxib derivative AR-12 has broad-spectrum antifungal activity in vitro and improves the activity of fluconazole in a murine model of cryptococcosis. Antimicrob Agents Chemother 2016; 60:7115–27.
-
(2016)
Antimicrob Agents Chemother
, vol.60
, pp. 7115-7127
-
-
Koselny, K.1
Green, J.2
DiDone, L.3
-
73
-
-
3042562279
-
From the cyclooxygenase-2 inhibitor celecoxib to a novel class of 3-phosphoinositide-dependent protein kinase-1 inhibitors
-
Zhu J, Huang JW, Tseng PH, et al. From the cyclooxygenase-2 inhibitor celecoxib to a novel class of 3-phosphoinositide-dependent protein kinase-1 inhibitors. Cancer Res 2004; 64:4309–18.
-
(2004)
Cancer Res
, vol.64
, pp. 4309-4318
-
-
Zhu, J.1
Huang, J.W.2
Tseng, P.H.3
-
74
-
-
0034444677
-
Signal transduction cascades regulating fungal development and virulence
-
Lengeler KB, Davidson RC, D’souza C, et al. Signal transduction cascades regulating fungal development and virulence. Microbiol Mol Biol Rev 2000; 64:746–85.
-
(2000)
Microbiol Mol Biol Rev
, vol.64
, pp. 746-785
-
-
Lengeler, K.B.1
Davidson, R.C.2
D’souza, C.3
-
75
-
-
68849099102
-
The Cek1 MAPK is a short-lived protein regulated by quorum sensing in the fungal pathogen Candida albicans
-
Román E, Alonso-Monge R, Gong Q, Li D, Calderone R, Pla J. The Cek1 MAPK is a short-lived protein regulated by quorum sensing in the fungal pathogen Candida albicans. FEMS Yeast Res 2009; 9:942–55.
-
(2009)
FEMS Yeast Res
, vol.9
, pp. 942-955
-
-
Román, E.1
Alonso-Monge, R.2
Gong, Q.3
Li, D.4
Calderone, R.5
Pla, J.6
-
76
-
-
84888214854
-
Stress signaling pathways for the pathogenicity of Cryptococcus
-
Bahn YS, Jung KW. Stress signaling pathways for the pathogenicity of Cryptococcus. Eukaryot Cell 2013; 12:1564–77.
-
(2013)
Eukaryot Cell
, vol.12
, pp. 1564-1577
-
-
Bahn, Y.S.1
Jung, K.W.2
-
77
-
-
84871363778
-
The transmembrane protein Opy2 mediates activation of the Cek1 MAP kinase in Candida albicans
-
Herrero de Dios C, Román E, Diez C, Alonso-Monge R, Pla J. The transmembrane protein Opy2 mediates activation of the Cek1 MAP kinase in Candida albicans. Fungal Genet Biol 2013; 50:21–32.
-
(2013)
Fungal Genet Biol
, vol.50
, pp. 21-32
-
-
Herrero De Dios, C.1
Román, E.2
Diez, C.3
Alonso-Monge, R.4
Pla, J.5
-
78
-
-
77958121046
-
PKC signaling regulates drug resistance of the fungal pathogen Candida albicans via circuitry comprised of Mkc1, calcineurin, and Hsp90
-
LaFayette SL, Collins C, Zaas AK, et al. PKC signaling regulates drug resistance of the fungal pathogen Candida albicans via circuitry comprised of Mkc1, calcineurin, and Hsp90. PLoS Pathog 2010; 6:e1001069.
-
(2010)
PLoS Pathog
, vol.6
, pp. e1001069
-
-
LaFayette, S.L.1
Collins, C.2
Zaas, A.K.3
-
79
-
-
79951479272
-
Interaction between the Candida albicans high-osmolarity glycerol (HOG) pathway and the response to human beta-defensins 2 and 3
-
Argimón S, Fanning S, Blankenship JR, Mitchell AP. Interaction between the Candida albicans high-osmolarity glycerol (HOG) pathway and the response to human beta-defensins 2 and 3. Eukaryot Cell 2011; 10:272–5.
-
(2011)
Eukaryot Cell
, vol.10
, pp. 272-275
-
-
Argimón, S.1
Fanning, S.2
Blankenship, J.R.3
Mitchell, A.P.4
-
80
-
-
1842453025
-
Evidence of a new role for the high-osmolarity glycerol mitogen-activated protein kinase pathway in yeast: Regulating adaptation to citric acid stress
-
Lawrence CL, Botting CH, Antrobus R, Coote PJ. Evidence of a new role for the high-osmolarity glycerol mitogen-activated protein kinase pathway in yeast: regulating adaptation to citric acid stress. Mol Cell Biol 2004; 24:3307–23.
-
(2004)
Mol Cell Biol
, vol.24
, pp. 3307-3323
-
-
Lawrence, C.L.1
Botting, C.H.2
Antrobus, R.3
Coote, P.J.4
-
81
-
-
0036548318
-
Heat stress activates the yeast high-osmolarity glycerol mitogen-activated protein kinase pathway, and protein tyrosine phosphatases are essential under heat stress
-
Winkler A, Arkind C, Mattison CP, Burkholder A, Knoche K, Ota I. Heat stress activates the yeast high-osmolarity glycerol mitogen-activated protein kinase pathway, and protein tyrosine phosphatases are essential under heat stress. Eukaryot Cell 2002; 1:163–73.
-
(2002)
Eukaryot Cell
, vol.1
, pp. 163-173
-
-
Winkler, A.1
Arkind, C.2
Mattison, C.P.3
Burkholder, A.4
Knoche, K.5
Ota, I.6
-
82
-
-
0032908687
-
Role of the mitogen-activated protein kinase Hog1p in morphogenesis and virulence of Candida albicans
-
Alonso-Monge R, Navarro-García F, Molero G, et al. Role of the mitogen-activated protein kinase Hog1p in morphogenesis and virulence of Candida albicans. J Bacteriol 1999; 181:3058–68.
-
(1999)
J Bacteriol
, vol.181
, pp. 3058-3068
-
-
Alonso-Monge, R.1
Navarro-García, F.2
Molero, G.3
-
83
-
-
84940729003
-
Genomic profiling of fungal cell wall-interfering compounds: Identification of a common gene signature
-
García R, Botet J, Rodríguez-Peña JM, et al. Genomic profiling of fungal cell wall-interfering compounds: identification of a common gene signature. BMC Genomics 2015; 16:683.
-
(2015)
BMC Genomics
, vol.16
, pp. 683
-
-
García, R.1
Botet, J.2
Rodríguez-Peña, J.M.3
-
84
-
-
84879507441
-
The HOG signal transduction pathway in the halophilic fungus Wallemia ichthyophaga: Identification and characterisation of MAP kinases WiHog1A and WiHog1B
-
Konte T, Plemenitas A. The HOG signal transduction pathway in the halophilic fungus Wallemia ichthyophaga: identification and characterisation of MAP kinases WiHog1A and WiHog1B. Extremophiles 2013; 17:623–36.
-
(2013)
Extremophiles
, vol.17
, pp. 623-636
-
-
Konte, T.1
Plemenitas, A.2
-
85
-
-
55849146632
-
Two-component signal transduction proteins as potential drug targets in medically important fungi
-
Chauhan N, Calderone R. Two-component signal transduction proteins as potential drug targets in medically important fungi. Infect Immun 2008; 76:4795–803.
-
(2008)
Infect Immun
, vol.76
, pp. 4795-4803
-
-
Chauhan, N.1
Calderone, R.2
-
86
-
-
79957788651
-
Design, synthesis, and characterization of a highly effective Hog1 inhibitor: A powerful tool for analyzing MAP kinase signaling in yeast
-
Dinér P, Veide Vilg J, Kjellén J, et al. Design, synthesis, and characterization of a highly effective Hog1 inhibitor: a powerful tool for analyzing MAP kinase signaling in yeast. PLoS One 2011; 6:e20012.
-
(2011)
PLoS One
, vol.6
, pp. e20012
-
-
Dinér, P.1
Veide Vilg, J.2
Kjellén, J.3
-
87
-
-
33645106541
-
Calcineurin, Mpk1 and Hog1 MAPK pathways independently control fludioxonil antifungal sensitivity in Cryptococcus neoformans
-
Kojima K, Bahn YS, Heitman J. Calcineurin, Mpk1 and Hog1 MAPK pathways independently control fludioxonil antifungal sensitivity in Cryptococcus neoformans. Microbiology 2006; 152:591–604.
-
(2006)
Microbiology
, vol.152
, pp. 591-604
-
-
Kojima, K.1
Bahn, Y.S.2
Heitman, J.3
-
88
-
-
0033763743
-
On the mechanism of action of the myxobacterial fungicide ambruticin
-
Knauth P, Reichenbach H. On the mechanism of action of the myxobacterial fungicide ambruticin. J Antibiot (Tokyo) 2000; 53:1182–90.
-
(2000)
J Antibiot (Tokyo)
, vol.53
, pp. 1182-1190
-
-
Knauth, P.1
Reichenbach, H.2
-
89
-
-
0017799529
-
Therapeutic properties of oral ambruticin (W7783) in experimental pulmonary coccidioidomycosis of mice
-
Levine HB, Ringel SM, Cobb JM. Therapeutic properties of oral ambruticin (W7783) in experimental pulmonary coccidioidomycosis of mice. Chest 1978; 73:202–6.
-
(1978)
Chest
, vol.73
, pp. 202-206
-
-
Levine, H.B.1
Ringel, S.M.2
Cobb, J.M.3
-
90
-
-
33749519061
-
Efficacy of ambruticin analogs in a murine model of coccidioidomycosis
-
Shubitz LF, Galgiani JN, Tian ZQ, Zhong Z, Timmermans P, Katz L. Efficacy of ambruticin analogs in a murine model of coccidioidomycosis. Antimicrob Agents Chemother 2006; 50:3467–9.
-
(2006)
Antimicrob Agents Chemother
, vol.50
, pp. 3467-3469
-
-
Shubitz, L.F.1
Galgiani, J.N.2
Tian, Z.Q.3
Zhong, Z.4
Timmermans, P.5
Katz, L.6
-
91
-
-
79957449178
-
Identification, in vitro activity and mode of action of phosphoinositide-dependent-1 kinase inhibitors as antifungal molecules
-
Baxter BK, DiDone L, Ogu D, Schor S, Krysan DJ. Identification, in vitro activity and mode of action of phosphoinositide-dependent-1 kinase inhibitors as antifungal molecules. ACS Chem Biol 2011; 6:502–10.
-
(2011)
ACS Chem Biol
, vol.6
, pp. 502-510
-
-
Baxter, B.K.1
DiDone, L.2
Ogu, D.3
Schor, S.4
Krysan, D.J.5
-
92
-
-
84928382653
-
OSU-03012 and Viagra treatment inhibits the activity of multiple chaperone proteins and disrupts the blood-brain barrier: Implications for anti-cancer therapies
-
Booth L, Roberts JL, Tavallai M, et al. OSU-03012 and Viagra treatment inhibits the activity of multiple chaperone proteins and disrupts the blood-brain barrier: implications for anti-cancer therapies. J Cell Physiol 2015; 230:1982–98.
-
(2015)
J Cell Physiol
, vol.230
, pp. 1982-1998
-
-
Booth, L.1
Roberts, J.L.2
Tavallai, M.3
-
93
-
-
84865650458
-
Effect of CCH1 or MID1 gene disruption on drug tolerance and pathogenesis of Candida albicans
-
Wang H, Lu G, Yang B, et al. Effect of CCH1 or MID1 gene disruption on drug tolerance and pathogenesis of Candida albicans. Sheng Wu Gong Cheng Xue Bao 2012; 28:726–36.
-
(2012)
Sheng Wu Gong Cheng Xue Bao
, vol.28
, pp. 726-736
-
-
Wang, H.1
Lu, G.2
Yang, B.3
-
94
-
-
84921935064
-
The calcium channel blocker verapamil inhibits oxidative stress response in Candida albicans
-
Yu Q, Xiao C, Zhang K, et al. The calcium channel blocker verapamil inhibits oxidative stress response in Candida albicans. Mycopathologia 2014; 177: 167–77.
-
(2014)
Mycopathologia
, vol.177
, pp. 167-177
-
-
Yu, Q.1
Xiao, C.2
Zhang, K.3
-
95
-
-
44249084246
-
Systematic functional analysis of calcium-signalling proteins in the genome of the rice-blast fungus, Magnaporthe oryzae, using a high-throughput RNA-silencing system
-
Nguyen QB, Kadotani N, Kasahara S, Tosa Y, Mayama S, Nakayashiki H. Systematic functional analysis of calcium-signalling proteins in the genome of the rice-blast fungus, Magnaporthe oryzae, using a high-throughput RNA-silencing system. Mol Microbiol 2008; 68:1348–65.
-
(2008)
Mol Microbiol
, vol.68
, pp. 1348-1365
-
-
Nguyen, Q.B.1
Kadotani, N.2
Kasahara, S.3
Tosa, Y.4
Mayama, S.5
Nakayashiki, H.6
-
96
-
-
84901456605
-
Calcineurin-Crz1 signaling in lower eukaryotes
-
Thewes S. Calcineurin-Crz1 signaling in lower eukaryotes. Eukaryot Cell 2014; 13:694–705.
-
(2014)
Eukaryot Cell
, vol.13
, pp. 694-705
-
-
Thewes, S.1
-
97
-
-
34249069582
-
Harnessing calcineurin as a novel anti-infective agent against invasive fungal infections
-
Steinbach WJ, Reedy JL, Cramer RA Jr, Perfect JR, Heitman J. Harnessing calcineurin as a novel anti-infective agent against invasive fungal infections. Nat Rev Microbiol 2007; 5:418–30.
-
(2007)
Nat Rev Microbiol
, vol.5
, pp. 418-430
-
-
Steinbach, W.J.1
Reedy, J.L.2
Jr, C.R.A.3
Perfect, J.R.4
Heitman, J.5
-
98
-
-
33746267436
-
Transcription factor Nrg1 mediates capsule formation, stress response, and pathogenesis in Cryptococcus neoformans
-
Cramer KL, Gerrald QD, Nichols CB, Price MS, Alspaugh JA. Transcription factor Nrg1 mediates capsule formation, stress response, and pathogenesis in Cryptococcus neoformans. Eukaryot Cell 2006; 5:1147–56.
-
(2006)
Eukaryot Cell
, vol.5
, pp. 1147-1156
-
-
Cramer, K.L.1
Gerrald, Q.D.2
Nichols, C.B.3
Price, M.S.4
Alspaugh, J.A.5
-
99
-
-
47049092533
-
Candida albicans transcription factor Rim101 mediates pathogenic interactions through cell wall functions
-
Nobile CJ, Solis N, Myers CL, et al. Candida albicans transcription factor Rim101 mediates pathogenic interactions through cell wall functions. Cell Microbiol 2008; 10:2180–96.
-
(2008)
Cell Microbiol
, vol.10
, pp. 2180-2196
-
-
Nobile, C.J.1
Solis, N.2
Myers, C.L.3
-
100
-
-
84942279828
-
Potential targets for antifungal drug discovery based on growth and virulence in Candida albicans
-
Li X, Hou Y, Yue L, Liu S, Du J, Sun S. Potential targets for antifungal drug discovery based on growth and virulence in Candida albicans. Antimicrob Agents Chemother 2015; 59:5885–91.
-
(2015)
Antimicrob Agents Chemother
, vol.59
, pp. 5885-5891
-
-
Li, X.1
Hou, Y.2
Yue, L.3
Liu, S.4
Du, J.5
Sun, S.6
-
101
-
-
4344650084
-
Genetic, biochemical, and transcriptional responses of Saccharomyces cerevisiae to the novel immunomodulator FTY720 largely mimic those of the natural sphingolipid phytosphingosine
-
Welsch CA, Roth LW, Goetschy JF, Movva NR. Genetic, biochemical, and transcriptional responses of Saccharomyces cerevisiae to the novel immunomodulator FTY720 largely mimic those of the natural sphingolipid phytosphingosine. J Biol Chem 2004; 279:36720–31.
-
(2004)
J Biol Chem
, vol.279
, pp. 36720-36731
-
-
Welsch, C.A.1
Roth, L.W.2
Goetschy, J.F.3
Movva, N.R.4
-
102
-
-
84891712223
-
Fingolimod (FTY720) stimulates Ca(2+)/ calcineurin signaling in fission yeast
-
Hagihara K, Kita A, Mizukura A, et al. Fingolimod (FTY720) stimulates Ca(2+)/ calcineurin signaling in fission yeast. PLoS One 2013; 8:e81907.
-
(2013)
PLoS One
, vol.8
, pp. e81907
-
-
Hagihara, K.1
Kita, A.2
Mizukura, A.3
-
103
-
-
80053172883
-
The Aspergillus giganteus antifungal protein AFPNN5353 activates the cell wall integrity pathway and perturbs calcium homeostasis
-
Binder U, Bencina M, Eigentler A, Meyer V, Marx F. The Aspergillus giganteus antifungal protein AFPNN5353 activates the cell wall integrity pathway and perturbs calcium homeostasis. BMC Microbiol 2011; 11:209.
-
(2011)
BMC Microbiol
, vol.11
, pp. 209
-
-
Binder, U.1
Bencina, M.2
Eigentler, A.3
Meyer, V.4
Marx, F.5
-
104
-
-
79954593822
-
Survival strategies of yeast and filamentous fungi against the antifungal protein AFP
-
Ouedraogo JP, Hagen S, Spielvogel A, Engelhardt S, Meyer V. Survival strategies of yeast and filamentous fungi against the antifungal protein AFP. J Biol Chem 2011; 286:13859–68.
-
(2011)
J Biol Chem
, vol.286
, pp. 13859-13868
-
-
Ouedraogo, J.P.1
Hagen, S.2
Spielvogel, A.3
Engelhardt, S.4
Meyer, V.5
-
105
-
-
67650617262
-
A comparative genomic analysis of calcium and proton signaling/homeostasis in Aspergillus species
-
Bencina M, Bagar T, Lah L, Krasevec N. A comparative genomic analysis of calcium and proton signaling/homeostasis in Aspergillus species. Fungal Genet Biol 2009; 46:S93–104.
-
(2009)
Fungal Genet Biol
, vol.46
, pp. S93-S104
-
-
Bencina, M.1
Bagar, T.2
Lah, L.3
Krasevec, N.4
-
106
-
-
3843054526
-
A comparative genomic analysis of the calcium signaling machinery in Neurospora crassa, Magnaporthe grisea, and Saccharomyces cerevisiae
-
Zelter A, Bencina M, Bowman BJ, Yarden O, Read ND. A comparative genomic analysis of the calcium signaling machinery in Neurospora crassa, Magnaporthe grisea, and Saccharomyces cerevisiae. Fungal Genet Biol 2004; 41:827–41.
-
(2004)
Fungal Genet Biol
, vol.41
, pp. 827-841
-
-
Zelter, A.1
Bencina, M.2
Bowman, B.J.3
Yarden, O.4
Read, N.D.5
-
107
-
-
84938768178
-
Exploiting fungal virulence-regulating transcription factors as novel antifungal drug targets
-
Bahn YS. Exploiting fungal virulence-regulating transcription factors as novel antifungal drug targets. PLoS Pathog 2015; 11:e1004936.
-
(2015)
PLoS Pathog
, vol.11
, pp. e1004936
-
-
Bahn, Y.S.1
-
108
-
-
84880776876
-
Fungal-specific transcription factor AbPf2 activates pathogenicity in Alternaria brassicicola
-
Cho Y, Ohm RA, Grigoriev IV, Srivastava A. Fungal-specific transcription factor AbPf2 activates pathogenicity in Alternaria brassicicola. Plant J 2013; 75:498–514.
-
(2013)
Plant J
, vol.75
, pp. 498-514
-
-
Cho, Y.1
Ohm, R.A.2
Grigoriev, I.V.3
Srivastava, A.4
-
109
-
-
84856117019
-
A recently evolved transcriptional network controls biofilm development in Candida albicans
-
Nobile CJ, Fox EP, Nett JE, et al. A recently evolved transcriptional network controls biofilm development in Candida albicans. Cell 2012; 148:126–38.
-
(2012)
Cell
, vol.148
, pp. 126-138
-
-
Nobile, C.J.1
Fox, E.P.2
Nett, J.E.3
-
110
-
-
3843090057
-
Inactivation of transcription factor gene ACE2 in the fungal pathogen Candida glabrata results in hypervirulence
-
Kamran M, Calcagno AM, Findon H, et al. Inactivation of transcription factor gene ACE2 in the fungal pathogen Candida glabrata results in hypervirulence. Eukaryot Cell 2004; 3:546–52.
-
(2004)
Eukaryot Cell
, vol.3
, pp. 546-552
-
-
Kamran, M.1
Calcagno, A.M.2
Findon, H.3
-
111
-
-
33749234216
-
Drugs, their targets and the nature and number of drug targets
-
Imming P, Sinning C, Meyer A. Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov 2006; 5:821–34.
-
(2006)
Nat Rev Drug Discov
, vol.5
, pp. 821-834
-
-
Imming, P.1
Sinning, C.2
Meyer, A.3
-
112
-
-
25144452721
-
Chemical approaches to transcriptional regulation
-
Majmudar CY, Mapp AK. Chemical approaches to transcriptional regulation. Curr Opin Chem Biol 2005; 9:467–74.
-
(2005)
Curr Opin Chem Biol
, vol.9
, pp. 467-474
-
-
Majmudar, C.Y.1
Mapp, A.K.2
-
113
-
-
77952545553
-
A complex task? Direct modulation of transcription factors with small molecules
-
Koehler AN. A complex task? Direct modulation of transcription factors with small molecules. Curr Opin Chem Biol 2010; 14:331–40.
-
(2010)
Curr Opin Chem Biol
, vol.14
, pp. 331-340
-
-
Koehler, A.N.1
-
114
-
-
77951233113
-
Transcriptional switches: Chemical approaches to gene regulation
-
Lee LW, Mapp AK. Transcriptional switches: chemical approaches to gene regulation. J Biol Chem 2010; 285:11033–8.
-
(2010)
J Biol Chem
, vol.285
, pp. 11033-11038
-
-
Lee, L.W.1
Mapp, A.K.2
-
115
-
-
84891528835
-
Novel antifungal drug discovery based on targeting pathways regulating the fungus-conserved Upc2 transcription factor
-
Gallo-Ebert C, Donigan M, Stroke IL, et al. Novel antifungal drug discovery based on targeting pathways regulating the fungus-conserved Upc2 transcription factor. Antimicrob Agents Chemother 2014; 58:258–66.
-
(2014)
Antimicrob Agents Chemother
, vol.58
, pp. 258-266
-
-
Gallo-Ebert, C.1
Donigan, M.2
Stroke, I.L.3
-
116
-
-
18244396070
-
Candida albicans zinc cluster protein Upc2p confers resistance to antifungal drugs and is an activator of ergosterol biosynthetic genes
-
MacPherson S, Akache B, Weber S, De Deken X, Raymond M, Turcotte B. Candida albicans zinc cluster protein Upc2p confers resistance to antifungal drugs and is an activator of ergosterol biosynthetic genes. Antimicrob Agents Chemother 2005; 49:1745–52.
-
(2005)
Antimicrob Agents Chemother
, vol.49
, pp. 1745-1752
-
-
MacPherson, S.1
Akache, B.2
Weber, S.3
De Deken, X.4
Raymond, M.5
Turcotte, B.6
-
117
-
-
84891604637
-
Distinct roles of Candida albicans drug resistance transcription factors TAC1, MRR1, and UPC2 in virulence
-
Lohberger A, Coste AT, Sanglard D. Distinct roles of Candida albicans drug resistance transcription factors TAC1, MRR1, and UPC2 in virulence. Eukaryot Cell 2014; 13:127–42.
-
(2014)
Eukaryot Cell
, vol.13
, pp. 127-142
-
-
Lohberger, A.1
Coste, A.T.2
Sanglard, D.3
-
118
-
-
84880065202
-
Regulatory role of glycerol in Candida albicans biofilm formation
-
Desai JV, Bruno VM, Ganguly S, et al. Regulatory role of glycerol in Candida albicans biofilm formation. MBio 2013; 4:e00637–12.
-
(2013)
MBio
, vol.4
, pp. e00637-e00712
-
-
Desai, J.V.1
Bruno, V.M.2
Ganguly, S.3
-
119
-
-
84863313278
-
Divergent targets of Candida albicans biofilm regulator Bcr1 in vitro and in vivo
-
Fanning S, Xu W, Solis N, Woolford CA, Filler SG, Mitchell AP. Divergent targets of Candida albicans biofilm regulator Bcr1 in vitro and in vivo. Eukaryot Cell 2012; 11:896–904.
-
(2012)
Eukaryot Cell
, vol.11
, pp. 896-904
-
-
Fanning, S.1
Xu, W.2
Solis, N.3
Woolford, C.A.4
Filler, S.G.5
Mitchell, A.P.6
-
120
-
-
33746636085
-
Critical role of Bcr1-dependent adhesins in C. Albicans biofilm formation in vitro and in vivo
-
Nobile CJ, Andes DR, Nett JE, et al. Critical role of Bcr1-dependent adhesins in C. albicans biofilm formation in vitro and in vivo. PLoS Pathog 2006; 2:e63.
-
(2006)
PLoS Pathog
, vol.2
, pp. e63
-
-
Nobile, C.J.1
Andes, D.R.2
Nett, J.E.3
-
121
-
-
77954095162
-
Systematic screens of a Candida albicans homozygous deletion library decouple morphogenetic switching and pathogenicity
-
Noble SM, French S, Kohn LA, Chen V, Johnson AD. Systematic screens of a Candida albicans homozygous deletion library decouple morphogenetic switching and pathogenicity. Nat Genet 2010; 42:590–8.
-
(2010)
Nat Genet
, vol.42
, pp. 590-598
-
-
Noble, S.M.1
French, S.2
Kohn, L.A.3
Chen, V.4
Johnson, A.D.5
-
122
-
-
52949114243
-
Systematic genetic analysis of virulence in the human fungal pathogen Cryptococcus neoformans
-
Liu OW, Chun CD, Chow ED, Chen C, Madhani HD, Noble SM. Systematic genetic analysis of virulence in the human fungal pathogen Cryptococcus neoformans. Cell 2008; 135:174–88.
-
(2008)
Cell
, vol.135
, pp. 174-188
-
-
Liu, O.W.1
Chun, C.D.2
Chow, E.D.3
Chen, C.4
Madhani, H.D.5
Noble, S.M.6
-
123
-
-
84926653962
-
Systematic functional profiling of transcription factor networks in Cryptococcus neoformans
-
Jung KW, Yang DH, Maeng S, et al. Systematic functional profiling of transcription factor networks in Cryptococcus neoformans. Nat Commun 2015; 6:6757.
-
(2015)
Nat Commun
, vol.6
, pp. 6757
-
-
Jung, K.W.1
Yang, D.H.2
Maeng, S.3
-
124
-
-
84929657744
-
Model-driven mapping of transcriptional networks reveals the circuitry and dynamics of virulence regulation
-
Maier EJ, Haynes BC, Gish SR, et al. Model-driven mapping of transcriptional networks reveals the circuitry and dynamics of virulence regulation. Genome Res 2015; 25:690–700.
-
(2015)
Genome Res
, vol.25
, pp. 690-700
-
-
Maier, E.J.1
Haynes, B.C.2
Gish, S.R.3
-
125
-
-
84892942381
-
New and emerging HDAC inhibitors for cancer treatment
-
West AC, Johnstone RW. New and emerging HDAC inhibitors for cancer treatment. J Clin Invest 2014; 124:30–9.
-
(2014)
J Clin Invest
, vol.124
, pp. 30-39
-
-
West, A.C.1
Johnstone, R.W.2
-
126
-
-
71549146873
-
Activity of MGCD290, a Hos2 histone deacetylase inhibitor, in combination with azole antifungals against opportunistic fungal pathogens
-
Pfaller MA, Messer SA, Georgopapadakou N, Martell LA, Besterman JM, Diekema DJ. Activity of MGCD290, a Hos2 histone deacetylase inhibitor, in combination with azole antifungals against opportunistic fungal pathogens. J Clin Microbiol 2009; 47:3797–804.
-
(2009)
J Clin Microbiol
, vol.47
, pp. 3797-3804
-
-
Pfaller, M.A.1
Messer, S.A.2
Georgopapadakou, N.3
Martell, L.A.4
Besterman, J.M.5
Diekema, D.J.6
-
127
-
-
77954139965
-
Small-molecule chromatin-modifying agents: Therapeutic applications
-
Mai A. Small-molecule chromatin-modifying agents: therapeutic applications. Epigenomics 2010; 2:307–24.
-
(2010)
Epigenomics
, vol.2
, pp. 307-324
-
-
Mai, A.1
-
128
-
-
84925041893
-
In vitro activity of a Hos2 deacetylase inhibitor, MGCD290, in combination with echinocandins against echinocandin-resistant Candida species
-
Pfaller MA, Rhomberg PR, Messer SA, Castanheira M. In vitro activity of a Hos2 deacetylase inhibitor, MGCD290, in combination with echinocandins against echinocandin-resistant Candida species. Diagn Microbiol Infect Dis 2015; 81:259–63.
-
(2015)
Diagn Microbiol Infect Dis
, vol.81
, pp. 259-263
-
-
Pfaller, M.A.1
Rhomberg, P.R.2
Messer, S.A.3
Castanheira, M.4
-
129
-
-
84927553790
-
Histone deacetylase inhibition as an alternative strategy against invasive aspergillosis
-
Lamoth F, Juvvadi PR, Steinbach WJ. Histone deacetylase inhibition as an alternative strategy against invasive aspergillosis. Front Microbiol 2015; 6:96.
-
(2015)
Front Microbiol
, vol.6
, pp. 96
-
-
Lamoth, F.1
Juvvadi, P.R.2
Steinbach, W.J.3
-
130
-
-
84978117016
-
Epidemiology of invasive fungal infections during induction therapy in adults with acute lymphoblastic leukemia: A GRAALL-2005 study
-
Mariette C, Tavernier E, Hocquet D, et al. Epidemiology of invasive fungal infections during induction therapy in adults with acute lymphoblastic leukemia: a GRAALL-2005 study. Leuk Lymphoma 2017; 58:586–93.
-
(2017)
Leuk Lymphoma
, vol.58
, pp. 586-593
-
-
Mariette, C.1
Tavernier, E.2
Hocquet, D.3
-
131
-
-
84941317313
-
International expert opinion on the management of infection caused by azole-resistant Aspergillus fumigatus
-
Verweij PE, Ananda-Rajah M, Andes D, et al. International expert opinion on the management of infection caused by azole-resistant Aspergillus fumigatus. Drug Resist Updat 2015; 21–22:30–40.
-
(2015)
Drug Resist Updat
, vol.21-22
, pp. 30-40
-
-
Verweij, P.E.1
Ananda-Rajah, M.2
Andes, D.3
-
132
-
-
84992472490
-
Triazole resistance in Aspergillus fumigatus isolates from patients with cystic fibrosis in Italy
-
Prigitano A, Esposto MC, Biffi A, et al. Triazole resistance in Aspergillus fumigatus isolates from patients with cystic fibrosis in Italy. J Cyst Fibros 2017; 16:64–9.
-
(2017)
J Cyst Fibros
, vol.16
, pp. 64-69
-
-
Prigitano, A.1
Esposto, M.C.2
Biffi, A.3
-
133
-
-
28844459420
-
Transferring functional immune responses to pathogens after haploidentical hematopoietic transplantation
-
Perruccio K, Tosti A, Burchielli E, et al. Transferring functional immune responses to pathogens after haploidentical hematopoietic transplantation. Blood 2005; 106:4397–406.
-
(2005)
Blood
, vol.106
, pp. 4397-4406
-
-
Perruccio, K.1
Tosti, A.2
Burchielli, E.3
-
134
-
-
84904632405
-
Bioengineering T cells to target carbohydrate to treat opportunistic fungal infection
-
Kumaresan PR, Manuri PR, Albert ND, et al. Bioengineering T cells to target carbohydrate to treat opportunistic fungal infection. Proc Natl Acad Sci U S A 2014; 111:10660–5.
-
(2014)
Proc Natl Acad Sci U S A
, vol.111
, pp. 10660-10665
-
-
Kumaresan, P.R.1
Manuri, P.R.2
Albert, N.D.3
-
135
-
-
79951826116
-
Confronting the challenges of natural product-based antifungal discovery
-
Roemer T, Xu D, Singh SB, et al. Confronting the challenges of natural product-based antifungal discovery. Chem Biol 2011; 18:148–64.
-
(2011)
Chem Biol
, vol.18
, pp. 148-164
-
-
Roemer, T.1
Xu, D.2
Singh, S.B.3
-
136
-
-
84874238564
-
A comprehensive regulatory framework to address the unmet need for new antibacterial treatments
-
Rex JH, Eisenstein BI, Alder J, et al. A comprehensive regulatory framework to address the unmet need for new antibacterial treatments. Lancet Infect Dis 2013; 13:269–75.
-
(2013)
Lancet Infect Dis
, vol.13
, pp. 269-275
-
-
Rex, J.H.1
Eisenstein, B.I.2
Alder, J.3
|