메뉴 건너뛰기




Volumn 13, Issue 1, 2014, Pages 127-142

Distinct roles of Candida albicans drug resistance transcription factors TAC1, MRR1, and UPC2 in virulence

Author keywords

[No Author keywords available]

Indexed keywords

FUNGAL PROTEIN; MULTIDRUG RESISTANCE PROTEIN; PYRROLE DERIVATIVE; TRANSCRIPTION FACTOR;

EID: 84891604637     PISSN: 15359778     EISSN: None     Source Type: Journal    
DOI: 10.1128/EC.00245-13     Document Type: Article
Times cited : (72)

References (69)
  • 2
    • 84867512787 scopus 로고    scopus 로고
    • Species identification and antifungal susceptibility testing of Candida bloodstream isolates from population-based surveillance studies in two U. S. cities from 2008 to 2011
    • Lockhart SR, Iqbal N, Cleveland AA, Farley MM, Harrison LH, Bolden CB, Baughman W, Stein B, Hollick R, Park BJ, Chiller T. 2012. Species identification and antifungal susceptibility testing of Candida bloodstream isolates from population-based surveillance studies in two U. S. cities from 2008 to 2011. J. Clin. Microbiol. 50: 3435-3442. http://dx.doi.org/10. 1128/JCM. 01283-12.
    • (2012) J. Clin. Microbiol. , vol.50 , pp. 3435-3442
    • Lockhart, S.R.1    Iqbal, N.2    Cleveland, A.A.3    Farley, M.M.4    Harrison, L.H.5    Bolden, C.B.6    Baughman, W.7    Stein, B.8    Hollick, R.9    Park, B.J.10    Chiller, T.11
  • 3
    • 78449308457 scopus 로고    scopus 로고
    • Epidemiology of invasive candidiasis
    • Arendrup MC. 2010. Epidemiology of invasive candidiasis. Curr. Opin. Crit. Care 16: 445-452. http://dx.doi.org/10. 1097/MCC. 0b013e32833e84d2.
    • (2010) Curr. Opin. Crit. Care , vol.16 , pp. 445-452
    • Arendrup, M.C.1
  • 4
    • 0036488166 scopus 로고    scopus 로고
    • Resistance of Candida species to antifungal agents: Molecular mechanisms and clinical consequences
    • Sanglard D, Odds FC. 2002. Resistance of Candida species to antifungal agents: molecular mechanisms and clinical consequences. Lancet Infect. Dis. 2: 73-85. http://dx.doi.org/10. 1016/S1473-3099(02)00181-0.
    • (2002) Lancet Infect. Dis. , vol.2 , pp. 73-85
    • Sanglard, D.1    Odds, F.C.2
  • 5
    • 0037197022 scopus 로고    scopus 로고
    • Antifungal drug resistance of pathogenic fungi
    • Kontoyiannis DP, Lewis RE. 2002. Antifungal drug resistance of pathogenic fungi. Lancet 359: 1135-1144. http://dx.doi.org/10. 1016 /S0140-6736(02)08162-X.
    • (2002) Lancet , vol.359 , pp. 1135-1144
    • Kontoyiannis, D.P.1    Lewis, R.E.2
  • 6
    • 36849043112 scopus 로고    scopus 로고
    • Multidrug resistance in fungi
    • Gulshan K, Moye-Rowley WS. 2007. Multidrug resistance in fungi. Eukaryot. Cell 6: 1933-1942. http://dx.doi.org/10. 1128/EC. 00254-07.
    • (2007) Eukaryot. Cell , vol.6 , pp. 1933-1942
    • Gulshan, K.1    Moye-Rowley, W.S.2
  • 7
    • 84860723063 scopus 로고    scopus 로고
    • The changing epidemiology of healthcare-associated candidemia over three decades
    • Diekema D, Arbefeville S, Boyken L, Kroeger J, Pfaller M. 2012. The changing epidemiology of healthcare-associated candidemia over three decades. Diagn. Microbiol. Infect. Dis. 73: 45-48. http://dx.doi.org/10. 1016/j. diagmicrobio. 2012. 02. 001.
    • (2012) Diagn. Microbiol. Infect. Dis. , vol.73 , pp. 45-48
    • Diekema, D.1    Arbefeville, S.2    Boyken, L.3    Kroeger, J.4    Pfaller, M.5
  • 8
    • 70350026151 scopus 로고    scopus 로고
    • Antifungal drug resistance mechanisms in fungal pathogens from the perspective of transcriptional gene regulation
    • Sanglard D, Coste A, Ferrari S. 2009. Antifungal drug resistance mechanisms in fungal pathogens from the perspective of transcriptional gene regulation. FEMS Yeast Res. 9: 1029-1050. http://dx.doi.org/10. 1111/j. 1567-1364. 2009. 00578. x.
    • (2009) FEMS Yeast Res. , vol.9 , pp. 1029-1050
    • Sanglard, D.1    Coste, A.2    Ferrari, S.3
  • 9
    • 0028793725 scopus 로고
    • Mechanisms of resistance to azole antifungal agents in Candida albicans isolates from AIDS patients involve specific multidrug transporters
    • Sanglard D, Kuchler K, Ischer F, Pagani JL, Monod M, Bille J. 1995. Mechanisms of resistance to azole antifungal agents in Candida albicans isolates from AIDS patients involve specific multidrug transporters. Antimicrob. Agents Chemother. 39: 2378-2386. http://dx.doi.org/10. 1128 /AAC. 39. 11. 2378.
    • (1995) Antimicrob. Agents Chemother. , vol.39 , pp. 2378-2386
    • Sanglard, D.1    Kuchler, K.2    Ischer, F.3    Pagani, J.L.4    Monod, M.5    Bille, J.6
  • 10
    • 0029820482 scopus 로고    scopus 로고
    • Susceptibilities of Candida albicans multidrug transporter mutants to various antifungal agents and other metabolic inhibitors
    • Sanglard D, Ischer F, Monod M, Bille J. 1996. Susceptibilities of Candida albicans multidrug transporter mutants to various antifungal agents and other metabolic inhibitors. Antimicrob. Agents Chemother. 40: 2300-2305.
    • (1996) Antimicrob. Agents Chemother. , vol.40 , pp. 2300-2305
    • Sanglard, D.1    Ischer, F.2    Monod, M.3    Bille, J.4
  • 11
    • 0030757227 scopus 로고    scopus 로고
    • Increased mRNA levels of ERG16, CDR, and MDR1 correlate with increases in azole resistance in Candida albicans isolates from a patient infected with human immunodeficiency virus
    • White TC. 1997. Increased mRNA levels of ERG16, CDR, and MDR1 correlate with increases in azole resistance in Candida albicans isolates from a patient infected with human immunodeficiency virus. Antimicrob. Agents Chemother. 41: 1482-1487.
    • (1997) Antimicrob. Agents Chemother. , vol.41 , pp. 1482-1487
    • White, T.C.1
  • 12
    • 33646171879 scopus 로고    scopus 로고
    • A mutation in Tac1p, a transcription factor regulating CDR1 and CDR2, is coupled with loss of heterozygosity at chromosome 5 to mediate antifungal resistance in Candida albicans
    • Coste A, Turner V, Ischer F, Morschhäuser J, Forche A, Selmecki A, Berman J, Bille J, Sanglard D. 2006. A mutation in Tac1p, a transcription factor regulating CDR1 and CDR2, is coupled with loss of heterozygosity at chromosome 5 to mediate antifungal resistance in Candida albicans. Genetics 172: 2139-2156. http://dx.doi.org/10. 1534/genetics. 105. 054767.
    • (2006) Genetics , vol.172 , pp. 2139-2156
    • Coste, A.1    Turner, V.2    Ischer, F.3    Morschhäuser, J.4    Forche, A.5    Selmecki, A.6    Berman, J.7    Bille, J.8    Sanglard, D.9
  • 14
    • 68549128735 scopus 로고    scopus 로고
    • Functional analysis of cis-and trans-acting elements of the Candida albicans CDR2 promoter with a novel promoter reporter system
    • Coste AT, Crittin J, Bauser C, Rohde B, Sanglard D. 2009. Functional analysis of cis-and trans-acting elements of the Candida albicans CDR2 promoter with a novel promoter reporter system. Eukaryot. Cell 8: 1250-1267. http://dx.doi.org/10. 1128/EC. 00069-09.
    • (2009) Eukaryot. Cell , vol.8 , pp. 1250-1267
    • Coste, A.T.1    Crittin, J.2    Bauser, C.3    Rohde, B.4    Sanglard, D.5
  • 15
    • 37349095258 scopus 로고    scopus 로고
    • The transcription factor Mrr1p controls expression of the MDR1 efflux pump and mediates multidrug resistance in Candida albicans
    • Morschhauser J, Barker K, Liu T, Bla B, Homayouni R, Rogers P. 2007. The transcription factor Mrr1p controls expression of the MDR1 efflux pump and mediates multidrug resistance in Candida albicans. PLoS Pathog. 3: e164. http://dx.doi.org/10. 1371/journal. ppat. 0030164.
    • (2007) PLoS Pathog. , vol.3
    • Morschhauser, J.1    Barker, K.2    Liu, T.3    Bla, B.4    Homayouni, R.5    Rogers, P.6
  • 16
    • 47749142093 scopus 로고    scopus 로고
    • Mutations in the multidrug resistance regulator MRR1, followed by loss of heterozygosity, are the main cause of MDR1 overexpression in fluconazole-resistant Candida albicans strains
    • Dunkel N, Blass J, Rogers P, Morschhauser J. 2008. Mutations in the multidrug resistance regulator MRR1, followed by loss of heterozygosity, are the main cause of MDR1 overexpression in fluconazole-resistant Candida albicans strains. Mol. Microbiol. 69: 827-840. http://dx.doi.org/10. 1111/j. 1365-2958. 2008. 06309. x.
    • (2008) Mol. Microbiol. , vol.69 , pp. 827-840
    • Dunkel, N.1    Blass, J.2    Rogers, P.3    Morschhauser, J.4
  • 17
    • 0031938057 scopus 로고    scopus 로고
    • Amino acid substitutions in the cytochrome P450 lanosterol 14α-demethylase (CYP51A1) from azole-resistant Candida albicans clinical isolates contributing to the resistance to azole antifungal agents
    • Sanglard D, Ischer F, Koymans L, Bille J. 1998. Amino acid substitutions in the cytochrome P450 lanosterol 14α-demethylase (CYP51A1) from azole-resistant Candida albicans clinical isolates contributing to the resistance to azole antifungal agents. Antimicrob. Agents Chemother. 42: 241-253. http://dx.doi.org/10. 1093/jac/42. 2. 241.
    • (1998) Antimicrob. Agents Chemother. , vol.42 , pp. 241-253
    • Sanglard, D.1    Ischer, F.2    Koymans, L.3    Bille, J.4
  • 18
    • 0034812585 scopus 로고    scopus 로고
    • Prevalence of molecular mechanisms of resistance to azole antifungal agents in Candida albicans strains displaying high-level fluconazole resistance isolated from human immunodeficiency virus-infected patients
    • Perea S, Lopez-Ribot J, Kirkpatrick W, McAtee R, Santillan R, Martinez M, Calabrese D, Sanglard D, Patterson T. 2001. Prevalence of molecular mechanisms of resistance to azole antifungal agents in Candida albicans strains displaying high-level fluconazole resistance isolated from human immunodeficiency virus-infected patients. Antimicrob. Agents Chemother. 45: 2676-2684. http://dx.doi.org/10. 1128/AAC. 45. 10. 2676-2684. 2001.
    • (2001) Antimicrob. Agents Chemother. , vol.45 , pp. 2676-2684
    • Perea, S.1    Lopez-Ribot, J.2    Kirkpatrick, W.3    McAtee, R.4    Santillan, R.5    Martinez, M.6    Calabrese, D.7    Sanglard, D.8    Patterson, T.9
  • 19
    • 78751695581 scopus 로고    scopus 로고
    • An A643V amino acid substitution in Upc2p contributes to azole resistance in well-characterized clinical isolates of Candida albicans
    • Hoot SJ, Smith AR, Brown RP, White TC. 2011. An A643V amino acid substitution in Upc2p contributes to azole resistance in well-characterized clinical isolates of Candida albicans. Antimicrob. Agents Chemother. 55: 940-942. http://dx.doi.org/10. 1128/AAC. 00995-10.
    • (2011) Antimicrob. Agents Chemother. , vol.55 , pp. 940-942
    • Hoot, S.J.1    Smith, A.R.2    Brown, R.P.3    White, T.C.4
  • 20
    • 73849109145 scopus 로고    scopus 로고
    • An A643T mutation in the transcription factor Upc2p causes constitutive ERG11 upregulation and increased fluconazole resistance in Candida albicans
    • Heilmann C, Schneider S, Barker K, Rogers P, Morschhauser J. 2010. An A643T mutation in the transcription factor Upc2p causes constitutive ERG11 upregulation and increased fluconazole resistance in Candida albicans. Antimicrob. Agents Chemother. 54: 353-359. http://dx.doi.org/10. 1128/AAC. 01102-09.
    • (2010) Antimicrob. Agents Chemother. , vol.54 , pp. 353-359
    • Heilmann, C.1    Schneider, S.2    Barker, K.3    Rogers, P.4    Morschhauser, J.5
  • 21
    • 47049101245 scopus 로고    scopus 로고
    • A gain-of-function mutation in the transcription factor Upc2p causes upregulation of ergosterol biosynthesis genes and increased fluconazole resistance in a clinical Candida albicans isolate
    • Dunkel N, Liu T, Barker K, Homayouni R, Morschhäuser J, Rogers P. 2008. A gain-of-function mutation in the transcription factor Upc2p causes upregulation of ergosterol biosynthesis genes and increased fluconazole resistance in a clinical Candida albicans isolate. Eukaryot. Cell 7: 1180-1190. http://dx.doi.org/10. 1128/EC. 00103-08.
    • (2008) Eukaryot. Cell , vol.7 , pp. 1180-1190
    • Dunkel, N.1    Liu, T.2    Barker, K.3    Homayouni, R.4    Morschhäuser, J.5    Rogers, P.6
  • 26
    • 39149087719 scopus 로고    scopus 로고
    • The evolution of fungal drug resistance: Modulating the trajectory from genotype to phenotype
    • Cowen LE. 2008. The evolution of fungal drug resistance: modulating the trajectory from genotype to phenotype. Nat. Rev. Microbiol. 6: 187-198. http://dx.doi.org/10. 1038/nrmicro1835.
    • (2008) Nat. Rev. Microbiol. , vol.6 , pp. 187-198
    • Cowen, L.E.1
  • 27
    • 0035036088 scopus 로고    scopus 로고
    • Divergence in fitness and evolution of drug resistance in experimental populations of Candida albicans
    • Cowen LE, Kohn LM, Anderson JB. 2001. Divergence in fitness and evolution of drug resistance in experimental populations of Candida albicans. J. Bacteriol. 183: 2971-2978. http://dx.doi.org/10. 1128/JB. 183. 10. 2971-2978. 2001.
    • (2001) J. Bacteriol. , vol.183 , pp. 2971-2978
    • Cowen, L.E.1    Kohn, L.M.2    Anderson, J.B.3
  • 28
    • 73449107205 scopus 로고    scopus 로고
    • Acquisition of aneuploidy provides increased fitness during the evolution of antifungal drug resistance
    • Selmecki AM, Dulmage K, Cowen LE, Anderson JB, Berman J. 2009. Acquisition of aneuploidy provides increased fitness during the evolution of antifungal drug resistance. PLoS Genet. 5: e1000705. http://dx.doi.org /10. 1371/journal. pgen. 1000705.
    • (2009) PLoS Genet. , vol.5
    • Selmecki, A.M.1    Dulmage, K.2    Cowen, L.E.3    Anderson, J.B.4    Berman, J.5
  • 29
    • 80055102705 scopus 로고    scopus 로고
    • Evolutionary dynamics of Candida albicans during in vitro evolution
    • Huang M, McClellan M, Berman J, Kao KC. 2011. Evolutionary dynamics of Candida albicans during in vitro evolution. Eukaryot. Cell 10: 1413-1421. http://dx.doi.org/10. 1128/EC. 05168-11.
    • (2011) Eukaryot. Cell , vol.10 , pp. 1413-1421
    • Huang, M.1    McClellan, M.2    Berman, J.3    Kao, K.C.4
  • 30
    • 0032734512 scopus 로고    scopus 로고
    • The ATP binding cassette transporter gene CgCDR1 from Candida glabrata is involved in the resistance of clinical isolates to azole antifungal agents
    • Sanglard D, Ischer F, Calabrese D, Majcherczyk PA, Bille J. 1999. The ATP binding cassette transporter gene CgCDR1 from Candida glabrata is involved in the resistance of clinical isolates to azole antifungal agents. Antimicrob. Agents Chemother. 43: 2753-2765.
    • (1999) Antimicrob. Agents Chemother. , vol.43 , pp. 2753-2765
    • Sanglard, D.1    Ischer, F.2    Calabrese, D.3    Majcherczyk, P.A.4    Bille, J.5
  • 31
    • 0035080323 scopus 로고    scopus 로고
    • Role of ATP-binding-cassette transporter genes in high-frequency acquisition of resistance to azole antifungals in Candida glabrata
    • Sanglard D, Ischer F, Bille J. 2001. Role of ATP-binding-cassette transporter genes in high-frequency acquisition of resistance to azole antifungals in Candida glabrata. Antimicrob. Agents Chemother. 45: 1174-1183. http://dx.doi.org/10. 1128/AAC. 45. 4. 1174-1183. 2001.
    • (2001) Antimicrob. Agents Chemother. , vol.45 , pp. 1174-1183
    • Sanglard, D.1    Ischer, F.2    Bille, J.3
  • 32
    • 40549126935 scopus 로고    scopus 로고
    • The ATP-binding cassette transporter-encoding gene CgSNQ2 is contributing to the CgPDR1-dependent azole resistance of Candida glabrata
    • Torelli R, Posteraro B, Ferrari S, La Sorda M, Fadda G, Sanglard D, Sanguinetti M. 2008. The ATP-binding cassette transporter-encoding gene CgSNQ2 is contributing to the CgPDR1-dependent azole resistance of Candida glabrata. Mol. Microbiol. 68: 186-201. http://dx.doi.org/10. 1111/j. 1365-2958. 2008. 06143. x.
    • (2008) Mol. Microbiol. , vol.68 , pp. 186-201
    • Torelli, R.1    Posteraro, B.2    Ferrari, S.3    La Sorda, M.4    Fadda, G.5    Sanglard, D.6    Sanguinetti, M.7
  • 33
    • 0037323687 scopus 로고    scopus 로고
    • Function of Candida glabrataABCtransporter gene, PDH1
    • Izumikawa K, Kakeya H, Tsai H, Grimberg B, Bennett J. 2003. Function of Candida glabrataABCtransporter gene, PDH1. Yeast 20: 249-261. http://dx.doi.org/10. 1002/yea. 962.
    • (2003) Yeast , vol.20 , pp. 249-261
    • Izumikawa, K.1    Kakeya, H.2    Tsai, H.3    Grimberg, B.4    Bennett, J.5
  • 34
    • 2142810157 scopus 로고    scopus 로고
    • Mechanism of increased fluconazole resistance in Candida glabrata during prophylaxis
    • Bennett JE, Izumikawa K, Marr KA. 2004. Mechanism of increased fluconazole resistance in Candida glabrata during prophylaxis. Antimicrob. Agents Chemother. 48: 1773-1777. http://dx.doi.org/10. 1128/AAC. 48. 5. 1773-1777. 2004.
    • (2004) Antimicrob. Agents Chemother. , vol.48 , pp. 1773-1777
    • Bennett, J.E.1    Izumikawa, K.2    Marr, K.A.3
  • 35
    • 4644254793 scopus 로고    scopus 로고
    • Azole resistance in Candida glabrata: Coordinate upregulation of multidrug transporters and evidence for a Pdr1-like transcription factor
    • Vermitsky J-P, Edlind TD. 2004. Azole resistance in Candida glabrata: coordinate upregulation of multidrug transporters and evidence for a Pdr1-like transcription factor. Antimicrob. Agents Chemother. 48: 3773-3781. http://dx.doi.org/10. 1128/AAC. 48. 10. 3773-3781. 2004.
    • (2004) Antimicrob. Agents Chemother. , vol.48 , pp. 3773-3781
    • Vermitsky, J.-P.1    Edlind, T.D.2
  • 36
    • 33645773419 scopus 로고    scopus 로고
    • Candida glabrata PDR1, a transcriptional regulator of a pleiotropic drug resistance network, mediates azole resistance in clinical isolates and petite mutants
    • Tsai H, Krol A, Sarti K, Bennett J. 2006. Candida glabrata PDR1, a transcriptional regulator of a pleiotropic drug resistance network, mediates azole resistance in clinical isolates and petite mutants. Antimicrob. Agents Chemother. 50: 1384-1392. http://dx.doi.org/10. 1128/AAC. 50. 4. 1384-1392. 2006.
    • (2006) Antimicrob. Agents Chemother. , vol.50 , pp. 1384-1392
    • Tsai, H.1    Krol, A.2    Sarti, K.3    Bennett, J.4
  • 37
    • 79952295606 scopus 로고    scopus 로고
    • Genomewide expression profile analysis of the Candida glabrata Pdr1 regulon
    • Caudle KE, Barker KS, Wiederhold NP, Xu L, Homayouni R, Rogers PD. 2011. Genomewide expression profile analysis of the Candida glabrata Pdr1 regulon. Eukaryot. Cell 10: 373-383. http://dx.doi.org/10. 1128/EC. 00073-10.
    • (2011) Eukaryot. Cell , vol.10 , pp. 373-383
    • Caudle, K.E.1    Barker, K.S.2    Wiederhold, N.P.3    Xu, L.4    Homayouni, R.5    Rogers, P.D.6
  • 38
    • 79951490839 scopus 로고    scopus 로고
    • Regulation of the CgPdr1 transcription factor from the pathogen Candida glabrata
    • Paul S, Schmidt JA, Moye-Rowley WS. 2011. Regulation of the CgPdr1 transcription factor from the pathogen Candida glabrata. Eukaryot. Cell 10: 187-197. http://dx.doi.org/10. 1128/EC. 00277-10.
    • (2011) Eukaryot. Cell , vol.10 , pp. 187-197
    • Paul, S.1    Schmidt, J.A.2    Moye-Rowley, W.S.3
  • 40
    • 84868087578 scopus 로고    scopus 로고
    • The stepwise acquisition of fluconazole resistance mutations causes a gradual loss of fitness in Candida albicans
    • Sasse C, Dunkel N, Schafer T, Schneider S, Dierolf F, Ohlsen K, Morschhauser J. 2012. The stepwise acquisition of fluconazole resistance mutations causes a gradual loss of fitness in Candida albicans. Mol. Microbiol. 86: 539-556. http://dx.doi.org/10. 1111/j. 1365-2958. 2012. 08210. x.
    • (2012) Mol. Microbiol. , vol.86 , pp. 539-556
    • Sasse, C.1    Dunkel, N.2    Schafer, T.3    Schneider, S.4    Dierolf, F.5    Ohlsen, K.6    Morschhauser, J.7
  • 41
    • 0000075317 scopus 로고
    • Techniques for transformation of E. coli
    • In Glover D (ed), IRL, Oxford, United Kingdom
    • Hanahan D. 1985. Techniques for transformation of E. coli, p 109-135. In Glover D (ed), DNA cloning. A practical approach. IRL, Oxford, United Kingdom.
    • (1985) DNA cloning. A practical approach , pp. 109-135
    • Hanahan, D.1
  • 42
    • 84873799110 scopus 로고
    • Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli
    • Bertani G. 1951. Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J. Bacteriol. 62: 293-300.
    • (1951) J. Bacteriol. , vol.62 , pp. 293-300
    • Bertani, G.1
  • 43
    • 5044225522 scopus 로고    scopus 로고
    • The SAT1 flipper, an optimized tool for gene disruption in Candida albicans
    • Reuss O, Vik A, Kolter R, Morschhauser J. 2004. The SAT1 flipper, an optimized tool for gene disruption in Candida albicans. Gene 341: 119-127. http://dx.doi.org/10. 1016/j. gene. 2004. 06. 021.
    • (2004) Gene , vol.341 , pp. 119-127
    • Reuss, O.1    Vik, A.2    Kolter, R.3    Morschhauser, J.4
  • 44
    • 0034986998 scopus 로고    scopus 로고
    • Analysis of phase-specific gene expression at the single-cell level in the white-opaque switching system of Candida albicans
    • Strauss A, Michel S, Morschhauser J. 2001. Analysis of phase-specific gene expression at the single-cell level in the white-opaque switching system of Candida albicans. J. Bacteriol. 183: 3761-3769. http://dx.doi.org/10. 1128/JB. 183. 12. 3761-3769. 2001.
    • (2001) J. Bacteriol. , vol.183 , pp. 3761-3769
    • Strauss, A.1    Michel, S.2    Morschhauser, J.3
  • 45
    • 40549124325 scopus 로고    scopus 로고
    • EUCAST definitive document EDef 7.1: Method for the determination of broth dilution MICs of antifungal agents for fermentative yeasts
    • Subcommittee on Antifungal Susceptibility Testing (AFST) of the ESCMID European Committee for Antimicrobial Susceptibility Testing (EUCAST)
    • Subcommittee on Antifungal Susceptibility Testing (AFST) of the ESCMID European Committee for Antimicrobial Susceptibility Testing (EUCAST). 2008. EUCAST definitive document EDef 7. 1: method for the determination of broth dilution MICs of antifungal agents for fermentative yeasts. Clin. Microbiol. Infect. 14: 398-405. http://dx.doi.org/10. 1111 /j. 1469-0691. 2007. 01935. x.
    • (2008) Clin. Microbiol. Infect. , vol.14 , pp. 398-405
  • 46
    • 33645791257 scopus 로고    scopus 로고
    • Overexpression of the MDR1gene is sufficient to confer increased resistance to toxic compounds in Candida albicans
    • Hiller D, Sanglard D, Morschhauser J. 2006. Overexpression of the MDR1gene is sufficient to confer increased resistance to toxic compounds in Candida albicans. Antimicrob. Agents Chemother. 50: 1365-1371. http://dx.doi.org/10. 1128/AAC. 50. 4. 1365-1371. 2006.
    • (2006) Antimicrob. Agents Chemother. , vol.50 , pp. 1365-1371
    • Hiller, D.1    Sanglard, D.2    Morschhauser, J.3
  • 47
    • 0036223414 scopus 로고    scopus 로고
    • A common drug-responsive element mediates the upregulation of the Candida albicans ABC transporters CDR1 and CDR2, two genes involved in antifungal drug resistance
    • de Micheli M, Bille J, Schueller C, Sanglard D. 2002. A common drug-responsive element mediates the upregulation of the Candida albicans ABC transporters CDR1 and CDR2, two genes involved in antifungal drug resistance. Mol. Microbiol. 43: 1197-1214. http://dx.doi.org/10. 1046 /j. 1365-2958. 2002. 02814. x.
    • (2002) Mol. Microbiol. , vol.43 , pp. 1197-1214
    • de Micheli, M.1    Bille, J.2    Schueller, C.3    Sanglard, D.4
  • 48
    • 11144270183 scopus 로고    scopus 로고
    • TAC1, transcriptional activator of CDR genes, is a new transcription factor involved in the regulation of Candida albicans ABC transporters CDR1 and CDR2
    • Coste AT, Karababa M, Ischer F, Bille J, Sanglard D. 2004. TAC1, transcriptional activator of CDR genes, is a new transcription factor involved in the regulation of Candida albicans ABC transporters CDR1 and CDR2. Eukaryot. Cell 3: 1639-1652. http://dx.doi.org/10. 1128/EC. 3. 6. 1639-1652. 2004.
    • (2004) Eukaryot. Cell , vol.3 , pp. 1639-1652
    • Coste, A.T.1    Karababa, M.2    Ischer, F.3    Bille, J.4    Sanglard, D.5
  • 49
    • 0033836026 scopus 로고    scopus 로고
    • Potent synergism of the combination of fluconazole and cyclosporine in Candida albicans
    • Marchetti O, Moreillon P, Glauser MP, Bille J, Sanglard D. 2000. Potent synergism of the combination of fluconazole and cyclosporine in Candida albicans. Antimicrob. Agents Chemother. 44: 2373-2381. http://dx.doi.org/10. 1128/AAC. 44. 9. 2373-2381. 2000.
    • (2000) Antimicrob. Agents Chemother. , vol.44 , pp. 2373-2381
    • Marchetti, O.1    Moreillon, P.2    Glauser, M.P.3    Bille, J.4    Sanglard, D.5
  • 50
    • 0038016755 scopus 로고    scopus 로고
    • Calcineurin A of Candida albicans: Involvement in antifungal tolerance, cell morphogenesis and virulence
    • Sanglard D, Ischer F, Marchetti O, Entenza J, Bille J. 2003. Calcineurin A of Candida albicans: involvement in antifungal tolerance, cell morphogenesis and virulence. Mol. Microbiol. 48: 959-976. http://dx.doi.org/10. 1046/j. 1365-2958. 2003. 03495. x.
    • (2003) Mol. Microbiol. , vol.48 , pp. 959-976
    • Sanglard, D.1    Ischer, F.2    Marchetti, O.3    Entenza, J.4    Bille, J.5
  • 52
    • 84867168091 scopus 로고    scopus 로고
    • Gain-of-function mutations in UPC2 are a frequent cause of ERG11 upregulation in azole-resistant clinical isolates of Candida albicans
    • Flowers SA, Barker KS, Berkow EL, Toner G, Chadwick SG, Gygax SE, Morschhäuser J, Rogers PD. 2012. Gain-of-function mutations in UPC2 are a frequent cause of ERG11 upregulation in azole-resistant clinical isolates of Candida albicans. Eukaryot. Cell 11: 1289-1299. http://dx.doi.org /10. 1128/EC. 00215-12.
    • (2012) Eukaryot. Cell , vol.11 , pp. 1289-1299
    • Flowers, S.A.1    Barker, K.S.2    Berkow, E.L.3    Toner, G.4    Chadwick, S.G.5    Gygax, S.E.6    Morschhäuser, J.7    Rogers, P.D.8
  • 53
    • 84877824836 scopus 로고    scopus 로고
    • Gain of function mutations in CgPDR1, a regulator of antifungal drug resistance in Candida glabrata, control adherence to host cells
    • Vale-Silva L, Ischer F, Leibundgut-Landmann S, Sanglard D. 2013. Gain of function mutations in CgPDR1, a regulator of antifungal drug resistance in Candida glabrata, control adherence to host cells. Infect. Immun. 81: 1709-1720. http://dx.doi.org/10. 1128/IAI. 00074-13.
    • (2013) Infect. Immun. , vol.81 , pp. 1709-1720
    • Vale-Silva, L.1    Ischer, F.2    Leibundgut-Landmann, S.3    Sanglard, D.4
  • 54
    • 80052965456 scopus 로고    scopus 로고
    • Growth of Candida albicans hyphae
    • Sudbery PE. 2011. Growth of Candida albicans hyphae. Nat. Rev. Microbiol. 9: 737-748. http://dx.doi.org/10. 1038/nrmicro2636.
    • (2011) Nat. Rev. Microbiol. , vol.9 , pp. 737-748
    • Sudbery, P.E.1
  • 55
    • 0041527013 scopus 로고    scopus 로고
    • Fitness of antibiotic resistant Staphylococcus epidermidis assessed by competition on the skin of human volunteers
    • Gustafsson I, Cars O, Andersson DI. 2003. Fitness of antibiotic resistant Staphylococcus epidermidis assessed by competition on the skin of human volunteers. J. Antimicrob. Chemother. 52: 258-263. http://dx.doi.org/10. 1093/jac/dkg331.
    • (2003) J. Antimicrob. Chemother. , vol.52 , pp. 258-263
    • Gustafsson, I.1    Cars, O.2    Andersson, D.I.3
  • 57
    • 33846632742 scopus 로고    scopus 로고
    • Fitness costs of fluoroquinolone resistance in Streptococcus pneumoniae
    • Rozen DE, McGee L, Levin BR, Klugman KP. 2007. Fitness costs of fluoroquinolone resistance in Streptococcus pneumoniae. Antimicrob. Agents Chemother. 51: 412-416. http://dx.doi.org/10. 1128/AAC. 01161-06.
    • (2007) Antimicrob. Agents Chemother. , vol.51 , pp. 412-416
    • Rozen, D.E.1    McGee, L.2    Levin, B.R.3    Klugman, K.P.4
  • 58
    • 77949569493 scopus 로고    scopus 로고
    • Antibiotic resistance and its cost: Is it possible to reverse resistance?
    • Andersson DI, Hughes D. 2010. Antibiotic resistance and its cost: is it possible to reverse resistance? Nat. Rev. Microbiol. 8: 260-271. http://dx.doi.org/10. 1038/nrmicro2319.
    • (2010) Nat. Rev. Microbiol. , vol.8 , pp. 260-271
    • Andersson, D.I.1    Hughes, D.2
  • 59
    • 0032870940 scopus 로고    scopus 로고
    • The biological cost of antibiotic resistance
    • Andersson DI, Levin BR. 1999. The biological cost of antibiotic resistance. Curr. Opin. Microbiol. 2: 489-493. http://dx.doi.org/10. 1016 /S1369-5274(99)00005-3.
    • (1999) Curr. Opin. Microbiol. , vol.2 , pp. 489-493
    • Andersson, D.I.1    Levin, B.R.2
  • 60
    • 0033830225 scopus 로고    scopus 로고
    • The cost of antibiotic resistance from a bacterial perspective
    • Bjorkman J, Andersson DI. 2000. The cost of antibiotic resistance from a bacterial perspective. Drug Resist Updat. 3: 237-245. http://dx.doi.org/10. 1054/drup. 2000. 0147.
    • (2000) Drug Resist Updat. , vol.3 , pp. 237-245
    • Bjorkman, J.1    Andersson, D.I.2
  • 62
    • 84858663078 scopus 로고    scopus 로고
    • Azole resistance by loss of function of the sterol delta(5), (6)-desaturase gene (ERG3) in Candida albicans does not necessarily decrease virulence
    • Vale-Silva LA, Coste AT, Ischer F, Parker JE, Kelly SL, Pinto E, Sanglard D. 2012. Azole resistance by loss of function of the sterol delta(5), (6)-desaturase gene (ERG3) in Candida albicans does not necessarily decrease virulence. Antimicrob. Agents Chemother. 56: 1960-1968. http://dx.doi.org/10. 1128/AAC. 05720-11.
    • (2012) Antimicrob. Agents Chemother. , vol.56 , pp. 1960-1968
    • Vale-Silva, L.A.1    Coste, A.T.2    Ischer, F.3    Parker, J.E.4    Kelly, S.L.5    Pinto, E.6    Sanglard, D.7
  • 63
    • 84858252541 scopus 로고    scopus 로고
    • Resistance to echinocandins comes at a cost: The impact of FKS1 hotspot mutations on Candida albicans fitness and virulence
    • Ben-Ami R, Kontoyiannis DP. 2012. Resistance to echinocandins comes at a cost: the impact of FKS1 hotspot mutations on Candida albicans fitness and virulence. Virulence 3: 95-97. http://dx.doi.org/10. 4161/viru. 3. 1. 18886.
    • (2012) Virulence , vol.3 , pp. 95-97
    • Ben-Ami, R.1    Kontoyiannis, D.P.2
  • 64
    • 79960884598 scopus 로고    scopus 로고
    • Fitness and virulence costs of Candida albicans FKS1 hot spot mutations associated with echinocandin resistance
    • Ben-Ami R, Garcia-Effron G, Lewis RE, Gamarra S, Leventakos K, Perlin DS, Kontoyiannis DP. 2011. Fitness and virulence costs of Candida albicans FKS1 hot spot mutations associated with echinocandin resistance. J. Infect. Dis. 204: 626-635. http://dx.doi.org/10. 1093/infdis /jir351.
    • (2011) J. Infect. Dis. , vol.204 , pp. 626-635
    • Ben-Ami, R.1    Garcia-Effron, G.2    Lewis, R.E.3    Gamarra, S.4    Leventakos, K.5    Perlin, D.S.6    Kontoyiannis, D.P.7
  • 66
    • 0028844181 scopus 로고
    • Reduced virulence of Candida albicans mutants affected in multidrug resistance
    • Becker JM, Henry LK, Jiang W, Koltin Y. 1995. Reduced virulence of Candida albicans mutants affected in multidrug resistance. Infect. Immun. 63: 4515-4518.
    • (1995) Infect. Immun. , vol.63 , pp. 4515-4518
    • Becker, J.M.1    Henry, L.K.2    Jiang, W.3    Koltin, Y.4
  • 67
    • 80052821706 scopus 로고    scopus 로고
    • Difference in virulence between fluconazole-susceptible and fluconazoleresistant Candida albicans in a mouse model
    • Schulz B, Weber K, Schmidt A, Borg-von Zepelin M, Ruhnke M. 2011. Difference in virulence between fluconazole-susceptible and fluconazoleresistant Candida albicans in a mouse model. Mycoses 54: e522-e530. http://dx.doi.org/10. 1111/j. 1439-0507. 2010. 01970. x.
    • (2011) Mycoses , vol.54
    • Schulz, B.1    Weber, K.2    Schmidt, A.3    Borg-von Zepelin, M.4    Ruhnke, M.5
  • 68
    • 84867168091 scopus 로고    scopus 로고
    • Gain-of-function mutations in UPC2 are a frequent cause of ERG11 upregulation in azole-resistant clinical isolates of Candida albicans
    • Flowers SA, Barker KS, Berkow EL, Toner G, Chadwick SG, Gygax SE, Morschhauser J, Rogers PD. 2012. Gain-of-function mutations in UPC2 are a frequent cause of ERG11 upregulation in azole-resistant clinical isolates of Candida albicans. Eukaryot. Cell 11: 1289-1299. http://dx.doi.org /10. 1128/EC. 00215-12.
    • (2012) Eukaryot. Cell , vol.11 , pp. 1289-1299
    • Flowers, S.A.1    Barker, K.S.2    Berkow, E.L.3    Toner, G.4    Chadwick, S.G.5    Gygax, S.E.6    Morschhauser, J.7    Rogers, P.D.8
  • 69
    • 0021742042 scopus 로고
    • Isolation of the Candida albicans gene for orotidine-5=-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations
    • Gillum AM, Tsay EY, Kirsch DR. 1984. Isolation of the Candida albicans gene for orotidine-5=-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations. Mol. Gen. Genet. 198: 179-182. http://dx.doi.org/10. 1007/BF00328721.
    • (1984) Mol. Gen. Genet. , vol.198 , pp. 179-182
    • Gillum, A.M.1    Tsay, E.Y.2    Kirsch, D.R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.