-
2
-
-
84867512787
-
Species identification and antifungal susceptibility testing of Candida bloodstream isolates from population-based surveillance studies in two U. S. cities from 2008 to 2011
-
Lockhart SR, Iqbal N, Cleveland AA, Farley MM, Harrison LH, Bolden CB, Baughman W, Stein B, Hollick R, Park BJ, Chiller T. 2012. Species identification and antifungal susceptibility testing of Candida bloodstream isolates from population-based surveillance studies in two U. S. cities from 2008 to 2011. J. Clin. Microbiol. 50: 3435-3442. http://dx.doi.org/10. 1128/JCM. 01283-12.
-
(2012)
J. Clin. Microbiol.
, vol.50
, pp. 3435-3442
-
-
Lockhart, S.R.1
Iqbal, N.2
Cleveland, A.A.3
Farley, M.M.4
Harrison, L.H.5
Bolden, C.B.6
Baughman, W.7
Stein, B.8
Hollick, R.9
Park, B.J.10
Chiller, T.11
-
3
-
-
78449308457
-
Epidemiology of invasive candidiasis
-
Arendrup MC. 2010. Epidemiology of invasive candidiasis. Curr. Opin. Crit. Care 16: 445-452. http://dx.doi.org/10. 1097/MCC. 0b013e32833e84d2.
-
(2010)
Curr. Opin. Crit. Care
, vol.16
, pp. 445-452
-
-
Arendrup, M.C.1
-
4
-
-
0036488166
-
Resistance of Candida species to antifungal agents: Molecular mechanisms and clinical consequences
-
Sanglard D, Odds FC. 2002. Resistance of Candida species to antifungal agents: molecular mechanisms and clinical consequences. Lancet Infect. Dis. 2: 73-85. http://dx.doi.org/10. 1016/S1473-3099(02)00181-0.
-
(2002)
Lancet Infect. Dis.
, vol.2
, pp. 73-85
-
-
Sanglard, D.1
Odds, F.C.2
-
5
-
-
0037197022
-
Antifungal drug resistance of pathogenic fungi
-
Kontoyiannis DP, Lewis RE. 2002. Antifungal drug resistance of pathogenic fungi. Lancet 359: 1135-1144. http://dx.doi.org/10. 1016 /S0140-6736(02)08162-X.
-
(2002)
Lancet
, vol.359
, pp. 1135-1144
-
-
Kontoyiannis, D.P.1
Lewis, R.E.2
-
6
-
-
36849043112
-
Multidrug resistance in fungi
-
Gulshan K, Moye-Rowley WS. 2007. Multidrug resistance in fungi. Eukaryot. Cell 6: 1933-1942. http://dx.doi.org/10. 1128/EC. 00254-07.
-
(2007)
Eukaryot. Cell
, vol.6
, pp. 1933-1942
-
-
Gulshan, K.1
Moye-Rowley, W.S.2
-
7
-
-
84860723063
-
The changing epidemiology of healthcare-associated candidemia over three decades
-
Diekema D, Arbefeville S, Boyken L, Kroeger J, Pfaller M. 2012. The changing epidemiology of healthcare-associated candidemia over three decades. Diagn. Microbiol. Infect. Dis. 73: 45-48. http://dx.doi.org/10. 1016/j. diagmicrobio. 2012. 02. 001.
-
(2012)
Diagn. Microbiol. Infect. Dis.
, vol.73
, pp. 45-48
-
-
Diekema, D.1
Arbefeville, S.2
Boyken, L.3
Kroeger, J.4
Pfaller, M.5
-
8
-
-
70350026151
-
Antifungal drug resistance mechanisms in fungal pathogens from the perspective of transcriptional gene regulation
-
Sanglard D, Coste A, Ferrari S. 2009. Antifungal drug resistance mechanisms in fungal pathogens from the perspective of transcriptional gene regulation. FEMS Yeast Res. 9: 1029-1050. http://dx.doi.org/10. 1111/j. 1567-1364. 2009. 00578. x.
-
(2009)
FEMS Yeast Res.
, vol.9
, pp. 1029-1050
-
-
Sanglard, D.1
Coste, A.2
Ferrari, S.3
-
9
-
-
0028793725
-
Mechanisms of resistance to azole antifungal agents in Candida albicans isolates from AIDS patients involve specific multidrug transporters
-
Sanglard D, Kuchler K, Ischer F, Pagani JL, Monod M, Bille J. 1995. Mechanisms of resistance to azole antifungal agents in Candida albicans isolates from AIDS patients involve specific multidrug transporters. Antimicrob. Agents Chemother. 39: 2378-2386. http://dx.doi.org/10. 1128 /AAC. 39. 11. 2378.
-
(1995)
Antimicrob. Agents Chemother.
, vol.39
, pp. 2378-2386
-
-
Sanglard, D.1
Kuchler, K.2
Ischer, F.3
Pagani, J.L.4
Monod, M.5
Bille, J.6
-
10
-
-
0029820482
-
Susceptibilities of Candida albicans multidrug transporter mutants to various antifungal agents and other metabolic inhibitors
-
Sanglard D, Ischer F, Monod M, Bille J. 1996. Susceptibilities of Candida albicans multidrug transporter mutants to various antifungal agents and other metabolic inhibitors. Antimicrob. Agents Chemother. 40: 2300-2305.
-
(1996)
Antimicrob. Agents Chemother.
, vol.40
, pp. 2300-2305
-
-
Sanglard, D.1
Ischer, F.2
Monod, M.3
Bille, J.4
-
11
-
-
0030757227
-
Increased mRNA levels of ERG16, CDR, and MDR1 correlate with increases in azole resistance in Candida albicans isolates from a patient infected with human immunodeficiency virus
-
White TC. 1997. Increased mRNA levels of ERG16, CDR, and MDR1 correlate with increases in azole resistance in Candida albicans isolates from a patient infected with human immunodeficiency virus. Antimicrob. Agents Chemother. 41: 1482-1487.
-
(1997)
Antimicrob. Agents Chemother.
, vol.41
, pp. 1482-1487
-
-
White, T.C.1
-
12
-
-
33646171879
-
A mutation in Tac1p, a transcription factor regulating CDR1 and CDR2, is coupled with loss of heterozygosity at chromosome 5 to mediate antifungal resistance in Candida albicans
-
Coste A, Turner V, Ischer F, Morschhäuser J, Forche A, Selmecki A, Berman J, Bille J, Sanglard D. 2006. A mutation in Tac1p, a transcription factor regulating CDR1 and CDR2, is coupled with loss of heterozygosity at chromosome 5 to mediate antifungal resistance in Candida albicans. Genetics 172: 2139-2156. http://dx.doi.org/10. 1534/genetics. 105. 054767.
-
(2006)
Genetics
, vol.172
, pp. 2139-2156
-
-
Coste, A.1
Turner, V.2
Ischer, F.3
Morschhäuser, J.4
Forche, A.5
Selmecki, A.6
Berman, J.7
Bille, J.8
Sanglard, D.9
-
13
-
-
35348903338
-
Genotypic evolution of azole resistance mechanisms in sequential Candida albicans isolates
-
Coste A, Selmecki A, Forche A, Diogo D, Bougnoux M-E, d'Enfert C, Berman J, Sanglard D. 2007. Genotypic evolution of azole resistance mechanisms in sequential Candida albicans isolates. Eukaryot. Cell 6: 1889-1904. http://dx.doi.org/10. 1128/EC. 00151-07.
-
(2007)
Eukaryot. Cell
, vol.6
, pp. 1889-1904
-
-
Coste, A.1
Selmecki, A.2
Forche, A.3
Diogo, D.4
Bougnoux, M.-E.5
D'Enfert, C.6
Berman, J.7
Sanglard, D.8
-
14
-
-
68549128735
-
Functional analysis of cis-and trans-acting elements of the Candida albicans CDR2 promoter with a novel promoter reporter system
-
Coste AT, Crittin J, Bauser C, Rohde B, Sanglard D. 2009. Functional analysis of cis-and trans-acting elements of the Candida albicans CDR2 promoter with a novel promoter reporter system. Eukaryot. Cell 8: 1250-1267. http://dx.doi.org/10. 1128/EC. 00069-09.
-
(2009)
Eukaryot. Cell
, vol.8
, pp. 1250-1267
-
-
Coste, A.T.1
Crittin, J.2
Bauser, C.3
Rohde, B.4
Sanglard, D.5
-
15
-
-
37349095258
-
The transcription factor Mrr1p controls expression of the MDR1 efflux pump and mediates multidrug resistance in Candida albicans
-
Morschhauser J, Barker K, Liu T, Bla B, Homayouni R, Rogers P. 2007. The transcription factor Mrr1p controls expression of the MDR1 efflux pump and mediates multidrug resistance in Candida albicans. PLoS Pathog. 3: e164. http://dx.doi.org/10. 1371/journal. ppat. 0030164.
-
(2007)
PLoS Pathog.
, vol.3
-
-
Morschhauser, J.1
Barker, K.2
Liu, T.3
Bla, B.4
Homayouni, R.5
Rogers, P.6
-
16
-
-
47749142093
-
Mutations in the multidrug resistance regulator MRR1, followed by loss of heterozygosity, are the main cause of MDR1 overexpression in fluconazole-resistant Candida albicans strains
-
Dunkel N, Blass J, Rogers P, Morschhauser J. 2008. Mutations in the multidrug resistance regulator MRR1, followed by loss of heterozygosity, are the main cause of MDR1 overexpression in fluconazole-resistant Candida albicans strains. Mol. Microbiol. 69: 827-840. http://dx.doi.org/10. 1111/j. 1365-2958. 2008. 06309. x.
-
(2008)
Mol. Microbiol.
, vol.69
, pp. 827-840
-
-
Dunkel, N.1
Blass, J.2
Rogers, P.3
Morschhauser, J.4
-
17
-
-
0031938057
-
Amino acid substitutions in the cytochrome P450 lanosterol 14α-demethylase (CYP51A1) from azole-resistant Candida albicans clinical isolates contributing to the resistance to azole antifungal agents
-
Sanglard D, Ischer F, Koymans L, Bille J. 1998. Amino acid substitutions in the cytochrome P450 lanosterol 14α-demethylase (CYP51A1) from azole-resistant Candida albicans clinical isolates contributing to the resistance to azole antifungal agents. Antimicrob. Agents Chemother. 42: 241-253. http://dx.doi.org/10. 1093/jac/42. 2. 241.
-
(1998)
Antimicrob. Agents Chemother.
, vol.42
, pp. 241-253
-
-
Sanglard, D.1
Ischer, F.2
Koymans, L.3
Bille, J.4
-
18
-
-
0034812585
-
Prevalence of molecular mechanisms of resistance to azole antifungal agents in Candida albicans strains displaying high-level fluconazole resistance isolated from human immunodeficiency virus-infected patients
-
Perea S, Lopez-Ribot J, Kirkpatrick W, McAtee R, Santillan R, Martinez M, Calabrese D, Sanglard D, Patterson T. 2001. Prevalence of molecular mechanisms of resistance to azole antifungal agents in Candida albicans strains displaying high-level fluconazole resistance isolated from human immunodeficiency virus-infected patients. Antimicrob. Agents Chemother. 45: 2676-2684. http://dx.doi.org/10. 1128/AAC. 45. 10. 2676-2684. 2001.
-
(2001)
Antimicrob. Agents Chemother.
, vol.45
, pp. 2676-2684
-
-
Perea, S.1
Lopez-Ribot, J.2
Kirkpatrick, W.3
McAtee, R.4
Santillan, R.5
Martinez, M.6
Calabrese, D.7
Sanglard, D.8
Patterson, T.9
-
19
-
-
78751695581
-
An A643V amino acid substitution in Upc2p contributes to azole resistance in well-characterized clinical isolates of Candida albicans
-
Hoot SJ, Smith AR, Brown RP, White TC. 2011. An A643V amino acid substitution in Upc2p contributes to azole resistance in well-characterized clinical isolates of Candida albicans. Antimicrob. Agents Chemother. 55: 940-942. http://dx.doi.org/10. 1128/AAC. 00995-10.
-
(2011)
Antimicrob. Agents Chemother.
, vol.55
, pp. 940-942
-
-
Hoot, S.J.1
Smith, A.R.2
Brown, R.P.3
White, T.C.4
-
20
-
-
73849109145
-
An A643T mutation in the transcription factor Upc2p causes constitutive ERG11 upregulation and increased fluconazole resistance in Candida albicans
-
Heilmann C, Schneider S, Barker K, Rogers P, Morschhauser J. 2010. An A643T mutation in the transcription factor Upc2p causes constitutive ERG11 upregulation and increased fluconazole resistance in Candida albicans. Antimicrob. Agents Chemother. 54: 353-359. http://dx.doi.org/10. 1128/AAC. 01102-09.
-
(2010)
Antimicrob. Agents Chemother.
, vol.54
, pp. 353-359
-
-
Heilmann, C.1
Schneider, S.2
Barker, K.3
Rogers, P.4
Morschhauser, J.5
-
21
-
-
47049101245
-
A gain-of-function mutation in the transcription factor Upc2p causes upregulation of ergosterol biosynthesis genes and increased fluconazole resistance in a clinical Candida albicans isolate
-
Dunkel N, Liu T, Barker K, Homayouni R, Morschhäuser J, Rogers P. 2008. A gain-of-function mutation in the transcription factor Upc2p causes upregulation of ergosterol biosynthesis genes and increased fluconazole resistance in a clinical Candida albicans isolate. Eukaryot. Cell 7: 1180-1190. http://dx.doi.org/10. 1128/EC. 00103-08.
-
(2008)
Eukaryot. Cell
, vol.7
, pp. 1180-1190
-
-
Dunkel, N.1
Liu, T.2
Barker, K.3
Homayouni, R.4
Morschhäuser, J.5
Rogers, P.6
-
22
-
-
36849055552
-
Genomewide expression and location analyses of the Candida albicans Tac1p regulon
-
Liu TT, Znaidi S, Barker KS, Xu L, Homayouni R, Saidane S, Morschhäuser J, Nantel A, Raymond M, Rogers PD. 2007. Genomewide expression and location analyses of the Candida albicans Tac1p regulon. Eukaryot. Cell 6: 2122-2138. http://dx.doi.org/10. 1128/EC. 00327-07.
-
(2007)
Eukaryot. Cell
, vol.6
, pp. 2122-2138
-
-
Liu, T.T.1
Znaidi, S.2
Barker, K.S.3
Xu, L.4
Homayouni, R.5
Saidane, S.6
Morschhäuser, J.7
Nantel, A.8
Raymond, M.9
Rogers, P.D.10
-
23
-
-
47049100076
-
Genomewide location analysis of Candida albicans Upc2p, a regulator of sterol metabolism and azole drug resistance
-
Znaidi S, Weber S, Zin Al-Abdin O, Bomme P, Saidane S, Drouin S, Lemieux S, De Deken X, Robert F, Raymond M. 2008. Genomewide location analysis of Candida albicans Upc2p, a regulator of sterol metabolism and azole drug resistance. Eukaryot. Cell 7: 836-847. http://dx.doi.org/10. 1128/EC. 00070-08.
-
(2008)
Eukaryot. Cell
, vol.7
, pp. 836-847
-
-
Znaidi, S.1
Weber, S.2
Zin Al-Abdin, O.3
Bomme, P.4
Saidane, S.5
Drouin, S.6
Lemieux, S.7
De Deken, X.8
Robert, F.9
Raymond, M.10
-
24
-
-
79955532228
-
Regulation of efflux pump expression and drug resistance by the transcription factors Mrr1, Upc2, and Cap1 in Candida albicans
-
Schubert S, Barker KS, Znaidi S, Schneider S, Dierolf F, Dunkel N, Aid M, Boucher G, Rogers PD, Raymond M, Morschhauser J. 2011. Regulation of efflux pump expression and drug resistance by the transcription factors Mrr1, Upc2, and Cap1 in Candida albicans. Antimicrob. Agents Chemother. 55: 2212-2223. http://dx.doi.org/10. 1128/AAC. 01343-10.
-
(2011)
Antimicrob. Agents Chemother.
, vol.55
, pp. 2212-2223
-
-
Schubert, S.1
Barker, K.S.2
Znaidi, S.3
Schneider, S.4
Dierolf, F.5
Dunkel, N.6
Aid, M.7
Boucher, G.8
Rogers, P.D.9
Raymond, M.10
Morschhauser, J.11
-
25
-
-
0031724985
-
Fluconazole versus Candida albicans: A complex relationship
-
Graybill JR, Montalbo E, Kirkpatrick WR, Luther MF, Revankar SG, Patterson TF. 1998. Fluconazole versus Candida albicans: a complex relationship. Antimicrob. Agents Chemother. 42: 2938-2942.
-
(1998)
Antimicrob. Agents Chemother.
, vol.42
, pp. 2938-2942
-
-
Graybill, J.R.1
Montalbo, E.2
Kirkpatrick, W.R.3
Luther, M.F.4
Revankar, S.G.5
Patterson, T.F.6
-
26
-
-
39149087719
-
The evolution of fungal drug resistance: Modulating the trajectory from genotype to phenotype
-
Cowen LE. 2008. The evolution of fungal drug resistance: modulating the trajectory from genotype to phenotype. Nat. Rev. Microbiol. 6: 187-198. http://dx.doi.org/10. 1038/nrmicro1835.
-
(2008)
Nat. Rev. Microbiol.
, vol.6
, pp. 187-198
-
-
Cowen, L.E.1
-
27
-
-
0035036088
-
Divergence in fitness and evolution of drug resistance in experimental populations of Candida albicans
-
Cowen LE, Kohn LM, Anderson JB. 2001. Divergence in fitness and evolution of drug resistance in experimental populations of Candida albicans. J. Bacteriol. 183: 2971-2978. http://dx.doi.org/10. 1128/JB. 183. 10. 2971-2978. 2001.
-
(2001)
J. Bacteriol.
, vol.183
, pp. 2971-2978
-
-
Cowen, L.E.1
Kohn, L.M.2
Anderson, J.B.3
-
28
-
-
73449107205
-
Acquisition of aneuploidy provides increased fitness during the evolution of antifungal drug resistance
-
Selmecki AM, Dulmage K, Cowen LE, Anderson JB, Berman J. 2009. Acquisition of aneuploidy provides increased fitness during the evolution of antifungal drug resistance. PLoS Genet. 5: e1000705. http://dx.doi.org /10. 1371/journal. pgen. 1000705.
-
(2009)
PLoS Genet.
, vol.5
-
-
Selmecki, A.M.1
Dulmage, K.2
Cowen, L.E.3
Anderson, J.B.4
Berman, J.5
-
29
-
-
80055102705
-
Evolutionary dynamics of Candida albicans during in vitro evolution
-
Huang M, McClellan M, Berman J, Kao KC. 2011. Evolutionary dynamics of Candida albicans during in vitro evolution. Eukaryot. Cell 10: 1413-1421. http://dx.doi.org/10. 1128/EC. 05168-11.
-
(2011)
Eukaryot. Cell
, vol.10
, pp. 1413-1421
-
-
Huang, M.1
McClellan, M.2
Berman, J.3
Kao, K.C.4
-
30
-
-
0032734512
-
The ATP binding cassette transporter gene CgCDR1 from Candida glabrata is involved in the resistance of clinical isolates to azole antifungal agents
-
Sanglard D, Ischer F, Calabrese D, Majcherczyk PA, Bille J. 1999. The ATP binding cassette transporter gene CgCDR1 from Candida glabrata is involved in the resistance of clinical isolates to azole antifungal agents. Antimicrob. Agents Chemother. 43: 2753-2765.
-
(1999)
Antimicrob. Agents Chemother.
, vol.43
, pp. 2753-2765
-
-
Sanglard, D.1
Ischer, F.2
Calabrese, D.3
Majcherczyk, P.A.4
Bille, J.5
-
31
-
-
0035080323
-
Role of ATP-binding-cassette transporter genes in high-frequency acquisition of resistance to azole antifungals in Candida glabrata
-
Sanglard D, Ischer F, Bille J. 2001. Role of ATP-binding-cassette transporter genes in high-frequency acquisition of resistance to azole antifungals in Candida glabrata. Antimicrob. Agents Chemother. 45: 1174-1183. http://dx.doi.org/10. 1128/AAC. 45. 4. 1174-1183. 2001.
-
(2001)
Antimicrob. Agents Chemother.
, vol.45
, pp. 1174-1183
-
-
Sanglard, D.1
Ischer, F.2
Bille, J.3
-
32
-
-
40549126935
-
The ATP-binding cassette transporter-encoding gene CgSNQ2 is contributing to the CgPDR1-dependent azole resistance of Candida glabrata
-
Torelli R, Posteraro B, Ferrari S, La Sorda M, Fadda G, Sanglard D, Sanguinetti M. 2008. The ATP-binding cassette transporter-encoding gene CgSNQ2 is contributing to the CgPDR1-dependent azole resistance of Candida glabrata. Mol. Microbiol. 68: 186-201. http://dx.doi.org/10. 1111/j. 1365-2958. 2008. 06143. x.
-
(2008)
Mol. Microbiol.
, vol.68
, pp. 186-201
-
-
Torelli, R.1
Posteraro, B.2
Ferrari, S.3
La Sorda, M.4
Fadda, G.5
Sanglard, D.6
Sanguinetti, M.7
-
33
-
-
0037323687
-
Function of Candida glabrataABCtransporter gene, PDH1
-
Izumikawa K, Kakeya H, Tsai H, Grimberg B, Bennett J. 2003. Function of Candida glabrataABCtransporter gene, PDH1. Yeast 20: 249-261. http://dx.doi.org/10. 1002/yea. 962.
-
(2003)
Yeast
, vol.20
, pp. 249-261
-
-
Izumikawa, K.1
Kakeya, H.2
Tsai, H.3
Grimberg, B.4
Bennett, J.5
-
34
-
-
2142810157
-
Mechanism of increased fluconazole resistance in Candida glabrata during prophylaxis
-
Bennett JE, Izumikawa K, Marr KA. 2004. Mechanism of increased fluconazole resistance in Candida glabrata during prophylaxis. Antimicrob. Agents Chemother. 48: 1773-1777. http://dx.doi.org/10. 1128/AAC. 48. 5. 1773-1777. 2004.
-
(2004)
Antimicrob. Agents Chemother.
, vol.48
, pp. 1773-1777
-
-
Bennett, J.E.1
Izumikawa, K.2
Marr, K.A.3
-
35
-
-
4644254793
-
Azole resistance in Candida glabrata: Coordinate upregulation of multidrug transporters and evidence for a Pdr1-like transcription factor
-
Vermitsky J-P, Edlind TD. 2004. Azole resistance in Candida glabrata: coordinate upregulation of multidrug transporters and evidence for a Pdr1-like transcription factor. Antimicrob. Agents Chemother. 48: 3773-3781. http://dx.doi.org/10. 1128/AAC. 48. 10. 3773-3781. 2004.
-
(2004)
Antimicrob. Agents Chemother.
, vol.48
, pp. 3773-3781
-
-
Vermitsky, J.-P.1
Edlind, T.D.2
-
36
-
-
33645773419
-
Candida glabrata PDR1, a transcriptional regulator of a pleiotropic drug resistance network, mediates azole resistance in clinical isolates and petite mutants
-
Tsai H, Krol A, Sarti K, Bennett J. 2006. Candida glabrata PDR1, a transcriptional regulator of a pleiotropic drug resistance network, mediates azole resistance in clinical isolates and petite mutants. Antimicrob. Agents Chemother. 50: 1384-1392. http://dx.doi.org/10. 1128/AAC. 50. 4. 1384-1392. 2006.
-
(2006)
Antimicrob. Agents Chemother.
, vol.50
, pp. 1384-1392
-
-
Tsai, H.1
Krol, A.2
Sarti, K.3
Bennett, J.4
-
37
-
-
79952295606
-
Genomewide expression profile analysis of the Candida glabrata Pdr1 regulon
-
Caudle KE, Barker KS, Wiederhold NP, Xu L, Homayouni R, Rogers PD. 2011. Genomewide expression profile analysis of the Candida glabrata Pdr1 regulon. Eukaryot. Cell 10: 373-383. http://dx.doi.org/10. 1128/EC. 00073-10.
-
(2011)
Eukaryot. Cell
, vol.10
, pp. 373-383
-
-
Caudle, K.E.1
Barker, K.S.2
Wiederhold, N.P.3
Xu, L.4
Homayouni, R.5
Rogers, P.D.6
-
38
-
-
79951490839
-
Regulation of the CgPdr1 transcription factor from the pathogen Candida glabrata
-
Paul S, Schmidt JA, Moye-Rowley WS. 2011. Regulation of the CgPdr1 transcription factor from the pathogen Candida glabrata. Eukaryot. Cell 10: 187-197. http://dx.doi.org/10. 1128/EC. 00277-10.
-
(2011)
Eukaryot. Cell
, vol.10
, pp. 187-197
-
-
Paul, S.1
Schmidt, J.A.2
Moye-Rowley, W.S.3
-
39
-
-
59249085257
-
Gain of function mutations in CgPDR1 of Candida glabrata not only mediate antifungal resistance but also enhance virulence
-
Ferrari S, Ischer F, Calabrese D, Posteraro B, Sanguinetti M, Fadda G, Rohde B, Bauser C, Bader O, Sanglard D. 2009. Gain of function mutations in CgPDR1 of Candida glabrata not only mediate antifungal resistance but also enhance virulence. PLoS Pathog. 5: e1000268. http://dx.doi.org/10. 1371/journal. ppat. 1000268.
-
(2009)
PLoS Pathog.
, vol.5
-
-
Ferrari, S.1
Ischer, F.2
Calabrese, D.3
Posteraro, B.4
Sanguinetti, M.5
Fadda, G.6
Rohde, B.7
Bauser, C.8
Bader, O.9
Sanglard, D.10
-
40
-
-
84868087578
-
The stepwise acquisition of fluconazole resistance mutations causes a gradual loss of fitness in Candida albicans
-
Sasse C, Dunkel N, Schafer T, Schneider S, Dierolf F, Ohlsen K, Morschhauser J. 2012. The stepwise acquisition of fluconazole resistance mutations causes a gradual loss of fitness in Candida albicans. Mol. Microbiol. 86: 539-556. http://dx.doi.org/10. 1111/j. 1365-2958. 2012. 08210. x.
-
(2012)
Mol. Microbiol.
, vol.86
, pp. 539-556
-
-
Sasse, C.1
Dunkel, N.2
Schafer, T.3
Schneider, S.4
Dierolf, F.5
Ohlsen, K.6
Morschhauser, J.7
-
41
-
-
0000075317
-
Techniques for transformation of E. coli
-
In Glover D (ed), IRL, Oxford, United Kingdom
-
Hanahan D. 1985. Techniques for transformation of E. coli, p 109-135. In Glover D (ed), DNA cloning. A practical approach. IRL, Oxford, United Kingdom.
-
(1985)
DNA cloning. A practical approach
, pp. 109-135
-
-
Hanahan, D.1
-
42
-
-
84873799110
-
Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli
-
Bertani G. 1951. Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J. Bacteriol. 62: 293-300.
-
(1951)
J. Bacteriol.
, vol.62
, pp. 293-300
-
-
Bertani, G.1
-
43
-
-
5044225522
-
The SAT1 flipper, an optimized tool for gene disruption in Candida albicans
-
Reuss O, Vik A, Kolter R, Morschhauser J. 2004. The SAT1 flipper, an optimized tool for gene disruption in Candida albicans. Gene 341: 119-127. http://dx.doi.org/10. 1016/j. gene. 2004. 06. 021.
-
(2004)
Gene
, vol.341
, pp. 119-127
-
-
Reuss, O.1
Vik, A.2
Kolter, R.3
Morschhauser, J.4
-
44
-
-
0034986998
-
Analysis of phase-specific gene expression at the single-cell level in the white-opaque switching system of Candida albicans
-
Strauss A, Michel S, Morschhauser J. 2001. Analysis of phase-specific gene expression at the single-cell level in the white-opaque switching system of Candida albicans. J. Bacteriol. 183: 3761-3769. http://dx.doi.org/10. 1128/JB. 183. 12. 3761-3769. 2001.
-
(2001)
J. Bacteriol.
, vol.183
, pp. 3761-3769
-
-
Strauss, A.1
Michel, S.2
Morschhauser, J.3
-
45
-
-
40549124325
-
EUCAST definitive document EDef 7.1: Method for the determination of broth dilution MICs of antifungal agents for fermentative yeasts
-
Subcommittee on Antifungal Susceptibility Testing (AFST) of the ESCMID European Committee for Antimicrobial Susceptibility Testing (EUCAST)
-
Subcommittee on Antifungal Susceptibility Testing (AFST) of the ESCMID European Committee for Antimicrobial Susceptibility Testing (EUCAST). 2008. EUCAST definitive document EDef 7. 1: method for the determination of broth dilution MICs of antifungal agents for fermentative yeasts. Clin. Microbiol. Infect. 14: 398-405. http://dx.doi.org/10. 1111 /j. 1469-0691. 2007. 01935. x.
-
(2008)
Clin. Microbiol. Infect.
, vol.14
, pp. 398-405
-
-
-
46
-
-
33645791257
-
Overexpression of the MDR1gene is sufficient to confer increased resistance to toxic compounds in Candida albicans
-
Hiller D, Sanglard D, Morschhauser J. 2006. Overexpression of the MDR1gene is sufficient to confer increased resistance to toxic compounds in Candida albicans. Antimicrob. Agents Chemother. 50: 1365-1371. http://dx.doi.org/10. 1128/AAC. 50. 4. 1365-1371. 2006.
-
(2006)
Antimicrob. Agents Chemother.
, vol.50
, pp. 1365-1371
-
-
Hiller, D.1
Sanglard, D.2
Morschhauser, J.3
-
47
-
-
0036223414
-
A common drug-responsive element mediates the upregulation of the Candida albicans ABC transporters CDR1 and CDR2, two genes involved in antifungal drug resistance
-
de Micheli M, Bille J, Schueller C, Sanglard D. 2002. A common drug-responsive element mediates the upregulation of the Candida albicans ABC transporters CDR1 and CDR2, two genes involved in antifungal drug resistance. Mol. Microbiol. 43: 1197-1214. http://dx.doi.org/10. 1046 /j. 1365-2958. 2002. 02814. x.
-
(2002)
Mol. Microbiol.
, vol.43
, pp. 1197-1214
-
-
de Micheli, M.1
Bille, J.2
Schueller, C.3
Sanglard, D.4
-
48
-
-
11144270183
-
TAC1, transcriptional activator of CDR genes, is a new transcription factor involved in the regulation of Candida albicans ABC transporters CDR1 and CDR2
-
Coste AT, Karababa M, Ischer F, Bille J, Sanglard D. 2004. TAC1, transcriptional activator of CDR genes, is a new transcription factor involved in the regulation of Candida albicans ABC transporters CDR1 and CDR2. Eukaryot. Cell 3: 1639-1652. http://dx.doi.org/10. 1128/EC. 3. 6. 1639-1652. 2004.
-
(2004)
Eukaryot. Cell
, vol.3
, pp. 1639-1652
-
-
Coste, A.T.1
Karababa, M.2
Ischer, F.3
Bille, J.4
Sanglard, D.5
-
49
-
-
0033836026
-
Potent synergism of the combination of fluconazole and cyclosporine in Candida albicans
-
Marchetti O, Moreillon P, Glauser MP, Bille J, Sanglard D. 2000. Potent synergism of the combination of fluconazole and cyclosporine in Candida albicans. Antimicrob. Agents Chemother. 44: 2373-2381. http://dx.doi.org/10. 1128/AAC. 44. 9. 2373-2381. 2000.
-
(2000)
Antimicrob. Agents Chemother.
, vol.44
, pp. 2373-2381
-
-
Marchetti, O.1
Moreillon, P.2
Glauser, M.P.3
Bille, J.4
Sanglard, D.5
-
50
-
-
0038016755
-
Calcineurin A of Candida albicans: Involvement in antifungal tolerance, cell morphogenesis and virulence
-
Sanglard D, Ischer F, Marchetti O, Entenza J, Bille J. 2003. Calcineurin A of Candida albicans: involvement in antifungal tolerance, cell morphogenesis and virulence. Mol. Microbiol. 48: 959-976. http://dx.doi.org/10. 1046/j. 1365-2958. 2003. 03495. x.
-
(2003)
Mol. Microbiol.
, vol.48
, pp. 959-976
-
-
Sanglard, D.1
Ischer, F.2
Marchetti, O.3
Entenza, J.4
Bille, J.5
-
51
-
-
33947545767
-
The central role of PDR1 in the foundation of yeast drug resistance
-
Fardeau V, Lelandais G, Oldfield A, Salin H, Lemoine S, Garcia M, Tanty V, Le Crom S, Jacq C, Devaux F. 2007. The central role of PDR1 in the foundation of yeast drug resistance. J. Biol. Chem. 282: 5063-5074. http://dx.doi.org/10. 1074/jbc. M610197200.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 5063-5074
-
-
Fardeau, V.1
Lelandais, G.2
Oldfield, A.3
Salin, H.4
Lemoine, S.5
Garcia, M.6
Tanty, V.7
Le Crom, S.8
Jacq, C.9
Devaux, F.10
-
52
-
-
84867168091
-
Gain-of-function mutations in UPC2 are a frequent cause of ERG11 upregulation in azole-resistant clinical isolates of Candida albicans
-
Flowers SA, Barker KS, Berkow EL, Toner G, Chadwick SG, Gygax SE, Morschhäuser J, Rogers PD. 2012. Gain-of-function mutations in UPC2 are a frequent cause of ERG11 upregulation in azole-resistant clinical isolates of Candida albicans. Eukaryot. Cell 11: 1289-1299. http://dx.doi.org /10. 1128/EC. 00215-12.
-
(2012)
Eukaryot. Cell
, vol.11
, pp. 1289-1299
-
-
Flowers, S.A.1
Barker, K.S.2
Berkow, E.L.3
Toner, G.4
Chadwick, S.G.5
Gygax, S.E.6
Morschhäuser, J.7
Rogers, P.D.8
-
53
-
-
84877824836
-
Gain of function mutations in CgPDR1, a regulator of antifungal drug resistance in Candida glabrata, control adherence to host cells
-
Vale-Silva L, Ischer F, Leibundgut-Landmann S, Sanglard D. 2013. Gain of function mutations in CgPDR1, a regulator of antifungal drug resistance in Candida glabrata, control adherence to host cells. Infect. Immun. 81: 1709-1720. http://dx.doi.org/10. 1128/IAI. 00074-13.
-
(2013)
Infect. Immun.
, vol.81
, pp. 1709-1720
-
-
Vale-Silva, L.1
Ischer, F.2
Leibundgut-Landmann, S.3
Sanglard, D.4
-
54
-
-
80052965456
-
Growth of Candida albicans hyphae
-
Sudbery PE. 2011. Growth of Candida albicans hyphae. Nat. Rev. Microbiol. 9: 737-748. http://dx.doi.org/10. 1038/nrmicro2636.
-
(2011)
Nat. Rev. Microbiol.
, vol.9
, pp. 737-748
-
-
Sudbery, P.E.1
-
55
-
-
0041527013
-
Fitness of antibiotic resistant Staphylococcus epidermidis assessed by competition on the skin of human volunteers
-
Gustafsson I, Cars O, Andersson DI. 2003. Fitness of antibiotic resistant Staphylococcus epidermidis assessed by competition on the skin of human volunteers. J. Antimicrob. Chemother. 52: 258-263. http://dx.doi.org/10. 1093/jac/dkg331.
-
(2003)
J. Antimicrob. Chemother.
, vol.52
, pp. 258-263
-
-
Gustafsson, I.1
Cars, O.2
Andersson, D.I.3
-
56
-
-
33745630118
-
In vivo survival of teicoplaninresistant Staphylococcus aureus and fitness cost of teicoplanin resistance
-
McCallum N, Karauzum H, Getzmann R, Bischoff M, Majcherczyk P, Berger-Bachi B, Landmann R. 2006. In vivo survival of teicoplaninresistant Staphylococcus aureus and fitness cost of teicoplanin resistance. Antimicrob. Agents Chemother. 50: 2352-2360. http://dx.doi.org/10. 1128 /AAC. 00073-06.
-
(2006)
Antimicrob. Agents Chemother.
, vol.50
, pp. 2352-2360
-
-
McCallum, N.1
Karauzum, H.2
Getzmann, R.3
Bischoff, M.4
Majcherczyk, P.5
Berger-Bachi, B.6
Landmann, R.7
-
57
-
-
33846632742
-
Fitness costs of fluoroquinolone resistance in Streptococcus pneumoniae
-
Rozen DE, McGee L, Levin BR, Klugman KP. 2007. Fitness costs of fluoroquinolone resistance in Streptococcus pneumoniae. Antimicrob. Agents Chemother. 51: 412-416. http://dx.doi.org/10. 1128/AAC. 01161-06.
-
(2007)
Antimicrob. Agents Chemother.
, vol.51
, pp. 412-416
-
-
Rozen, D.E.1
McGee, L.2
Levin, B.R.3
Klugman, K.P.4
-
58
-
-
77949569493
-
Antibiotic resistance and its cost: Is it possible to reverse resistance?
-
Andersson DI, Hughes D. 2010. Antibiotic resistance and its cost: is it possible to reverse resistance? Nat. Rev. Microbiol. 8: 260-271. http://dx.doi.org/10. 1038/nrmicro2319.
-
(2010)
Nat. Rev. Microbiol.
, vol.8
, pp. 260-271
-
-
Andersson, D.I.1
Hughes, D.2
-
59
-
-
0032870940
-
The biological cost of antibiotic resistance
-
Andersson DI, Levin BR. 1999. The biological cost of antibiotic resistance. Curr. Opin. Microbiol. 2: 489-493. http://dx.doi.org/10. 1016 /S1369-5274(99)00005-3.
-
(1999)
Curr. Opin. Microbiol.
, vol.2
, pp. 489-493
-
-
Andersson, D.I.1
Levin, B.R.2
-
60
-
-
0033830225
-
The cost of antibiotic resistance from a bacterial perspective
-
Bjorkman J, Andersson DI. 2000. The cost of antibiotic resistance from a bacterial perspective. Drug Resist Updat. 3: 237-245. http://dx.doi.org/10. 1054/drup. 2000. 0147.
-
(2000)
Drug Resist Updat.
, vol.3
, pp. 237-245
-
-
Bjorkman, J.1
Andersson, D.I.2
-
61
-
-
0036237703
-
Fitness cost of chromosomal drug resistance-conferring mutations
-
Sander P, Springer B, Prammananan T, Sturmfels A, Kappler M, Pletschette M, Bottger EC. 2002. Fitness cost of chromosomal drug resistance-conferring mutations. Antimicrob. Agents Chemother. 46: 1204-1211. http://dx.doi.org/10. 1128/AAC. 46. 5. 1204-1211. 2002.
-
(2002)
Antimicrob. Agents Chemother.
, vol.46
, pp. 1204-1211
-
-
Sander, P.1
Springer, B.2
Prammananan, T.3
Sturmfels, A.4
Kappler, M.5
Pletschette, M.6
Bottger, E.C.7
-
62
-
-
84858663078
-
Azole resistance by loss of function of the sterol delta(5), (6)-desaturase gene (ERG3) in Candida albicans does not necessarily decrease virulence
-
Vale-Silva LA, Coste AT, Ischer F, Parker JE, Kelly SL, Pinto E, Sanglard D. 2012. Azole resistance by loss of function of the sterol delta(5), (6)-desaturase gene (ERG3) in Candida albicans does not necessarily decrease virulence. Antimicrob. Agents Chemother. 56: 1960-1968. http://dx.doi.org/10. 1128/AAC. 05720-11.
-
(2012)
Antimicrob. Agents Chemother.
, vol.56
, pp. 1960-1968
-
-
Vale-Silva, L.A.1
Coste, A.T.2
Ischer, F.3
Parker, J.E.4
Kelly, S.L.5
Pinto, E.6
Sanglard, D.7
-
63
-
-
84858252541
-
Resistance to echinocandins comes at a cost: The impact of FKS1 hotspot mutations on Candida albicans fitness and virulence
-
Ben-Ami R, Kontoyiannis DP. 2012. Resistance to echinocandins comes at a cost: the impact of FKS1 hotspot mutations on Candida albicans fitness and virulence. Virulence 3: 95-97. http://dx.doi.org/10. 4161/viru. 3. 1. 18886.
-
(2012)
Virulence
, vol.3
, pp. 95-97
-
-
Ben-Ami, R.1
Kontoyiannis, D.P.2
-
64
-
-
79960884598
-
Fitness and virulence costs of Candida albicans FKS1 hot spot mutations associated with echinocandin resistance
-
Ben-Ami R, Garcia-Effron G, Lewis RE, Gamarra S, Leventakos K, Perlin DS, Kontoyiannis DP. 2011. Fitness and virulence costs of Candida albicans FKS1 hot spot mutations associated with echinocandin resistance. J. Infect. Dis. 204: 626-635. http://dx.doi.org/10. 1093/infdis /jir351.
-
(2011)
J. Infect. Dis.
, vol.204
, pp. 626-635
-
-
Ben-Ami, R.1
Garcia-Effron, G.2
Lewis, R.E.3
Gamarra, S.4
Leventakos, K.5
Perlin, D.S.6
Kontoyiannis, D.P.7
-
65
-
-
84891588721
-
Antifungal resistance does not necessarily affect Candida glabrata fitness
-
in press
-
Borghi E, Andreoni S, Cirasola D, Ricucci V, Sciota R. Antifungal resistance does not necessarily affect Candida glabrata fitness. J. Chemother., in press.
-
J. Chemother.
-
-
Borghi, E.1
Andreoni, S.2
Cirasola, D.3
Ricucci, V.4
Sciota, R.5
-
66
-
-
0028844181
-
Reduced virulence of Candida albicans mutants affected in multidrug resistance
-
Becker JM, Henry LK, Jiang W, Koltin Y. 1995. Reduced virulence of Candida albicans mutants affected in multidrug resistance. Infect. Immun. 63: 4515-4518.
-
(1995)
Infect. Immun.
, vol.63
, pp. 4515-4518
-
-
Becker, J.M.1
Henry, L.K.2
Jiang, W.3
Koltin, Y.4
-
67
-
-
80052821706
-
Difference in virulence between fluconazole-susceptible and fluconazoleresistant Candida albicans in a mouse model
-
Schulz B, Weber K, Schmidt A, Borg-von Zepelin M, Ruhnke M. 2011. Difference in virulence between fluconazole-susceptible and fluconazoleresistant Candida albicans in a mouse model. Mycoses 54: e522-e530. http://dx.doi.org/10. 1111/j. 1439-0507. 2010. 01970. x.
-
(2011)
Mycoses
, vol.54
-
-
Schulz, B.1
Weber, K.2
Schmidt, A.3
Borg-von Zepelin, M.4
Ruhnke, M.5
-
68
-
-
84867168091
-
Gain-of-function mutations in UPC2 are a frequent cause of ERG11 upregulation in azole-resistant clinical isolates of Candida albicans
-
Flowers SA, Barker KS, Berkow EL, Toner G, Chadwick SG, Gygax SE, Morschhauser J, Rogers PD. 2012. Gain-of-function mutations in UPC2 are a frequent cause of ERG11 upregulation in azole-resistant clinical isolates of Candida albicans. Eukaryot. Cell 11: 1289-1299. http://dx.doi.org /10. 1128/EC. 00215-12.
-
(2012)
Eukaryot. Cell
, vol.11
, pp. 1289-1299
-
-
Flowers, S.A.1
Barker, K.S.2
Berkow, E.L.3
Toner, G.4
Chadwick, S.G.5
Gygax, S.E.6
Morschhauser, J.7
Rogers, P.D.8
-
69
-
-
0021742042
-
Isolation of the Candida albicans gene for orotidine-5=-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations
-
Gillum AM, Tsay EY, Kirsch DR. 1984. Isolation of the Candida albicans gene for orotidine-5=-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations. Mol. Gen. Genet. 198: 179-182. http://dx.doi.org/10. 1007/BF00328721.
-
(1984)
Mol. Gen. Genet.
, vol.198
, pp. 179-182
-
-
Gillum, A.M.1
Tsay, E.Y.2
Kirsch, D.R.3
|