-
1
-
-
84905915006
-
A million spiking-neuron integrated circuit with a scalable communication network and interface
-
P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, and D. S. Modha, "A million spiking-neuron integrated circuit with a scalable communication network and interface," Science, vol. 345, no. 6197, pp. 668-673, 2014.
-
(2014)
Science
, vol.345
, Issue.6197
, pp. 668-673
-
-
Merolla, P.A.1
Arthur, J.V.2
Alvarez-Icaza, R.3
Cassidy, A.S.4
Sawada, J.5
Akopyan, F.6
Jackson, B.L.7
Imam, N.8
Guo, C.9
Nakamura, Y.10
Brezzo, B.11
Vo, I.12
Esser, S.K.13
Appuswamy, R.14
Taba, B.15
Amir, A.16
Flickner, M.D.17
Risk, W.P.18
Manohar, R.19
Modha, D.S.20
more..
-
2
-
-
84940931791
-
Experimental demonstration and tolerancing of a large-scale neural network (165,000 synapses), using phasechange memory as the synaptic weight element
-
G. W. Burr, R. M. Shelby, C. di Nolfo, J. W. Jang, R. S. Shenoy, P. Narayanan, K. Virwani, E. U. Giacometti, B. Kurdi, and H. Hwang, "Experimental demonstration and tolerancing of a large-scale neural network (165,000 synapses), using phasechange memory as the synaptic weight element," in Proc. Int. Electron Devices Meeting, 2014, pp. 29.5.1-29.5.4.
-
(2014)
Proc. Int. Electron Devices Meeting
, pp. 1-4
-
-
Burr, G.W.1
Shelby, R.M.2
Di Nolfo, C.3
Jang, J.W.4
Shenoy, R.S.5
Narayanan, P.6
Virwani, K.7
Giacometti, E.U.8
Kurdi, B.9
Hwang, H.10
-
3
-
-
84946495902
-
Experimental demonstration and tolerancing of a large-scale neural network (165,000 synapses), using phase-change memory as the synaptic weight element
-
Nov.
-
G. W. Burr, R. M. Shelby, S. Sidler, C. di Nolfo, J. Jang, I. Boybat, R. S. Shenoy, P. Narayanan, K. Virwani, E. U. Giacometti, B. Kurdi, and H. Hwang, "Experimental demonstration and tolerancing of a large-scale neural network (165,000 synapses), using phase-change memory as the synaptic weight element," IEEE Trans. Electr. Device, vol. 62, no. 11, pp. 3498-3507, Nov. 2015.
-
(2015)
IEEE Trans. Electr. Device
, vol.62
, Issue.11
, pp. 3498-3507
-
-
Burr, G.W.1
Shelby, R.M.2
Sidler, S.3
Di Nolfo, C.4
Jang, J.5
Boybat, I.6
Shenoy, R.S.7
Narayanan, P.8
Virwani, K.9
Giacometti, E.U.10
Kurdi, B.11
Hwang, H.12
-
4
-
-
84964036741
-
Large-scale neural networks implemented with nonvolatile memory as the synaptic weight element: Comparative performance analysis (accuracy, speed, and power)
-
G. W. Burr, P. Narayanan, R. M. Shelby, S. Sidler, I. Boybat, C. di Nolfo, and Y. Leblebici, "Large-scale neural networks implemented with nonvolatile memory as the synaptic weight element: comparative performance analysis (accuracy, speed, and power)," in Proc. Int. Electron Devices Meeting, 2015, pp. 4.4.1-4.4.4.
-
(2015)
Proc. Int. Electron Devices Meeting
, pp. 1-4
-
-
Burr, G.W.1
Narayanan, P.2
Shelby, R.M.3
Sidler, S.4
Boybat, I.5
Di Nolfo, C.6
Leblebici, Y.7
-
5
-
-
84928736641
-
Optimization of conductance change in Pr1-xCaxMnO3-based synaptic devices for neuromorphic systems
-
May
-
J.-W. Jang, S. Park, G. W. Burr, H. Hwang, and Y.-H. Jeong, "Optimization of conductance change in Pr1-xCaxMnO3-based synaptic devices for neuromorphic systems," IEEE Electron Device Lett., vol. 36, no. 5, pp. 457-459, May 2015.
-
(2015)
IEEE Electron Device Lett.
, vol.36
, Issue.5
, pp. 457-459
-
-
Jang, J.-W.1
Park, S.2
Burr, G.W.3
Hwang, H.4
Jeong, Y.-H.5
-
6
-
-
84994476878
-
Large-scale neural networks implemented with non-volatile memory as the synaptic weight element: Impact of conductance response
-
S. Sidler, I. Boybat, R.M. Shelby, P. Narayanan, J. Jang, A. Fumarola, K. Moon, Y. Leblebici, H. Hwang, and G.W. Burr, "Large-scale neural networks implemented with non-volatile memory as the synaptic weight element: Impact of conductance response," in Proc. 46th Eur. Solid-State Device Res. Conf., 2016, pp. 440-443.
-
(2016)
Proc. 46th Eur. Solid-State Device Res. Conf.
, pp. 440-443
-
-
Sidler, S.1
Boybat, I.2
Shelby, R.M.3
Narayanan, P.4
Jang, J.5
Fumarola, A.6
Moon, K.7
Leblebici, Y.8
Hwang, H.9
Burr, G.W.10
-
7
-
-
85006056409
-
Accelerating machine learning with non-volatile memory: Exploring device and circuit tradeoffs
-
A. Fumarola, S. Sidler, P. Narayanan, J. Jang, K. Moon, R. M. Shelby, H. Hwang, and G. W. Burr, "Accelerating machine learning with non-volatile memory: Exploring device and circuit tradeoffs," in Proc. Int. Conf. Rebooting Comput., pp. 1-8, 2016.
-
(2016)
Proc. Int. Conf. Rebooting Comput.
, pp. 1-8
-
-
Fumarola, A.1
Sidler, S.2
Narayanan, P.3
Jang, J.4
Moon, K.5
Shelby, R.M.6
Hwang, H.7
Burr, G.W.8
-
8
-
-
85029492446
-
Reducing circuit design complexity for neuromorphic machine learning systems based on non-volatile memory arrays
-
May
-
P. Narayanan, L. L. Sanches, A. Fumarola, R. M. Shelby, J. Jang, H. Hwang, Y. Leblebici, and G. W. Burr, "Reducing circuit design complexity for neuromorphic machine learning systems based on non-volatile memory arrays," Proc. IEEE Int. Symp. Circ. Sys., May 2017.
-
(2017)
Proc. IEEE Int. Symp. Circ. Sys.
-
-
Narayanan, P.1
Sanches, L.L.2
Fumarola, A.3
Shelby, R.M.4
Jang, J.5
Hwang, H.6
Leblebici, Y.7
Burr, G.W.8
-
9
-
-
0026866964
-
Analysis and verification of an analog VLSI incremental outer-product learning system
-
May
-
G. Cauwenberghs, C. F. Neugebauer, and A. Yariv, "Analysis and verification of an analog VLSI incremental outer-product learning system," IEEE Trans. Neural Netw., vol. 3, no. 3, pp. 488-497, May 1992.
-
(1992)
IEEE Trans. Neural Netw.
, vol.3
, Issue.3
, pp. 488-497
-
-
Cauwenberghs, G.1
Neugebauer, C.F.2
Yariv, A.3
-
10
-
-
0026140324
-
Analogue CMOS Hebbian synapses
-
C. Schneider and H. Card, "Analogue CMOS Hebbian synapses," Electron. Lett., vol. 27, no. 9, pp. 785-786, 1991.
-
(1991)
Electron. Lett.
, vol.27
, Issue.9
, pp. 785-786
-
-
Schneider, C.1
Card, H.2
-
11
-
-
84908469042
-
Enabling back propagation training of memristor crossbar neuromorphic processors
-
R. Hasan and T. M. Taha, "Enabling back propagation training of memristor crossbar neuromorphic processors," in Proc. Int. Joint Conf. Neural Netw., 2014, pp. 21-28.
-
(2014)
Proc. Int. Joint Conf. Neural Netw.
, pp. 21-28
-
-
Hasan, R.1
Taha, T.M.2
-
12
-
-
84929095672
-
Training and operation of an integrated neuromorphic network based on metal-oxide memristors
-
M. Prezioso, F. Merrikh-Bayat, B. D. Hoskins, G. C. Adam, K. K. Likharev, and D. B. Strukov, "Training and operation of an integrated neuromorphic network based on metal-oxide memristors," Nature, vol. 521, no. 7550, pp. 61-64, 2015.
-
(2015)
Nature
, vol.521
, Issue.7550
, pp. 61-64
-
-
Prezioso, M.1
Merrikh-Bayat, F.2
Hoskins, B.D.3
Adam, G.C.4
Likharev, K.K.5
Strukov, D.B.6
-
13
-
-
84988349874
-
Minerva: Enabling low-power, highly-accurate deep neural network accelerators
-
B. Reagen, P. Whatmough, R. Adolf, S. Rama, H. Lee, S. K. Lee, J. M. Hernández-Lobato, G.-Y. Wei, and D. Brooks, "Minerva: Enabling low-power, highly-accurate deep neural network accelerators," in Proc. 43rd Int. Symp. Comput. Archit., 2016, pp. 267-278.
-
(2016)
Proc. 43rd Int. Symp. Comput. Archit.
, pp. 267-278
-
-
Reagen, B.1
Whatmough, P.2
Adolf, R.3
Rama, S.4
Lee, H.5
Lee, S.K.6
Hernández-Lobato, J.M.7
Wei, G.-Y.8
Brooks, D.9
-
14
-
-
84988345727
-
PRIME: A novel processing-in-memory architecture for neural network computation in ReRAM-based main memory
-
P. Chi, S. Li, Z. Qi, P. Gu, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie, "PRIME: A novel processing-in-memory architecture for neural network computation in ReRAM-based main memory," in Proc.43rd Annu. Int. Symp. Comput. Archit., 2016, vol. 43, pp. 27-39.
-
(2016)
Proc.43rd Annu. Int. Symp. Comput. Archit.
, vol.43
, pp. 27-39
-
-
Chi, P.1
Li, S.2
Qi, Z.3
Gu, P.4
Xu, C.5
Zhang, T.6
Zhao, J.7
Liu, Y.8
Wang, Y.9
Xie, Y.10
-
15
-
-
84988345240
-
ISAAC: A convolutional neural network accelerator with in-situ analog arithmetic in crossbars
-
A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Strachan, M. Hu, R. S. Williams, and V. Srikumar, "ISAAC: A convolutional neural network accelerator with in-situ analog arithmetic in crossbars," in Proc. 43rd Annu. Int. Symp. Comput. Archit., 2016, pp. 14-26.
-
(2016)
Proc. 43rd Annu. Int. Symp. Comput. Archit.
, pp. 14-26
-
-
Shafiee, A.1
Nag, A.2
Muralimanohar, N.3
Balasubramonian, R.4
Strachan, J.P.5
Hu, M.6
Williams, R.S.7
Srikumar, V.8
-
16
-
-
84964078185
-
Scalingup resistive synaptic arrays for neuro-inspired architecture: Challenges and prospect
-
S. Yu, P.-Y. Chen, Y. Cao, L. Xia, Y. Wang, and H. Wu, "Scalingup resistive synaptic arrays for neuro-inspired architecture: Challenges and prospect," in Proc. IEEE Int. Electron Devices Meet., 2015, pp. 17.3.1-17.3.4.
-
(2015)
Proc. IEEE Int. Electron Devices Meet.
, pp. 1-4
-
-
Yu, S.1
Chen, P.-Y.2
Cao, Y.3
Xia, L.4
Wang, Y.5
Wu, H.6
-
17
-
-
84946013859
-
Fully parallel write/read in resistive synaptic array for accelerating on-chip learning
-
L. Gao, I.-T. Wang, P.-Y. Chen, S. Vrudhula, J.-S. Seo, Y. Cao, T.-H. Hou, and S. Yu, "Fully parallel write/read in resistive synaptic array for accelerating on-chip learning," Nanotechnology, vol. 26, no. 45, 2015, Art. no. 455204.
-
(2015)
Nanotechnology
, vol.26
, Issue.45
-
-
Gao, L.1
Wang, I.-T.2
Chen, P.-Y.3
Vrudhula, S.4
Seo, J.-S.5
Cao, Y.6
Hou, T.-H.7
Yu, S.8
-
18
-
-
85006762162
-
An approximate backpropagation learning rule for memristor based neural networks using synaptic plasticity
-
D. Negrov, I. Karandashev, V. Shakirov, Yu Matveyev, W. L. Dunin-Barkowski, and A. Zenkevich, "An approximate backpropagation learning rule for memristor based neural networks using synaptic plasticity," J. Neurocomp., vol. 237(C), pp. 193-199, 2017.
-
(2017)
J. Neurocomp.
, vol.237
, Issue.C
, pp. 193-199
-
-
Negrov, D.1
Karandashev, I.2
Shakirov, V.3
Matveyev, Y.4
Dunin-Barkowski, W.L.5
Zenkevich, A.6
-
19
-
-
84973869304
-
Neuromorphic architectures with electronic synapses
-
S. B. Eryilmaz, S. Joshi, E. Neftci, W. Wan, G. Cauwenberghs, and H-S. P. Wong, "Neuromorphic architectures with electronic synapses," in Proc. 17th Int. Symp. Quality Electron. Des., 2016, pp. 118-123.
-
(2016)
Proc. 17th Int. Symp. Quality Electron. Des.
, pp. 118-123
-
-
Eryilmaz, S.B.1
Joshi, S.2
Neftci, E.3
Wan, W.4
Cauwenberghs, G.5
Wong, H.-S.P.6
-
20
-
-
84983247214
-
Acceleration of deep neural network training with resistive cross-point devices: Design considerations
-
T. Gokmen and Y. Vlasov, "Acceleration of deep neural network training with resistive cross-point devices: Design considerations," Frontiers Neurosci., vol. 10, 2016, Art. no. 333.
-
(2016)
Frontiers Neurosci.
, vol.10
-
-
Gokmen, T.1
Vlasov, Y.2
-
21
-
-
84943802795
-
Memristor-based multilayer neural networks with online gradient descent training
-
D. Soudry, D. Di Castro, A. Gal, A. Kolodny, and S. Kvatinsky, "Memristor-based multilayer neural networks with online gradient descent training," IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 10, pp. 2408-2421, 2015.
-
(2015)
IEEE Trans. Neural Netw. Learn. Syst.
, vol.26
, Issue.10
, pp. 2408-2421
-
-
Soudry, D.1
Di Castro, D.2
Gal, A.3
Kolodny, A.4
Kvatinsky, S.5
-
22
-
-
80255127113
-
Neuromorphic silicon neuron circuits
-
G. Indiveri, B. Linares-Barranco, T. J. Hamilton, A. Van Schaik, R. Etienne-Cummings, T. Delbruck, S. C. Liu, P. Dudek, P. Häfliger, S. Renaud, and J. Schemmel, "Neuromorphic silicon neuron circuits," Frontiers Neurosci., vol. 5, 2011, Art. no. 73.
-
(2011)
Frontiers Neurosci.
, vol.5
-
-
Indiveri, G.1
Linares-Barranco, B.2
Hamilton, T.J.3
Van Schaik, A.4
Etienne-Cummings, R.5
Delbruck, T.6
Liu, S.C.7
Dudek, P.8
Häfliger, P.9
Renaud, S.10
Schemmel, J.11
-
23
-
-
84964033683
-
NVM neuromorphic core with 64k-cell (256-by-256) phase change memory synaptic array with on-chip neuron circuits for continuous in-situ learning
-
S. Kim, M. Ishii, S. Lewis, T. Perri, M. BrightSky, W. Kim, R. Jordan, G.W. Burr, N. Sosa, A. Ray, J.-P. Han, C. Miller, K. Hosokawa, and C. Lam, "NVM neuromorphic core with 64k-cell (256-by-256) phase change memory synaptic array with on-chip neuron circuits for continuous in-situ learning," in Proc. IEEE Int. Electron Devices Meeting, 2015, pp. pp. 17.1.1-17.1.4.
-
(2015)
Proc. IEEE Int. Electron Devices Meeting
, pp. 1-4
-
-
Kim, S.1
Ishii, M.2
Lewis, S.3
Perri, T.4
BrightSky, M.5
Kim, W.6
Jordan, R.7
Burr, G.W.8
Sosa, N.9
Ray, A.10
Han, J.-P.11
Miller, C.12
Hosokawa, K.13
Lam, C.14
-
24
-
-
84989177832
-
A mini review of neuromorphic architectures and implementations
-
Oct.
-
R. A. Nawrocki, R. M. Voyles, and S. E. Shaheen, "A mini review of neuromorphic architectures and implementations," IEEE Trans. Electron Devices, vol. 63, no. 10, pp. 3819-3829, Oct. 2016.
-
(2016)
IEEE Trans. Electron Devices
, vol.63
, Issue.10
, pp. 3819-3829
-
-
Nawrocki, R.A.1
Voyles, R.M.2
Shaheen, S.E.3
-
25
-
-
84905041584
-
Access devices for 3D crosspoint memory
-
G. W. Burr, R. S. Shenoy, K. Virwani, P. Narayanan, A. Padilla, B. Kurdi, and H. Hwang, "Access devices for 3D crosspoint memory," J. Vacuum Sci. Technol. B, vol. 32, no. 4, 2014, Art. no. 040802.
-
(2014)
J. Vacuum Sci. Technol. B
, vol.32
, Issue.4
-
-
Burr, G.W.1
Shenoy, R.S.2
Virwani, K.3
Narayanan, P.4
Padilla, A.5
Kurdi, B.6
Hwang, H.7
-
26
-
-
0002520528
-
A general framework for parallel distributed processing
-
Cambridge, MA, USA: MIT Press
-
D. Rumelhart, G. E. Hinton, and J. L. McClelland, "A general framework for parallel distributed processing," in Parallel Distributed Processing, Cambridge, MA, USA: MIT Press, 1986.
-
(1986)
Parallel Distributed Processing
-
-
Rumelhart, D.1
Hinton, G.E.2
McClelland, J.L.3
-
27
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
Nov.
-
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition," Proc. IEEE, vol. 86, no. 11, pp. 2278-2324, Nov. 1998.
-
(1998)
Proc. IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
28
-
-
84964556162
-
Mitigating effects of non-ideal synaptic device characteristics for on-chip learning
-
P.-Y. Chen, B. Lin, I-T. Wang, T.-H. Hou, J. Ye, S. Vrudhula, J.-S. Seo, Y. Cao, and S. Yu, "Mitigating effects of non-ideal synaptic device characteristics for on-chip learning," in Proc. IEEE/ACM Int. Conf. Comput.-Aided Des., 2015, pp. 194-199.
-
(2015)
Proc. IEEE/ACM Int. Conf. Comput.-Aided Des.
, pp. 194-199
-
-
Chen, P.-Y.1
Lin, B.2
Wang, I.-T.3
Hou, T.-H.4
Ye, J.5
Vrudhula, S.6
Seo, J.-S.7
Cao, Y.8
Yu, S.9
-
29
-
-
84971577321
-
-
arxiv:1603.04467
-
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, "TensorFlow: Large-scale machine learning on heterogeneous distributed systems," arxiv:1603.04467, 2016.
-
(2016)
TensorFlow: Large-scale Machine Learning on Heterogeneous Distributed Systems
-
-
Abadi, M.1
Agarwal, A.2
Barham, P.3
Brevdo, E.4
Chen, Z.5
Citro, C.6
Corrado, G.S.7
Davis, A.8
Dean, J.9
Devin, M.10
Ghemawat, S.11
Goodfellow, I.12
Harp, A.13
Irving, G.14
Isard, M.15
Jia, Y.16
Jozefowicz, R.17
Kaiser, L.18
Kudlur, M.19
Levenberg, J.20
Mane, D.21
Monga, R.22
Moore, S.23
Murray, D.24
Olah, C.25
Schuster, M.26
Shlens, J.27
Steiner, B.28
Sutskever, I.29
Talwar, K.30
Tucker, P.31
Vanhoucke, V.32
Vasudevan, V.33
Viegas, F.34
Vinyals, O.35
Warden, P.36
Wattenberg, M.37
Wicke, M.38
Yu, Y.39
Zheng, X.40
more..
|