메뉴 건너뛰기




Volumn , Issue , 2016, Pages 27-39

PRIME: A Novel Processing-in-Memory Architecture for Neural Network Computation in ReRAM-Based Main Memory

Author keywords

neural network; processing in memory; resistive random access memory

Indexed keywords

ARTIFICIAL INTELLIGENCE; BENCHMARKING; COMPUTATION THEORY; COMPUTER ARCHITECTURE; ENERGY CONSERVATION; ENERGY UTILIZATION; LEARNING SYSTEMS; MEMORY ARCHITECTURE; METALS; NETWORK ARCHITECTURE; NEURAL NETWORKS; NONVOLATILE STORAGE; RECONFIGURABLE HARDWARE; RRAM;

EID: 84988345727     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ISCA.2016.13     Document Type: Conference Paper
Times cited : (1488)

References (84)
  • 1
    • 80054875176 scopus 로고    scopus 로고
    • GPUs and the future of parallel computing
    • S. W. Keckler et al., "GPUs and the future of parallel computing," IEEE Micro, vol. 31, no. 5, pp. 7-17, 2011.
    • (2011) IEEE Micro , vol.31 , Issue.5 , pp. 7-17
    • Keckler, S.W.1
  • 2
    • 84960125983 scopus 로고    scopus 로고
    • Data reorganization in memory using 3Dstacked DRAM
    • B. Akin et al., "Data reorganization in memory using 3Dstacked DRAM," in Proc. ISCA, 2015.
    • (2015) Proc. ISCA
    • Akin, B.1
  • 3
    • 84959332955 scopus 로고    scopus 로고
    • A scalable processing-in-memory accelerator for parallel graph processing
    • J. Ahn et al., "A scalable processing-in-memory accelerator for parallel graph processing," in Proc. ISCA, 2015.
    • (2015) Proc. ISCA
    • Ahn, J.1
  • 4
    • 84960187012 scopus 로고    scopus 로고
    • TOP-PIM: Throughput-oriented programmable processing in memory
    • D. Zhang et al., "TOP-PIM: Throughput-oriented programmable processing in memory," in Proc. HPDC, 2014.
    • (2014) Proc. HPDC
    • Zhang, D.1
  • 5
    • 84904469580 scopus 로고    scopus 로고
    • NDC: Analyzing the impact of 3Dstacked memory+ logic devices on mapreduce workloads
    • S. H. Pugsley et al., "NDC: Analyzing the impact of 3Dstacked memory+ logic devices on mapreduce workloads," in Proc. ISPASS, 2014.
    • (2014) Proc. ISPASS
    • Pugsley, S.H.1
  • 6
    • 84855295266 scopus 로고    scopus 로고
    • Hybrid memory cube: Breakthrough DRAM performance with a fundamentally re-architected DRAM subsystem
    • J. T. Pawlowski, "Hybrid memory cube: breakthrough DRAM performance with a fundamentally re-architected DRAM subsystem,," in Proc. of Hot Chips Symposium, 2011.
    • (2011) Proc. of Hot Chips Symposium
    • Pawlowski, J.T.1
  • 7
    • 84861125089 scopus 로고    scopus 로고
    • Metal-oxide RRAM
    • H.-S. Wong et al., "Metal-oxide RRAM," Proc. of the IEEE, vol. 100, no. 6, pp. 1951-1970, 2012.
    • (2012) Proc. of the IEEE , vol.100 , Issue.6 , pp. 1951-1970
    • Wong, H.-S.1
  • 8
    • 84988446486 scopus 로고    scopus 로고
    • Spin-transfer torque magnetic memory as a stochastic memristive synapse
    • A. Vincent et al., "Spin-transfer torque magnetic memory as a stochastic memristive synapse," in Proc. ISCAS, 2014.
    • (2014) Proc. ISCAS
    • Vincent, A.1
  • 9
    • 84940931791 scopus 로고    scopus 로고
    • Experimental demonstration and tolerancing of a large-scale neural network (165,000 synapses), using phase-change memory as the synaptic weight element
    • G. Burr et al., "Experimental demonstration and tolerancing of a large-scale neural network (165,000 synapses), using phase-change memory as the synaptic weight element," in Proc. IEDM, 2014.
    • (2014) Proc. IEDM
    • Burr, G.1
  • 10
    • 84863553133 scopus 로고    scopus 로고
    • Hardware realization of BSB recall function using memristor crossbar arrays
    • M. Hu et al., "Hardware realization of BSB recall function using memristor crossbar arrays," in Proc. DAC, 2012.
    • (2012) Proc. DAC
    • Hu, M.1
  • 11
    • 84889601634 scopus 로고    scopus 로고
    • Memristor-based approximated computation
    • B. Li et al., "Memristor-based approximated computation," in Proc. ISLPED, 2013.
    • (2013) Proc. ISLPED
    • Li, B.1
  • 12
    • 84929095672 scopus 로고    scopus 로고
    • Training and operation of an integrated neuromorphic network based on metal-oxide memristors
    • M. Prezioso et al., "Training and operation of an integrated neuromorphic network based on metal-oxide memristors," Nature, vol. 521, no. 7550, pp. 61-64, 2015.
    • (2015) Nature , vol.521 , Issue.7550 , pp. 61-64
    • Prezioso, M.1
  • 13
    • 84928780660 scopus 로고    scopus 로고
    • A reconfigurable digital neuromorphic processor with memristive synaptic crossbar for cognitive computing
    • Y. Kim et al., "A reconfigurable digital neuromorphic processor with memristive synaptic crossbar for cognitive computing," J. Emerg. Technol. Comput. Syst., vol. 11, no. 4, pp. 38:1-38:25, 2015.
    • (2015) J. Emerg. Technol. Comput. Syst. , vol.11 , Issue.4 , pp. 3801-3825
    • Kim, Y.1
  • 14
    • 84988422714 scopus 로고    scopus 로고
    • Optimized learning scheme for grayscale image recognition in a RRAM based analog neuromorphic system
    • Z. Chen et al., "Optimized learning scheme for grayscale image recognition in a RRAM based analog neuromorphic system," in Proc. IEDM, 2015.
    • (2015) Proc. IEDM
    • Chen, Z.1
  • 15
    • 84964036741 scopus 로고    scopus 로고
    • Large-scale neural networks implemented with non-volatile memory as the synaptic weight element: Comparative performance analysis (accuracy, speed, and power)
    • G. W. Burr et al., "Large-scale neural networks implemented with non-volatile memory as the synaptic weight element: Comparative performance analysis (accuracy, speed, and power)," in Proc. IEDM, 2015.
    • (2015) Proc. IEDM
    • Burr, G.W.1
  • 16
    • 84894294885 scopus 로고    scopus 로고
    • Deep learning with COTS HPC systems
    • A. Coates et al., "Deep learning with COTS HPC systems," in Proc. ICML, 2013.
    • (2013) Proc. ICML
    • Coates, A.1
  • 17
    • 84964793469 scopus 로고    scopus 로고
    • DianNao: A small-footprint high-throughput accelerator for ubiquitous machine-learning
    • T. Chen et al., "DianNao: A small-footprint high-throughput accelerator for ubiquitous machine-learning," in Proc. ASPLOS, 2014.
    • (2014) Proc. ASPLOS
    • Chen, T.1
  • 18
    • 84988406311 scopus 로고    scopus 로고
    • DaDianNao: A machine-learning supercomputer
    • Y. Chen et al., "DaDianNao: A machine-learning supercomputer," in Proc. MICRO, 2014.
    • (2014) Proc. MICRO
    • Chen, Y.1
  • 19
    • 80455149790 scopus 로고    scopus 로고
    • A digital neurosynaptic core using embedded crossbar memory with 45pJ per spike 45nm
    • P. Merolla et al., "A digital neurosynaptic core using embedded crossbar memory with 45pJ per spike in 45nm," in Proc. CICC, 2011.
    • (2011) Proc. CICC
    • Merolla, P.1
  • 20
    • 84988352140 scopus 로고    scopus 로고
    • Overcoming the challenges of crossbar resistive memory architectures
    • C. Xu et al., "Overcoming the challenges of crossbar resistive memory architectures," in Proc. HPCA, 2015.
    • (2015) Proc. HPCA
    • Xu, C.1
  • 21
    • 79960642086 scopus 로고    scopus 로고
    • A fast, high-endurance and scalable nonvolatile memory device made from asymmetric Ta2O5-x/TaO2-x bilayer structures
    • M.-J. Lee et al., "A fast, high-endurance and scalable nonvolatile memory device made from asymmetric Ta2O5-x/TaO2-x bilayer structures," Nature Materials, vol. 10, no. 8, pp. 625-630, 2011.
    • (2011) Nature Materials , vol.10 , Issue.8 , pp. 625-630
    • Lee, M.-J.1
  • 22
    • 84988446501 scopus 로고    scopus 로고
    • Self-rectifying bipolar TaOx/TiO2 RRAM with superior endurance over 1012 cycles for 3D high-density storage-class memory
    • C.-W. Hsu et al., "Self-rectifying bipolar TaOx/TiO2 RRAM with superior endurance over 1012 cycles for 3D high-density storage-class memory," in Proc. VLSIT, 2013.
    • (2013) Proc. VLSIT
    • Hsu, C.-W.1
  • 23
    • 76749167601 scopus 로고    scopus 로고
    • Enhancing lifetime and security of PCM-based main memory with Start-Gap wear leveling
    • M. K. Qureshi et al., "Enhancing lifetime and security of PCM-based main memory with Start-Gap wear leveling," in Proc. MICRO, 2009.
    • (2009) Proc. MICRO
    • Qureshi, M.K.1
  • 24
    • 84865536752 scopus 로고    scopus 로고
    • Design trade-offs for high density cross-point resistive memory
    • D. Niu et al., "Design trade-offs for high density cross-point resistive memory," in Proc. ISLPED, 2012.
    • (2012) Proc. ISLPED
    • Niu, D.1
  • 25
    • 84860664697 scopus 로고    scopus 로고
    • An 8Mb multi-layered cross-point ReRAM macro with 443MB/s write throughput
    • A. Kawahara et al., "An 8Mb multi-layered cross-point ReRAM macro with 443MB/s write throughput," in Proc. ISSCC, 2012.
    • (2012) Proc. ISSCC
    • Kawahara, A.1
  • 26
    • 84988310786 scopus 로고    scopus 로고
    • 3D vertical RRAM-scaling limit analysis and demonstration of 3D array operation
    • S. Yu et al., "3D vertical RRAM-scaling limit analysis and demonstration of 3D array operation," in Proc. VLSIT, 2013.
    • (2013) Proc. VLSIT
    • Yu, S.1
  • 27
    • 84988446470 scopus 로고    scopus 로고
    • Architecting 3D vertical resistive memory for next-generation storage systems
    • C. Xu et al., "Architecting 3D vertical resistive memory for next-generation storage systems," in Proc. ICCAD, 2014.
    • (2014) Proc. ICCAD
    • Xu, C.1
  • 28
    • 79952640478 scopus 로고    scopus 로고
    • Investigating the switching dynamics and multilevel capability of bipolar metal oxide resistive switching memory
    • S. Yu et al., "Investigating the switching dynamics and multilevel capability of bipolar metal oxide resistive switching memory," Applied Physics Letters, vol. 98, p. 103514, 2011.
    • (2011) Applied Physics Letters , vol.98 , pp. 103514
    • Yu, S.1
  • 29
    • 84860738461 scopus 로고    scopus 로고
    • A study on low-power, nanosecond operation and multilevel bipolar resistance switching in ti/zro2/pt nonvolatile memory with 1t1r architecture
    • M.-C. Wu et al., "A study on low-power, nanosecond operation and multilevel bipolar resistance switching in ti/zro2/pt nonvolatile memory with 1t1r architecture," Semiconductor Science and Technology, vol. 27, p. 065010, 2012.
    • (2012) Semiconductor Science and Technology , vol.27 , pp. 065010
    • Wu, M.-C.1
  • 30
    • 84988409735 scopus 로고    scopus 로고
    • SpongeDirectory: Flexible sparse directories utilizing multi-level memristors
    • L. Zhang et al., "SpongeDirectory: Flexible sparse directories utilizing multi-level memristors," in Proc. PACT, 2014.
    • (2014) Proc. PACT
    • Zhang, L.1
  • 31
    • 84856173450 scopus 로고    scopus 로고
    • High precision tuning of state for memristive devices by adaptable variation-tolerant algorithm
    • F. Alibart et al., "High precision tuning of state for memristive devices by adaptable variation-tolerant algorithm," Nanotechnology, vol. 23, no. 7, p. 075201, 2012.
    • (2012) Nanotechnology , vol.23 , Issue.7 , pp. 075201
    • Alibart, F.1
  • 32
    • 84876591853 scopus 로고    scopus 로고
    • Neural acceleration for generalpurpose approximate programs
    • H. Esmaeilzadeh et al., "Neural acceleration for generalpurpose approximate programs," in Proc. MICRO, 2012.
    • (2012) Proc. MICRO
    • Esmaeilzadeh, H.1
  • 33
    • 84905440628 scopus 로고    scopus 로고
    • General-purpose code acceleration with limited-precision analog computation
    • R. St. Amant et al., "General-purpose code acceleration with limited-precision analog computation," in Proc. ISCA, 2014.
    • (2014) Proc. ISCA
    • St Amant, R.1
  • 34
    • 84893629289 scopus 로고    scopus 로고
    • Cognitive computing systems: Algorithms and applications for networks of neurosynaptic cores
    • S. K. Esser et al., "Cognitive computing systems: Algorithms and applications for networks of neurosynaptic cores," in Proc. IJCNN, 2013.
    • (2013) Proc. IJCNN
    • Esser, S.K.1
  • 35
    • 80455156136 scopus 로고    scopus 로고
    • A 45nm CMOS neuromorphic chip with a scalable architecture for learning in networks of spiking neurons
    • J. Seo et al., "A 45nm CMOS neuromorphic chip with a scalable architecture for learning in networks of spiking neurons," in Proc. CICC, 2011.
    • (2011) Proc. CICC
    • Seo, J.1
  • 36
    • 84893595608 scopus 로고    scopus 로고
    • Exploring the design space of specialized multicore neural processors
    • T. M. Taha et al., "Exploring the design space of specialized multicore neural processors," in Proc. IJCNN, 2013.
    • (2013) Proc. IJCNN
    • Taha, T.M.1
  • 37
    • 84988345240 scopus 로고    scopus 로고
    • ISAAC: A convolutional neural network accelerator with in-situ analog arithmetic in crossbars
    • A. Shafiee et al., "ISAAC: A convolutional neural network accelerator with in-situ analog arithmetic in crossbars," in Proc. ISCA, 2016.
    • (2016) Proc. ISCA
    • Shafiee, A.1
  • 38
    • 84879813219 scopus 로고    scopus 로고
    • Design of a large-scale storage-class RRAM system
    • M. Jung et al., "Design of a large-scale storage-class RRAM system," in Proc. ICS, 2013.
    • (2013) Proc. ICS
    • Jung, M.1
  • 39
    • 84881039921 scopus 로고    scopus 로고
    • Flexible, high performance convolutional neural networks for image classification
    • D. C. Cireşan et al., "Flexible, high performance convolutional neural networks for image classification," in Proc. IJCAI, 2011.
    • (2011) Proc. IJCAI
    • Cireşan, D.C.1
  • 40
    • 84866714584 scopus 로고    scopus 로고
    • Multi-column deep neural networks for image classification
    • J. Schmidhuber, "Multi-column deep neural networks for image classification," in Proc. CVPR, 2012.
    • (2012) Proc. CVPR
    • Schmidhuber, J.1
  • 41
    • 33750726985 scopus 로고    scopus 로고
    • Neural network implementation in hardware using FPGAS
    • S. Sahin et al., "Neural network implementation in hardware using FPGAs," in Neural Information Processing, vol. 4234, pp. 1105-1112, 2006.
    • (2006) Neural Information Processing , vol.4234 , pp. 1105-1112
    • Sahin, S.1
  • 42
    • 84988409445 scopus 로고    scopus 로고
    • Cnp: An FPGA-based processor for convolutional networks
    • C. Farabet et al., "Cnp: An FPGA-based processor for convolutional networks," in Proc. FPL, 2009.
    • (2009) Proc. FPL
    • Farabet, C.1
  • 43
    • 73249114232 scopus 로고    scopus 로고
    • A 201.4 GOPS 496 mW real-time multiobject recognition processor with bio-inspired neural perception engine
    • J.-Y. Kim et al., "A 201.4 GOPS 496 mW real-time multiobject recognition processor with bio-inspired neural perception engine," JSSC, vol. 45, no. 1, pp. 32-45, 2010.
    • (2010) JSSC , vol.45 , Issue.1 , pp. 32-45
    • Kim, J.-Y.1
  • 44
    • 84988383564 scopus 로고    scopus 로고
    • Pudiannao: A polyvalent machine learning accelerator
    • D. Liu et al., "Pudiannao: A polyvalent machine learning accelerator," in Proc. ASPLOS, 2015.
    • (2015) Proc. ASPLOS
    • Liu, D.1
  • 45
    • 84988358420 scopus 로고    scopus 로고
    • Cambricon: An instruction set architecture for neural networks
    • S. Liu et al., "Cambricon: An instruction set architecture for neural networks," in Proc. ISCA, 2016.
    • (2016) Proc. ISCA
    • Liu, S.1
  • 46
    • 0031238171 scopus 로고    scopus 로고
    • Scalable processors in the billiontransistor era: IRAM
    • C. Kozyrakis et al., "Scalable processors in the billiontransistor era: IRAM," Computer, vol. 30, no. 9, pp. 75-78, 1997.
    • (1997) Computer , vol.30 , Issue.9 , pp. 75-78
    • Kozyrakis, C.1
  • 47
    • 84988417325 scopus 로고    scopus 로고
    • Intelligent ram (iram): The industrial setting, applications, and architectures
    • D. Patterson et al., "Intelligent ram (iram): The industrial setting, applications, and architectures," in Proc. ICCD, 1997.
    • (1997) Proc. ICCD
    • Patterson, D.1
  • 48
    • 0036374270 scopus 로고    scopus 로고
    • The architecture of the DIVA processingin-memory chip
    • J. Draper et al., "The architecture of the DIVA processingin-memory chip," in Proc. ICS, 2002.
    • (2002) Proc. ICS
    • Draper, J.1
  • 49
    • 0029290396 scopus 로고
    • Processing in memory: The terasys massively parallel PIM array
    • M. Gokhale et al., "Processing in memory: The terasys massively parallel PIM array," Computer, vol. 28, no. 4, pp. 23-31, 1995.
    • (1995) Computer , vol.28 , Issue.4 , pp. 23-31
    • Gokhale, M.1
  • 52
    • 0000007220 scopus 로고    scopus 로고
    • Active pages: A computation model for intelligent memory
    • M. Oskin et al., "Active pages: a computation model for intelligent memory," in Proc. ISCA, 1998.
    • (1998) Proc. ISCA
    • Oskin, M.1
  • 53
    • 84961627475 scopus 로고    scopus 로고
    • Near-data processing: Insights from a micro-46 workshop
    • R. Balasubramonian et al., "Near-data processing: Insights from a micro-46 workshop," Micro, IEEE, vol. 34, no. 4, pp. 36-42, 2014.
    • (2014) Micro, IEEE , vol.34 , Issue.4 , pp. 36-42
    • Balasubramonian, R.1
  • 54
    • 84928594785 scopus 로고    scopus 로고
    • Active memory cube: A processing-in-memory architecture for exascale systems
    • R. Nair et al., "Active memory cube: A processing-in-memory architecture for exascale systems," IBM Journal of Research and Development, vol. 59, no. 2/3, pp. 17:1-17:14, 2015.
    • (2015) IBM Journal of Research and Development , vol.59 , Issue.2-3 , pp. 171-1714
    • Nair, R.1
  • 55
    • 85046783053 scopus 로고    scopus 로고
    • Real-time analytics as the killer application for processing-in-memory
    • Z. Guz et al., "Real-time analytics as the killer application for processing-in-memory," in Proc. WoNDP, 2014.
    • (2014) Proc. WoNDP
    • Guz, Z.1
  • 56
    • 85021213032 scopus 로고    scopus 로고
    • Sort vs. Hash join revisited for nearmemory execution
    • N. S. Mirzadeh et al., "Sort vs. hash join revisited for nearmemory execution," in Proc. ASBD, 2015.
    • (2015) Proc. ASBD
    • Mirzadeh, N.S.1
  • 57
    • 84866544858 scopus 로고    scopus 로고
    • Hybrid memory cube new DRAM architecture increases density and performance
    • J. Jeddeloh and B. Keeth, "Hybrid memory cube new DRAM architecture increases density and performance," in Proc. VLSIT, 2012.
    • (2012) Proc. VLSIT
    • Jeddeloh, J.1    Keeth, B.2
  • 58
    • 85019807571 scopus 로고    scopus 로고
    • A 1.2V 8Gb 8-channel 128GB/s highbandwidth memory (HBM) stacked DRAM with effective microbump I/O test methods using 29nm process and TSV
    • D. U. Lee et al., "A 1.2V 8Gb 8-channel 128GB/s highbandwidth memory (HBM) stacked DRAM with effective microbump I/O test methods using 29nm process and TSV," in Proc. ISSCC, 2014.
    • (2014) Proc. ISSCC
    • Lee, D.U.1
  • 59
    • 84977142819 scopus 로고    scopus 로고
    • Pinatubo: A processing-in-memory architecture for bulk bitwise operations in emerging non-volatile memories
    • S. Li et al., "Pinatubo: A processing-in-memory architecture for bulk bitwise operations in emerging non-volatile memories," in Proc. DAC, 2016.
    • (2016) Proc. DAC
    • Li, S.1
  • 60
    • 80052106154 scopus 로고    scopus 로고
    • Hybrid CMOS/nanodevice circuits for high throughput pattern matching applications
    • F. Alibart et al., "Hybrid CMOS/nanodevice circuits for high throughput pattern matching applications," in Proc. AHS, 2011.
    • (2011) Proc. AHS
    • Alibart, F.1
  • 61
    • 84858781934 scopus 로고    scopus 로고
    • A resistive TCAM accelerator for dataintensive computing
    • Q. Guo et al., "A resistive TCAM accelerator for dataintensive computing," in Proc. MICRO, 2011.
    • (2011) Proc. MICRO
    • Guo, Q.1
  • 62
    • 84881119037 scopus 로고    scopus 로고
    • AC-DIMM: Associative computing with STTMRAM
    • Q. Guo et al., "AC-DIMM: Associative computing with STTMRAM," in Proc. ISCA, 2013.
    • (2013) Proc. ISCA
    • Guo, Q.1
  • 63
    • 84961774941 scopus 로고    scopus 로고
    • RRAM-based analog approximate computing
    • B. Li et al., "RRAM-based analog approximate computing," TCAD, vol. 34, no. 12, pp. 1905-1917, 2015.
    • (2015) TCAD , vol.34 , Issue.12 , pp. 1905-1917
    • Li, B.1
  • 64
    • 84988336673 scopus 로고    scopus 로고
    • A novel reconfigurable sensing scheme for variable level storage in phase change memory
    • J. Li et al., "A novel reconfigurable sensing scheme for variable level storage in phase change memory," in Proc. IMW, 2011.
    • (2011) Proc. IMW
    • Li, J.1
  • 65
    • 84973638889 scopus 로고    scopus 로고
    • A high resolution nonvolatile analog memory ionic devices
    • L. Gao et al., "A high resolution nonvolatile analog memory ionic devices," in Proc. NVMW, 2013.
    • (2013) Proc. NVMW
    • Gao, L.1
  • 66
    • 84988385126 scopus 로고    scopus 로고
    • Dot-product engine: Programming memristor crossbar arrays for efficient vector-matrix multiplication
    • M. Hu et al., "Dot-product engine: Programming memristor crossbar arrays for efficient vector-matrix multiplication," in ICCAD'15 Workshop on "Towards Efficient Computing in the Dark Silicon Era", 2015.
    • (2015) ICCAD'15 Workshop on ,Towards Efficient Computing in the Dark Silicon Era
    • Hu, M.1
  • 67
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Y. Lecun et al., "Gradient-based learning applied to document recognition," Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, 1998.
    • (1998) Proceedings of the IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • Lecun, Y.1
  • 68
    • 84961297768 scopus 로고    scopus 로고
    • Low precision storage for deep learning
    • abs/1412.7024
    • M. Courbariaux et al., "Low precision storage for deep learning," CoRR, vol. abs/1412.7024, 2014.
    • (2014) CoRR
    • Courbariaux, M.1
  • 69
    • 85083953063 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale image recognition," in Proc. ICLR, 2015.
    • (2015) Proc. ICLR
    • Simonyan, K.1    Zisserman, A.2
  • 70
    • 84896979826 scopus 로고    scopus 로고
    • Pattern classification by memristive crossbar circuits using ex situ and in situ training
    • F. Alibart et al., "Pattern classification by memristive crossbar circuits using ex situ and in situ training," Nature communications, vol. 4, 2013.
    • (2013) Nature Communications , vol.4
    • Alibart, F.1
  • 71
    • 84884994113 scopus 로고    scopus 로고
    • BSB training scheme implementation on memristor-based circuit
    • M. Hu et al., "BSB training scheme implementation on memristor-based circuit," in Proc. CISDA, 2013.
    • (2013) Proc. CISDA
    • Hu, M.1
  • 72
    • 84897828040 scopus 로고    scopus 로고
    • Training itself: Mixed-signal training acceleration for memristor-based neural network
    • B. Li et al., "Training itself: Mixed-signal training acceleration for memristor-based neural network," in Proc. ASP-DAC, 2014.
    • (2014) Proc. ASP-DAC
    • Li, B.1
  • 73
    • 84988329160 scopus 로고    scopus 로고
    • Digital-assisted noise-eliminating training for memristor crossbar-based analog neuromorphic computing engine
    • B. Liu et al., "Digital-assisted noise-eliminating training for memristor crossbar-based analog neuromorphic computing engine," in Proc. DAC, 2013.
    • (2013) Proc. DAC
    • Liu, B.1
  • 74
    • 84944130139 scopus 로고    scopus 로고
    • Reduction and IR-drop compensations techniques for reliable neuromorphic computing systems
    • B. Liu et al., "Reduction and IR-drop compensations techniques for reliable neuromorphic computing systems," in Proc. ICCAD, 2014.
    • (2014) Proc. ICCAD
    • Liu, B.1
  • 75
    • 85009419226 scopus 로고    scopus 로고
    • Processing-in-memory in ReRAM-based main memory
    • 001
    • P. Chi et al., "Processing-in-memory in ReRAM-based main memory," SEAL-lab Technical Report, no. 2015-001, 2015.
    • (2015) SEAL-lab Technical Report , Issue.2015
    • Chi, P.1
  • 76
    • 84892504664 scopus 로고    scopus 로고
    • RowClone: Fast and energy-efficient in-DRAM bulk data copy and initialization
    • V. Seshadri et al., "RowClone: Fast and energy-efficient in-DRAM bulk data copy and initialization," in Proc. MICRO, 2013.
    • (2013) Proc. MICRO
    • Seshadri, V.1
  • 77
    • 0001957806 scopus 로고    scopus 로고
    • Operating system support for improving data locality on CC-NUMA compute servers
    • B. Verghese et al., "Operating system support for improving data locality on CC-NUMA compute servers," in Proc. ASPLOS, 1996.
    • (1996) Proc. ASPLOS
    • Verghese, B.1
  • 78
    • 85059535386 scopus 로고    scopus 로고
    • Page placement strategies for GPUs within heterogeneous memory systems
    • N. Agarwal et al., "Page placement strategies for GPUs within heterogeneous memory systems," in Proc. ASPLOS, 2015.
    • (2015) Proc. ASPLOS
    • Agarwal, N.1
  • 79
    • 77954972235 scopus 로고    scopus 로고
    • Morphable memory system: A robust architecture for exploiting multi-level phase change memories
    • M. K. Qureshi et al., "Morphable memory system: A robust architecture for exploiting multi-level phase change memories," in Proc. ISCA, 2010.
    • (2010) Proc. ISCA
    • Qureshi, M.K.1
  • 80
    • 28044448413 scopus 로고    scopus 로고
    • Dynamic tracking of page miss ratio curve for memory management
    • P. Zhou et al., "Dynamic tracking of page miss ratio curve for memory management," in Proc. ASPLOS, 2004.
    • (2004) Proc. ASPLOS
    • Zhou, P.1
  • 81
    • 84862685650 scopus 로고    scopus 로고
    • Nvsim: A circuit-level performance, energy, and area model for emerging nonvolatile memory
    • X. Dong et al., "Nvsim: A circuit-level performance, energy, and area model for emerging nonvolatile memory," TCAD, vol. 31, no. 7, pp. 994-1007, 2012.
    • (2012) TCAD , vol.31 , Issue.7 , pp. 994-1007
    • Dong, X.1
  • 82
    • 84885625784 scopus 로고    scopus 로고
    • CACTI-3DD: Architecture-level modeling for 3D die-stacked DRAM main memory
    • K. Chen et al., "CACTI-3DD: Architecture-level modeling for 3D die-stacked DRAM main memory," in Proc. DATE, 2012.
    • (2012) Proc. DATE
    • Chen, K.1
  • 83
    • 84988411775 scopus 로고    scopus 로고
    • CACTI-IO: CACTI with off-chip powerarea-timing models
    • N. P. Jouppi et al., "CACTI-IO: CACTI with off-chip powerarea-timing models," in Proc. ICCAD, 2012.
    • (2012) Proc. ICCAD
    • Jouppi, N.P.1
  • 84
    • 84879865804 scopus 로고    scopus 로고
    • Understanding the trade-offs in multi-level cell ReRAM memory design
    • C. Xu et al., "Understanding the trade-offs in multi-level cell ReRAM memory design," in Proc. DAC, 2013.
    • (2013) Proc. DAC
    • Xu, C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.