메뉴 건너뛰기




Volumn 10, Issue JUL, 2016, Pages

Acceleration of deep neural network training with resistive cross-point devices: Design considerations

Author keywords

Artificial neural networks; Deep neural network training; Electronic devices; Machine learning; Materials engineering; Memristive devices; Nanotechnology; Synaptic device

Indexed keywords

ACCELERATION; ARTICLE; ARTIFICIAL NEURAL NETWORK; AUTOMATIC SPEECH RECOGNITION; CONTROLLED STUDY; DEEP NEURAL NETWORK; GENERAL DEVICE; INTERMETHOD COMPARISON; MICROPROCESSOR; NATURAL LANGUAGE PROCESSING; RESISTIVE PROCESSING UNIT;

EID: 84983247214     PISSN: 16624548     EISSN: 1662453X     Source Type: Journal    
DOI: 10.3389/fnins.2016.00333     Document Type: Article
Times cited : (391)

References (44)
  • 1
    • 84891879851 scopus 로고    scopus 로고
    • Survey of stochastic computing
    • Alaghi, A., and Hayes, J. (2013). Survey of stochastic computing. ACM Trans. Embed. Comput. Syst. 12, 1-19. doi: 10.1145/2465787.2465794
    • (2013) ACM Trans. Embed. Comput. Syst. , vol.12 , pp. 1-19
    • Alaghi, A.1    Hayes, J.2
  • 2
    • 0026260029 scopus 로고
    • A 336-neuron, 28 K-synapse, self-learning neural network chip with branch-neuron-unit architecture
    • Arima, Y., Mashiko, K., Okada, K., Yamada, T., Maeda, A., Notani, H., et al. (1991). A 336-neuron, 28 K-synapse, self-learning neural network chip with branch-neuron-unit architecture. IEEE J. Solid State Circuits 26, 1637-1644.
    • (1991) IEEE J. Solid State Circuits , vol.26 , pp. 1637-1644
    • Arima, Y.1    Mashiko, K.2    Okada, K.3    Yamada, T.4    Maeda, A.5    Notani, H.6
  • 3
    • 0032535029 scopus 로고    scopus 로고
    • Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type
    • Bi, G. Q., and Poo, M. M. (1998). Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 18, 10464-10472.
    • (1998) J. Neurosci. , vol.18 , pp. 10464-10472
    • Bi, G.Q.1    Poo, M.M.2
  • 4
    • 84940931791 scopus 로고    scopus 로고
    • 'Experimental demonstration and tolerancing of a large-scale neural network (165,000 synapses), using phase-change memory as the synaptic weight element
    • (IEDM) (San Francisco, CA).
    • Burr, G. W., Shelby, R. M., di Nolfo, C., Jang, J. W., Shenoy, R. S., Narayanan, P., et al. (2014). "Experimental demonstration and tolerancing of a large-scale neural network (165,000 synapses), using phase-change memory as the synaptic weight element,"in 2014 IEEE International, Electron Devices Meeting (IEDM) (San Francisco, CA).
    • (2014) 2014 IEEE International, Electron Devices Meeting
    • Burr, G.W.1    Shelby, R.M.2    di Nolfo, C.3    Jang, J.W.4    Shenoy, R.S.5    Narayanan, P.6
  • 5
    • 84964036741 scopus 로고    scopus 로고
    • 'Large-scale neural networks implemented with nonvolatile memory as the synaptic weight element: comparative performance analysis (accuracy, speed, and power)
    • (Washington, DC).
    • Burr, G. W., Narayanan, P., Shelby, R. M., Sidler, S., Boybat, I., di Nolfo, C., et al. (2015). "Large-scale neural networks implemented with nonvolatile memory as the synaptic weight element: comparative performance analysis (accuracy, speed, and power)," in IEDM (International Electron Devices Meeting) (Washington, DC).
    • (2015) IEDM (International Electron Devices Meeting)
    • Burr, G.W.1    Narayanan, P.2    Shelby, R.M.3    Sidler, S.4    Boybat, I.5    di Nolfo, C.6
  • 8
    • 0015127532 scopus 로고
    • Memristor - the missing circuit element
    • Chua, L. O. (1971). Memristor - the missing circuit element. IEEE Trans. Circuit Theory 18, 507-519. doi: 10.1109/TCT.1971.1083337
    • (1971) IEEE Trans. Circuit Theory , vol.18 , pp. 507-519
    • Chua, L.O.1
  • 13
    • 85032751458 scopus 로고    scopus 로고
    • Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups
    • Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A., Jaitly, N., et al. (2012). Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal Process. Mag. 29, 82-97. doi: 10.1109/MSP.2012.2205597
    • (2012) IEEE Signal Process. Mag. , vol.29 , pp. 82-97
    • Hinton, G.1    Deng, L.2    Yu, D.3    Dahl, G.E.4    Mohamed, A.5    Jaitly, N.6
  • 14
    • 84883543408 scopus 로고    scopus 로고
    • Integration of nanoscale memristor synapses in neuromorphic computing architectures
    • Indiveri, G., Linares-Barranco, B., Legenstein, R., Deligeorgis, G., and Prodromakis, T. (2013). Integration of nanoscale memristor synapses in neuromorphic computing architectures. Nanotechnology 24:384010. doi: 10.1088/0957-4484/24/38/384010
    • (2013) Nanotechnology , vol.24 , pp. 384010
    • Indiveri, G.1    Linares-Barranco, B.2    Legenstein, R.3    Deligeorgis, G.4    Prodromakis, T.5
  • 16
    • 84883668629 scopus 로고    scopus 로고
    • 'Noise analysis and measurement of integrator-based sensor interface circuits for fluorescence detection in lab-on-a-chip applications
    • Jensen, K., Gaudet, V. C., and Levine, P. M. (2013). "Noise analysis and measurement of integrator-based sensor interface circuits for fluorescence detection in lab-on-a-chip applications," in International Conference on Noise and Fluctuation (Montpellier).
    • (2013) International Conference on Noise and Fluctuation (Montpellier)
    • Jensen, K.1    Gaudet, V.C.2    Levine, P.M.3
  • 17
    • 77951026760 scopus 로고    scopus 로고
    • Nanoscale memristor device as synapse in neuromorphic systems
    • Jo, S. H., Chang, T., Ebong, I., Bhadviya, B. B., Mazumder, P., and Lu, W. (2010). Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10, 1297-1301. doi: 10.1021/nl904092h
    • (2010) Nano Lett. , vol.10 , pp. 1297-1301
    • Jo, S.H.1    Chang, T.2    Ebong, I.3    Bhadviya, B.B.4    Mazumder, P.5    Lu, W.6
  • 21
    • 84883517906 scopus 로고    scopus 로고
    • Synaptic electronics: materials, devices and applications
    • Kuzum, D., Yu, S., and Wong, H. S. (2013). Synaptic electronics: materials, devices and applications. Nanotechnology 24:382001. doi: 10.1088/0957-4484/24/38/382001
    • (2013) Nanotechnology , vol.24 , pp. 382001
    • Kuzum, D.1    Yu, S.2    Wong, H.S.3
  • 23
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature 521, 436-444. doi: 10.1038/nature14539
    • (2015) Nature , vol.521 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 24
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied to document recognition. Proce. IEEE 86, 2278-2324. doi: 10.1109/5.726791
    • (1998) Proce. IEEE , vol.86 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 25
    • 0027592059 scopus 로고
    • generic systolic array building block for neural networks with on-chip learning
    • Lehmann, C., Viredaz, M., and Blayo, F. A. (1993). generic systolic array building block for neural networks with on-chip learning. IEEE Trans. Neural Netw. 4, 400-407.
    • (1993) IEEE Trans. Neural Netw. , vol.4 , pp. 400-407
    • Lehmann, C.1    Viredaz, M.2    Blayo, F.A.3
  • 31
    • 84929095672 scopus 로고    scopus 로고
    • Training and operation of an integrated neuromorphic network based on metal-oxide memristors
    • Prezioso, M., Merrikh-Bayat, F., Hoskins, B. D., Adam, G. C., Likharev, K. K., and Strukov, D. B. (2015). Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 521, 61-64. doi: 10.1038/nature14441
    • (2015) Nature , vol.521 , pp. 61-64
    • Prezioso, M.1    Merrikh-Bayat, F.2    Hoskins, B.D.3    Adam, G.C.4    Likharev, K.K.5    Strukov, D.B.6
  • 32
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Rumelhart, D. E., Hinton, G. E., and Willims, R. J. (1986). Learning representations by back-propagating errors. Nature 323, 533-536.
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Willims, R.J.3
  • 34
    • 84947777810 scopus 로고    scopus 로고
    • On-chip sparse learning acceleration with CMOS and resistive synaptic devices
    • Seo, J., Lin, B., Kim, M., Chen, P., Kadetotad, D., Xu, Z., et al. (2015). On-chip sparse learning acceleration with CMOS and resistive synaptic devices. IEEE Trans. Nanotechnol. 14, 969-979. doi: 10.1109/TNANO.2015.2478861
    • (2015) IEEE Trans. Nanotechnol. , vol.14 , pp. 969-979
    • Seo, J.1    Lin, B.2    Kim, M.3    Chen, P.4    Kadetotad, D.5    Xu, Z.6
  • 36
    • 84943802795 scopus 로고    scopus 로고
    • Memristor-based multilayer neural networks with online gradient descent training
    • Soudry, D., Di Castro, D., Gal, A., Kolodny, A., and Kvatinsky, S. (2015). Memristor-based multilayer neural networks with online gradient descent training. IEEE Trans. Neural Netw. Learn. Syst. 26, 2408-2421. doi: 10.1109/TNNLS.2014.2383395
    • (2015) IEEE Trans. Neural Netw. Learn. Syst. , vol.26 , pp. 2408-2421
    • Soudry, D.1    Di Castro, D.2    Gal, A.3    Kolodny, A.4    Kvatinsky, S.5
  • 37
    • 34347131550 scopus 로고
    • Die lernmatrix
    • Steinbuch, K. (1961). Die lernmatrix. Kybernetik 1, 36-45.
    • (1961) Kybernetik , vol.1 , pp. 36-45
    • Steinbuch, K.1
  • 38
    • 43049126833 scopus 로고    scopus 로고
    • The missing memristor found
    • Strukov, D., Snider, G., Stewart, D., and Williams, R. (2008). The missing memristor found. Nature 453, 80-83. doi: 10.1038/nature06932
    • (2008) Nature , vol.453 , pp. 80-83
    • Strukov, D.1    Snider, G.2    Stewart, D.3    Williams, R.4
  • 39
    • 84896896429 scopus 로고    scopus 로고
    • 'Next Generation POWER microprocessor
    • (Palo Alto, CA).
    • Stuecheli, J. (2013). "Next Generation POWER microprocessor," in Hot Chips Conference (Palo Alto, CA).
    • (2013) Hot Chips Conference
    • Stuecheli, J.1
  • 42
    • 84939225102 scopus 로고    scopus 로고
    • Parallel programming of resistive cross-point array for synaptic plasticity
    • Xu, Z., Mohanty, A., Chen, P., Kadetotad, D., Lin, B., Ye, J., et al. (2014). Parallel programming of resistive cross-point array for synaptic plasticity. Procedia Comput. Sci. 41, 126-133. doi: 10.1016/j.procs.2014.11.094
    • (2014) Procedia Comput. Sci. , vol.41 , pp. 126-133
    • Xu, Z.1    Mohanty, A.2    Chen, P.3    Kadetotad, D.4    Lin, B.5    Ye, J.6
  • 43
    • 84875158827 scopus 로고    scopus 로고
    • A low energy oxide-based electronic synaptic device for neuromorphic visual systems with tolerance to device variation
    • Yu, S., Gao, B., Fang, Z., Yu, H., Kang, J., and Wong, H. S. (2013). A low energy oxide-based electronic synaptic device for neuromorphic visual systems with tolerance to device variation. Adv. Mater. 25, 1774-1779. doi: 10.1002/adma.201203680
    • (2013) Adv. Mater. , vol.25 , pp. 1774-1779
    • Yu, S.1    Gao, B.2    Fang, Z.3    Yu, H.4    Kang, J.5    Wong, H.S.6
  • 44
    • 84964078185 scopus 로고    scopus 로고
    • 'Scaling-up resistive synaptic arrays for neuro-inspired architecture: challenges and prospect
    • (Washington, DC)
    • Yu, S., Chen, P., Cao, Y., Xia, L., Wang, Y., and Wu, H. (2015). "Scaling-up resistive synaptic arrays for neuro-inspired architecture: challenges and prospect," in International Electron Devices Meeting (IEDM) (Washington, DC), 451-454. doi: 10.1109/iedm.2015.7409718
    • (2015) International Electron Devices Meeting (IEDM) , pp. 451-454
    • Yu, S.1    Chen, P.2    Cao, Y.3    Xia, L.4    Wang, Y.5    Wu, H.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.