메뉴 건너뛰기




Volumn 237, Issue , 2017, Pages 193-199

An approximate backpropagation learning rule for memristor based neural networks using synaptic plasticity

Author keywords

Backpropagation algorithm; Deep learning; Hardware design; Memristor; Neural networks

Indexed keywords

APPROXIMATION ALGORITHMS; BACKPROPAGATION ALGORITHMS; MEMRISTORS; MULTILAYER NEURAL NETWORKS; NEURAL NETWORKS;

EID: 85006762162     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2016.10.061     Document Type: Article
Times cited : (39)

References (25)
  • 1
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • [1] LeCun, Y., Bengio, Y., Hinton, G., Deep learning. Nature 521 (2015), 436–444.
    • (2015) Nature , vol.521 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 3
    • 84962921765 scopus 로고    scopus 로고
    • Optimizing fpga-based accelerator design for deep convolutional neural networks
    • Proceedings of the 2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, FPGA ‘15, ACM, New York, NY, USA
    • [3] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, J. Cong, Optimizing fpga-based accelerator design for deep convolutional neural networks, in: Proceedings of the 2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, FPGA ‘15, ACM, New York, NY, USA, 2015, pp. 161–170. 〈 http://dx.doi.org/10.1145/2684746.2689060〉.
    • (2015) , pp. 161-170
    • Zhang, C.1    Li, P.2    Sun, G.3    Guan, Y.4    Xiao, B.5    Cong, J.6
  • 4
    • 79960577928 scopus 로고    scopus 로고
    • Crossnets: neuromorphic hybrid cmos/nanoelectronic networks
    • [4] Likharev, K., Crossnets: neuromorphic hybrid cmos/nanoelectronic networks. Sci. Adv. Mater., 3, 2011, 322.
    • (2011) Sci. Adv. Mater. , vol.3 , pp. 322
    • Likharev, K.1
  • 5
    • 84863020678 scopus 로고    scopus 로고
    • x crossbar resistive ram with excellent performance, reliability and low-energy operation
    • in: IEEE International Electron Devices Meeting (IEDM),, pp.
    • x crossbar resistive ram with excellent performance, reliability and low-energy operation., in: IEEE International Electron Devices Meeting (IEDM), 2011, pp. 31–36.
    • (2011) , pp. 31-36
    • Govoreanu, B.1    Kar, G.S.2    Chen, Y.Y.3    Paraschiv, V.4    Kubicek, S.F.5
  • 9
    • 84944449412 scopus 로고    scopus 로고
    • Pavlov associative memory in a memristive neural network and its circuit implementation
    • [9] Wang, L., Li, H., Duan, S., Huang, T., Wang, H., Pavlov associative memory in a memristive neural network and its circuit implementation. Neurocomputing 171 (2016), 23–29.
    • (2016) Neurocomputing , vol.171 , pp. 23-29
    • Wang, L.1    Li, H.2    Duan, S.3    Huang, T.4    Wang, H.5
  • 10
    • 84929282155 scopus 로고    scopus 로고
    • Multilayer rtd-memristor-based cellular neural networks for color image processing
    • [10] Hu, X., Feng, G., Duan, S., Liu, L., Multilayer rtd-memristor-based cellular neural networks for color image processing. Neurocomputing 162 (2015), 150–162.
    • (2015) Neurocomputing , vol.162 , pp. 150-162
    • Hu, X.1    Feng, G.2    Duan, S.3    Liu, L.4
  • 11
    • 84932605254 scopus 로고    scopus 로고
    • Everything you wish to know about memristors but are afraid to ask
    • [11] Chua, L., Everything you wish to know about memristors but are afraid to ask. Radioengineering 24 (2015), 319–368.
    • (2015) Radioengineering , vol.24 , pp. 319-368
    • Chua, L.1
  • 12
    • 84906351382 scopus 로고    scopus 로고
    • Heterogeneous cmos/memristor hardware neural networks for real-time target classification.
    • in: Proceedings of the SPIE 9119, Machine Intelligence and Bio-inspired Computation: Theory and Applications, vol. VIII,, p. 911908.
    • [12] C. Merkel, D. Kudithipudi, R. Ptucha, Heterogeneous cmos/memristor hardware neural networks for real-time target classification., in: Proceedings of the SPIE 9119, Machine Intelligence and Bio-inspired Computation: Theory and Applications, vol. VIII, 2014, p. 911908.
    • (2014)
    • Merkel, C.1    Kudithipudi, D.2    Ptucha, R.3
  • 13
    • 0003529238 scopus 로고
    • Beyond Regression New Tools for Prediction and Analysis in the Behavioral Sciences
    • [13] P. Werbos, Beyond Regression New Tools for Prediction and Analysis in the Behavioral Sciences, 1975.
    • (1975)
    • Werbos, P.1
  • 14
    • 84938229361 scopus 로고    scopus 로고
    • Comparison of off-chip training methods for neuromemristive systems.
    • in: Proceedings of the 28th International Conference on VLSI Design (VLSID),, pp.
    • [14] C. Merkel, D. Kudithipudi, Comparison of off-chip training methods for neuromemristive systems., in: Proceedings of the 28th International Conference on VLSI Design (VLSID), 2015, pp. 99–104.
    • (2015) , pp. 99-104
    • Merkel, C.1    Kudithipudi, D.2
  • 15
    • 84896979826 scopus 로고    scopus 로고
    • Pattern classification by memristive crossbar circuits using ex situ and in situ training
    • [15] Alibart, F., Zamanidoost, E., Strukov, D.B., Pattern classification by memristive crossbar circuits using ex situ and in situ training. Nat. Commun., 4, 2013, 2072.
    • (2013) Nat. Commun. , vol.4 , pp. 2072
    • Alibart, F.1    Zamanidoost, E.2    Strukov, D.B.3
  • 16
    • 84870473129 scopus 로고    scopus 로고
    • The no-prop algorithm: a new learning algorithm for multilayer neural networks
    • [16] Widrow, B., Greenblatt, C., Kim, Y., Park, D., The no-prop algorithm: a new learning algorithm for multilayer neural networks. Neural Netw. 37 (2013), 182–188.
    • (2013) Neural Netw. , vol.37 , pp. 182-188
    • Widrow, B.1    Greenblatt, C.2    Kim, Y.3    Park, D.4
  • 17
    • 84899475991 scopus 로고    scopus 로고
    • Linearly separable pattern classification using memristive crossbar circuits.
    • in: Proceedings of the 15th International Symposium on Quality Electronic Design (ISQED),, pp.
    • [17] K. Singh, C. Sahu, J. Singh, Linearly separable pattern classification using memristive crossbar circuits., in: Proceedings of the 15th International Symposium on Quality Electronic Design (ISQED), 2014, pp. 323–329.
    • (2014) , pp. 323-329
    • Singh, K.1    Sahu, C.2    Singh, J.3
  • 20
    • 77951026760 scopus 로고    scopus 로고
    • Nanoscale memristor device as synapse in neuromorphic systems
    • [20] Jo, S., Chang, T., Ebong, I., Bhadviya, B., Mazumder, P., Lu, W., Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10 (2012), 1297–1301.
    • (2012) Nano Lett. , vol.10 , pp. 1297-1301
    • Jo, S.1    Chang, T.2    Ebong, I.3    Bhadviya, B.4    Mazumder, P.5    Lu, W.6
  • 21
    • 84925826565 scopus 로고    scopus 로고
    • Random feedback weights support learning in deep neural networks
    • arXiv,. (1411.0247).
    • [21] T. Lillicrap, D. Cownden, D. Tweed, C. Akerman, Random feedback weights support learning in deep neural networks, arXiv, 2014. (1411.0247).
    • (2014)
    • Lillicrap, T.1    Cownden, D.2    Tweed, D.3    Akerman, C.4
  • 23
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Proceedings of the IEEE, vol. 86(11)
    • [23] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to document recognition, in: Proceedings of the IEEE, vol. 86(11), 1998, pp. 2278–2324. 〈 http://dx.doi.org/10.1109/5.726791〉.
    • (1998) , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 24
    • 82355173010 scopus 로고    scopus 로고
    • Better digit recognition with a committee of simple neural nets
    • Proceedings of the 2011 International Conference on Document Analysis and Recognition (ICDAR)
    • [24] U. Meier, D. Ciresan, L. Gambardella, J. Schmidhuber, Better digit recognition with a committee of simple neural nets, in: Proceedings of the 2011 International Conference on Document Analysis and Recognition (ICDAR), 2011, pp. 1250–1254. http://dx.doi.org/10.1109/ICDAR.2011.252〉.
    • (2011) , pp. 1250-1254
    • Meier, U.1    Ciresan, D.2    Gambardella, L.3    Schmidhuber, J.4
  • 25
    • 84951192180 scopus 로고    scopus 로고
    • M.V.and Dudek, Gradient-descent-based learning in memristive crossbar arrays
    • in: Proceedings of the 2015 IEEE International Joint Conference on Neural Networks (IJCNN),, pp. C.
    • [25] P. Nair, M.V.and Dudek, Gradient-descent-based learning in memristive crossbar arrays., in: Proceedings of the 2015 IEEE International Joint Conference on Neural Networks (IJCNN), 2015, pp. C. 1–7.
    • (2015) , pp. 1-7
    • Nair, P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.