메뉴 건너뛰기




Volumn 279, Issue 1, 2017, Pages 23-35

Interactions between bile salts, gut microbiota, and hepatic innate immunity

Author keywords

bile salt metabolism; bile salt signaling; bile salt toxicity; FXR; innate immunity; microbiota:host interaction

Indexed keywords

BILE SALT; CELL NUCLEUS RECEPTOR; BILE ACID; CELL RECEPTOR; FARNESOID X-ACTIVATED RECEPTOR; G PROTEIN COUPLED RECEPTOR; GPBAR1 PROTEIN, HUMAN;

EID: 85028567221     PISSN: 01052896     EISSN: 1600065X     Source Type: Journal    
DOI: 10.1111/imr.12579     Document Type: Review
Times cited : (87)

References (121)
  • 1
    • 0033611305 scopus 로고    scopus 로고
    • The continuing importance of bile acids in liver and intestinal disease
    • Hofmann AF. The continuing importance of bile acids in liver and intestinal disease. Arch Intern Med. 1999;159:2647-2658.
    • (1999) Arch Intern Med , vol.159 , pp. 2647-2658
    • Hofmann, A.F.1
  • 2
    • 0037790917 scopus 로고    scopus 로고
    • The enzymes, regulation, and genetics of bile acid synthesis
    • Russell DW. The enzymes, regulation, and genetics of bile acid synthesis. Annu Rev Biochem. 2003;72:137-174.
    • (2003) Annu Rev Biochem , vol.72 , pp. 137-174
    • Russell, D.W.1
  • 3
    • 63849295015 scopus 로고    scopus 로고
    • The enterohepatic circulation of bile acids in mammals: form and functions
    • Hofmann AF. The enterohepatic circulation of bile acids in mammals: form and functions. Front Biosci. 2009;14:2584-2598.
    • (2009) Front Biosci , vol.14 , pp. 2584-2598
    • Hofmann, A.F.1
  • 4
    • 84890561808 scopus 로고    scopus 로고
    • Bile formation and secretion
    • Boyer JL. Bile formation and secretion. Compr Physiol. 2013;3:1035-1078.
    • (2013) Compr Physiol , vol.3 , pp. 1035-1078
    • Boyer, J.L.1
  • 5
    • 84937133072 scopus 로고    scopus 로고
    • Intestinal transport and metabolism of bile acids
    • Dawson PA, Karpen SJ. Intestinal transport and metabolism of bile acids. J Lipid Res. 2015;56:1085-1099.
    • (2015) J Lipid Res , vol.56 , pp. 1085-1099
    • Dawson, P.A.1    Karpen, S.J.2
  • 6
    • 84870216095 scopus 로고    scopus 로고
    • The SLC10 carrier family: transport functions and molecular structure
    • Doring B, Lutteke T, Geyer J, Petzinger E. The SLC10 carrier family: transport functions and molecular structure. Curr Top Membr. 2012;70:105-168.
    • (2012) Curr Top Membr , vol.70 , pp. 105-168
    • Doring, B.1    Lutteke, T.2    Geyer, J.3    Petzinger, E.4
  • 7
    • 33244467651 scopus 로고    scopus 로고
    • Bile salt biotransformations by human intestinal bacteria
    • Ridlon JM, Kang DJ, Hylemon PB. Bile salt biotransformations by human intestinal bacteria. J Lipid Res. 2006;47:241-259.
    • (2006) J Lipid Res , vol.47 , pp. 241-259
    • Ridlon, J.M.1    Kang, D.J.2    Hylemon, P.B.3
  • 9
    • 50249180215 scopus 로고    scopus 로고
    • Bile acids: chemistry, pathochemistry, biology, pathobiology, and therapeutics
    • Hofmann AF, Hagey LR. Bile acids: chemistry, pathochemistry, biology, pathobiology, and therapeutics. Cell Mol Life Sci. 2008;65:2461-2483.
    • (2008) Cell Mol Life Sci , vol.65 , pp. 2461-2483
    • Hofmann, A.F.1    Hagey, L.R.2
  • 10
    • 0033591297 scopus 로고    scopus 로고
    • Identification of a nuclear receptor for bile acids
    • Makishima M, Okamoto AY, Repa JJ, et al. Identification of a nuclear receptor for bile acids. Science. 1999;284:1362-1365.
    • (1999) Science , vol.284 , pp. 1362-1365
    • Makishima, M.1    Okamoto, A.Y.2    Repa, J.J.3
  • 11
    • 0033591387 scopus 로고    scopus 로고
    • Bile acids: natural ligands for an orphan nuclear receptor
    • Parks DJ, Blanchard SG, Bledsoe RK, et al. Bile acids: natural ligands for an orphan nuclear receptor. Science. 1999;284:1365-1368.
    • (1999) Science , vol.284 , pp. 1365-1368
    • Parks, D.J.1    Blanchard, S.G.2    Bledsoe, R.K.3
  • 12
    • 84155194947 scopus 로고    scopus 로고
    • Conjugated bile acids activate the sphingosine-1-phosphate receptor 2 in primary rodent hepatocytes
    • Studer E, Zhou X, Zhao R, et al. Conjugated bile acids activate the sphingosine-1-phosphate receptor 2 in primary rodent hepatocytes. Hepatology. 2012;55:267-276.
    • (2012) Hepatology , vol.55 , pp. 267-276
    • Studer, E.1    Zhou, X.2    Zhao, R.3
  • 13
    • 0037663483 scopus 로고    scopus 로고
    • Definition of a novel growth factor-dependent signal cascade for the suppression of bile acid biosynthesis
    • Holt JA, Luo G, Billin AN, et al. Definition of a novel growth factor-dependent signal cascade for the suppression of bile acid biosynthesis. Genes Dev. 2003;17:1581-1591.
    • (2003) Genes Dev , vol.17 , pp. 1581-1591
    • Holt, J.A.1    Luo, G.2    Billin, A.N.3
  • 14
    • 84874487986 scopus 로고    scopus 로고
    • alpha5 beta1-integrins are sensors for tauroursodeoxycholic acid in hepatocytes
    • Gohlke H, Schmitz B, Sommerfeld A, Reinehr R, Haussinger D. alpha5 beta1-integrins are sensors for tauroursodeoxycholic acid in hepatocytes. Hepatology. 2013;57:1117-1129.
    • (2013) Hepatology , vol.57 , pp. 1117-1129
    • Gohlke, H.1    Schmitz, B.2    Sommerfeld, A.3    Reinehr, R.4    Haussinger, D.5
  • 15
    • 84873342775 scopus 로고    scopus 로고
    • Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist
    • Sayin SI, Wahlstrom A, Felin J, et al. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab. 2013;17:225-235.
    • (2013) Cell Metab , vol.17 , pp. 225-235
    • Sayin, S.I.1    Wahlstrom, A.2    Felin, J.3
  • 16
    • 85014694166 scopus 로고    scopus 로고
    • Crosstalk between bile acids and gut microbiota and its impact on farnesoid X receptor signalling
    • Wahlstrom A, Kovatcheva-Datchary P, Stahlman M, Backhed F, Marschall HU. Crosstalk between bile acids and gut microbiota and its impact on farnesoid X receptor signalling. Dig Dis. 2017;35:246-250.
    • (2017) Dig Dis , vol.35 , pp. 246-250
    • Wahlstrom, A.1    Kovatcheva-Datchary, P.2    Stahlman, M.3    Backhed, F.4    Marschall, H.U.5
  • 17
    • 0037738531 scopus 로고    scopus 로고
    • A chemical, genetic, and structural analysis of the nuclear bile acid receptor FXR
    • Downes M, Verdecia MA, Roecker AJ, et al. A chemical, genetic, and structural analysis of the nuclear bile acid receptor FXR. Mol Cell. 2003;11:1079-1092.
    • (2003) Mol Cell , vol.11 , pp. 1079-1092
    • Downes, M.1    Verdecia, M.A.2    Roecker, A.J.3
  • 18
    • 84929266699 scopus 로고    scopus 로고
    • Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial
    • Neuschwander-Tetri BA, Loomba R, Sanyal AJ, et al. Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial. Lancet. 2015;385:956-965.
    • (2015) Lancet , vol.385 , pp. 956-965
    • Neuschwander-Tetri, B.A.1    Loomba, R.2    Sanyal, A.J.3
  • 19
    • 84982102773 scopus 로고    scopus 로고
    • A placebo-controlled trial of obeticholic acid in primary biliary cholangitis
    • Nevens F, Andreone P, Mazzella G, et al. A placebo-controlled trial of obeticholic acid in primary biliary cholangitis. N Engl J Med. 2016;375:631-643.
    • (2016) N Engl J Med , vol.375 , pp. 631-643
    • Nevens, F.1    Andreone, P.2    Mazzella, G.3
  • 20
    • 0003269455 scopus 로고    scopus 로고
    • A G protein-coupled receptor responsive to bile acids
    • Kawamata Y, Fujii R, Hosoya M, et al. A G protein-coupled receptor responsive to bile acids. J Biol Chem. 2003;278:9435-9440.
    • (2003) J Biol Chem , vol.278 , pp. 9435-9440
    • Kawamata, Y.1    Fujii, R.2    Hosoya, M.3
  • 21
    • 0036432845 scopus 로고    scopus 로고
    • Identification of membrane-type receptor for bile acids (M-BAR)
    • Maruyama T, Miyamoto Y, Nakamura T, et al. Identification of membrane-type receptor for bile acids (M-BAR). Biochem Biophys Res Commun. 2002;298:714-719.
    • (2002) Biochem Biophys Res Commun , vol.298 , pp. 714-719
    • Maruyama, T.1    Miyamoto, Y.2    Nakamura, T.3
  • 23
    • 0038339493 scopus 로고    scopus 로고
    • Bile acids activate EGF receptor via a TGF-alpha-dependent mechanism in human cholangiocyte cell lines
    • Werneburg NW, Yoon JH, Higuchi H, Gores GJ. Bile acids activate EGF receptor via a TGF-alpha-dependent mechanism in human cholangiocyte cell lines. Am J Physiol Gastrointest Liver Physiol. 2003;285:G31-G36.
    • (2003) Am J Physiol Gastrointest Liver Physiol , vol.285 , pp. G31-G36
    • Werneburg, N.W.1    Yoon, J.H.2    Higuchi, H.3    Gores, G.J.4
  • 24
    • 85019373819 scopus 로고    scopus 로고
    • Expression patterns of nuclear receptors in parenchymal and non-parenchymal mouse liver cells and their modulation in cholestasis
    • Gonzalez-Sanchez E, Firrincieli D, Housset C, Chignard N. Expression patterns of nuclear receptors in parenchymal and non-parenchymal mouse liver cells and their modulation in cholestasis. Biochim Biophys Acta 2017;1863:1699-1708.
    • (2017) Biochim Biophys Acta , vol.1863 , pp. 1699-1708
    • Gonzalez-Sanchez, E.1    Firrincieli, D.2    Housset, C.3    Chignard, N.4
  • 25
    • 84897147399 scopus 로고    scopus 로고
    • Nuclear receptors, RXR, and the big bang
    • Evans RM, Mangelsdorf DJ. Nuclear receptors, RXR, and the big bang. Cell. 2014;157:255-266.
    • (2014) Cell , vol.157 , pp. 255-266
    • Evans, R.M.1    Mangelsdorf, D.J.2
  • 26
    • 33644867569 scopus 로고    scopus 로고
    • Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor
    • Inagaki T, Moschetta A, Lee YK, et al. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor. Proc Natl Acad Sci U S A. 2006;103:3920-3925.
    • (2006) Proc Natl Acad Sci U S A , vol.103 , pp. 3920-3925
    • Inagaki, T.1    Moschetta, A.2    Lee, Y.K.3
  • 28
    • 84865484646 scopus 로고    scopus 로고
    • Anti-inflammatory and metabolic actions of FXR: insights into molecular mechanisms
    • Hollman DA, Milona A, van Erpecum KJ, van Mil SW. Anti-inflammatory and metabolic actions of FXR: insights into molecular mechanisms. Biochim Biophys Acta. 2012;1821:1443-1452.
    • (2012) Biochim Biophys Acta , vol.1821 , pp. 1443-1452
    • Hollman, D.A.1    Milona, A.2    van Erpecum, K.J.3    van Mil, S.W.4
  • 29
    • 84868360297 scopus 로고    scopus 로고
    • Perspective: TGR5 (Gpbar-1) in liver physiology and disease
    • Keitel V, Haussinger D. Perspective: TGR5 (Gpbar-1) in liver physiology and disease. Clin Res Hepatol Gastroenterol. 2012;36:412-419.
    • (2012) Clin Res Hepatol Gastroenterol , vol.36 , pp. 412-419
    • Keitel, V.1    Haussinger, D.2
  • 30
    • 84904742368 scopus 로고    scopus 로고
    • Beyond intestinal soap–bile acids in metabolic control
    • Kuipers F, Bloks VW, Groen AK. Beyond intestinal soap–bile acids in metabolic control. Nat Rev Endocrinol. 2014;10:488-498.
    • (2014) Nat Rev Endocrinol , vol.10 , pp. 488-498
    • Kuipers, F.1    Bloks, V.W.2    Groen, A.K.3
  • 31
    • 84949503015 scopus 로고    scopus 로고
    • TGR5 and immunometabolism: insights from physiology and pharmacology
    • Perino A, Schoonjans K. TGR5 and immunometabolism: insights from physiology and pharmacology. Trends Pharmacol Sci. 2015;36:847-857.
    • (2015) Trends Pharmacol Sci , vol.36 , pp. 847-857
    • Perino, A.1    Schoonjans, K.2
  • 32
    • 55549144718 scopus 로고    scopus 로고
    • FXR: a metabolic regulator and cell protector
    • Wang YD, Chen WD, Moore DD, Huang W. FXR: a metabolic regulator and cell protector. Cell Res. 2008;18:1087-1095.
    • (2008) Cell Res , vol.18 , pp. 1087-1095
    • Wang, Y.D.1    Chen, W.D.2    Moore, D.D.3    Huang, W.4
  • 33
    • 0033026760 scopus 로고    scopus 로고
    • Endogenous bile acids are ligands for the nuclear receptor FXR/BAR
    • Wang H, Chen J, Hollister K, Sowers LC, Forman BM. Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol Cell. 1999;3:543-553.
    • (1999) Mol Cell , vol.3 , pp. 543-553
    • Wang, H.1    Chen, J.2    Hollister, K.3    Sowers, L.C.4    Forman, B.M.5
  • 34
    • 20444493331 scopus 로고    scopus 로고
    • The interaction between bacteria and bile
    • Begley M, Gahan CG, Hill C. The interaction between bacteria and bile. FEMS Microbiol Rev. 2005;29:625-651.
    • (2005) FEMS Microbiol Rev , vol.29 , pp. 625-651
    • Begley, M.1    Gahan, C.G.2    Hill, C.3
  • 35
    • 80054862011 scopus 로고    scopus 로고
    • Bile acid is a host factor that regulates the composition of the cecal microbiota in rats
    • Islam KB, Fukiya S, Hagio M, et al. Bile acid is a host factor that regulates the composition of the cecal microbiota in rats. Gastroenterology. 2011;141:1773-1781.
    • (2011) Gastroenterology , vol.141 , pp. 1773-1781
    • Islam, K.B.1    Fukiya, S.2    Hagio, M.3
  • 38
    • 0001787693 scopus 로고
    • The function of bile salts in fat absorption. The solvent properties of dilute micellar solutions of conjugated bile salts
    • Hofmann AF. The function of bile salts in fat absorption. The solvent properties of dilute micellar solutions of conjugated bile salts. Biochem J. 1963;89:57-68.
    • (1963) Biochem J , vol.89 , pp. 57-68
    • Hofmann, A.F.1
  • 40
    • 0017121838 scopus 로고
    • The mechanism whereby bile acid micelles increase the rate of fatty acid and cholesterol uptake into the intestinal mucosal cell
    • Westergaard H, Dietschy JM. The mechanism whereby bile acid micelles increase the rate of fatty acid and cholesterol uptake into the intestinal mucosal cell. J Clin Invest. 1976;58:97-108.
    • (1976) J Clin Invest , vol.58 , pp. 97-108
    • Westergaard, H.1    Dietschy, J.M.2
  • 41
    • 0020626591 scopus 로고
    • The influence of bile salt structure on self-association in aqueous solutions
    • Roda A, Hofmann AF, Mysels KJ. The influence of bile salt structure on self-association in aqueous solutions. J Biol Chem. 1983;258:6362-6370.
    • (1983) J Biol Chem , vol.258 , pp. 6362-6370
    • Roda, A.1    Hofmann, A.F.2    Mysels, K.J.3
  • 42
    • 0022656312 scopus 로고
    • Bile acid-induced liver toxicity: relation to the hydrophobic-hydrophilic balance of bile acids
    • Attili AF, Angelico M, Cantafora A, Alvaro D, Capocaccia L. Bile acid-induced liver toxicity: relation to the hydrophobic-hydrophilic balance of bile acids. Med Hypotheses. 1986;19:57-69.
    • (1986) Med Hypotheses , vol.19 , pp. 57-69
    • Attili, A.F.1    Angelico, M.2    Cantafora, A.3    Alvaro, D.4    Capocaccia, L.5
  • 43
    • 0024318186 scopus 로고
    • Quantitative estimation of the hydrophilic-hydrophobic balance of mixed bile salt solutions
    • Heuman DM. Quantitative estimation of the hydrophilic-hydrophobic balance of mixed bile salt solutions. J Lipid Res. 1989;30:719-730.
    • (1989) J Lipid Res , vol.30 , pp. 719-730
    • Heuman, D.M.1
  • 44
    • 0041422578 scopus 로고    scopus 로고
    • Cholic acid accumulation and its diminution by short-chain fatty acids in bifidobacteria
    • Kurdi P, Tanaka H, Van Veen HW, Asano K, Tomita F, Yokota A. Cholic acid accumulation and its diminution by short-chain fatty acids in bifidobacteria. Microbiology. 2003;149:2031-2037.
    • (2003) Microbiology , vol.149 , pp. 2031-2037
    • Kurdi, P.1    Tanaka, H.2    Van Veen, H.W.3    Asano, K.4    Tomita, F.5    Yokota, A.6
  • 45
    • 0033754492 scopus 로고    scopus 로고
    • Cholic acid is accumulated spontaneously, driven by membrane deltapH, in many lactobacilli
    • Kurdi P, van Veen HW, Tanaka H, et al. Cholic acid is accumulated spontaneously, driven by membrane deltapH, in many lactobacilli. J Bacteriol. 2000;182:6525-6528.
    • (2000) J Bacteriol , vol.182 , pp. 6525-6528
    • Kurdi, P.1    van Veen, H.W.2    Tanaka, H.3
  • 46
    • 33644752102 scopus 로고    scopus 로고
    • Mechanism of growth inhibition by free bile acids in lactobacilli and bifidobacteria
    • Kurdi P, Kawanishi K, Mizutani K, Yokota A. Mechanism of growth inhibition by free bile acids in lactobacilli and bifidobacteria. J Bacteriol. 2006;188:1979-1986.
    • (2006) J Bacteriol , vol.188 , pp. 1979-1986
    • Kurdi, P.1    Kawanishi, K.2    Mizutani, K.3    Yokota, A.4
  • 47
    • 84971663989 scopus 로고    scopus 로고
    • Taurocholic acid metabolism by gut microbes and colon cancer
    • Ridlon JM, Wolf PG, Gaskins HR. Taurocholic acid metabolism by gut microbes and colon cancer. Gut Microbes. 2016;7:201-215.
    • (2016) Gut Microbes , vol.7 , pp. 201-215
    • Ridlon, J.M.1    Wolf, P.G.2    Gaskins, H.R.3
  • 48
    • 0018191563 scopus 로고
    • Hepatic taurine concentration and dietary taurine as regulators of bile acid conjugation with taurine
    • Hardison WG. Hepatic taurine concentration and dietary taurine as regulators of bile acid conjugation with taurine. Gastroenterology. 1978;75:71-75.
    • (1978) Gastroenterology , vol.75 , pp. 71-75
    • Hardison, W.G.1
  • 49
    • 0000447259 scopus 로고
    • Dietary glycine and taurine on bile acid conjugation in man; bile acids and steroids 75
    • Sjovall J. Dietary glycine and taurine on bile acid conjugation in man; bile acids and steroids 75. Proc Soc Exp Biol Med. 1959;100:676-678.
    • (1959) Proc Soc Exp Biol Med , vol.100 , pp. 676-678
    • Sjovall, J.1
  • 51
    • 10344266990 scopus 로고    scopus 로고
    • Cloning of the bile salt hydrolase (bsh) gene from Enterococcus faecium FAIR-E 345 and chromosomal location of bsh genes in food enterococci
    • Wijaya A, Hermann A, Abriouel H, et al. Cloning of the bile salt hydrolase (bsh) gene from Enterococcus faecium FAIR-E 345 and chromosomal location of bsh genes in food enterococci. J Food Prot. 2004;67:2772-2778.
    • (2004) J Food Prot , vol.67 , pp. 2772-2778
    • Wijaya, A.1    Hermann, A.2    Abriouel, H.3
  • 52
    • 0019473679 scopus 로고
    • Deconjugation of bile salts by Bacteroids and Clostridium
    • Masuda N. Deconjugation of bile salts by Bacteroids and Clostridium. Microbiol Immunol. 1981;25:1-11.
    • (1981) Microbiol Immunol , vol.25 , pp. 1-11
    • Masuda, N.1
  • 53
    • 84881105974 scopus 로고    scopus 로고
    • Genetic diversity of bile salt hydrolases among human intestinal bifidobacteria
    • Jarocki P, Targonski Z. Genetic diversity of bile salt hydrolases among human intestinal bifidobacteria. Curr Microbiol. 2013;67:286-292.
    • (2013) Curr Microbiol , vol.67 , pp. 286-292
    • Jarocki, P.1    Targonski, Z.2
  • 54
    • 84955620666 scopus 로고    scopus 로고
    • A new insight into the physiological role of bile salt hydrolase among intestinal bacteria from the genus Bifidobacterium
    • Jarocki P, Podlesny M, Glibowski P, Targonski Z. A new insight into the physiological role of bile salt hydrolase among intestinal bacteria from the genus Bifidobacterium. PLoS ONE. 2014;9:e114379.
    • (2014) PLoS ONE , vol.9
    • Jarocki, P.1    Podlesny, M.2    Glibowski, P.3    Targonski, Z.4
  • 55
    • 33751213596 scopus 로고    scopus 로고
    • Deoxycholic acid formation in gnotobiotic mice associated with human intestinal bacteria
    • Narushima S, Itoha K, Miyamoto Y, et al. Deoxycholic acid formation in gnotobiotic mice associated with human intestinal bacteria. Lipids. 2006;41:835-843.
    • (2006) Lipids , vol.41 , pp. 835-843
    • Narushima, S.1    Itoha, K.2    Miyamoto, Y.3
  • 56
    • 0035110831 scopus 로고    scopus 로고
    • Dissimilatory sulfite reductase (desulfoviridin) of the taurine-degrading, non-sulfate-reducing bacterium Bilophila wadsworthia RZATAU contains a fused DsrB-DsrD subunit
    • Laue H, Friedrich M, Ruff J, Cook AM. Dissimilatory sulfite reductase (desulfoviridin) of the taurine-degrading, non-sulfate-reducing bacterium Bilophila wadsworthia RZATAU contains a fused DsrB-DsrD subunit. J Bacteriol. 2001;183:1727-1733.
    • (2001) J Bacteriol , vol.183 , pp. 1727-1733
    • Laue, H.1    Friedrich, M.2    Ruff, J.3    Cook, A.M.4
  • 57
    • 84355163059 scopus 로고    scopus 로고
    • Abundance and diversity of mucosa-associated hydrogenotrophic microbes in the healthy human colon
    • Nava GM, Carbonero F, Croix JA, Greenberg E, Gaskins HR. Abundance and diversity of mucosa-associated hydrogenotrophic microbes in the healthy human colon. ISME J. 2012;6:57-70.
    • (2012) ISME J , vol.6 , pp. 57-70
    • Nava, G.M.1    Carbonero, F.2    Croix, J.A.3    Greenberg, E.4    Gaskins, H.R.5
  • 58
    • 77957908124 scopus 로고    scopus 로고
    • Reaction cycle of the dissimilatory sulfite reductase from Archaeoglobus fulgidus
    • Parey K, Warkentin E, Kroneck PM, Ermler U. Reaction cycle of the dissimilatory sulfite reductase from Archaeoglobus fulgidus. Biochemistry. 2010;49:8912-8921.
    • (2010) Biochemistry , vol.49 , pp. 8912-8921
    • Parey, K.1    Warkentin, E.2    Kroneck, P.M.3    Ermler, U.4
  • 59
    • 84959159377 scopus 로고    scopus 로고
    • Sulfide as a mucus barrier-breaker in inflammatory bowel disease?
    • Ijssennagger N, van der Meer R, van Mil SW. Sulfide as a mucus barrier-breaker in inflammatory bowel disease? Trends Mol Med. 2016;22:190-199.
    • (2016) Trends Mol Med , vol.22 , pp. 190-199
    • Ijssennagger, N.1    van der Meer, R.2    van Mil, S.W.3
  • 60
    • 84948992933 scopus 로고    scopus 로고
    • Gut microbiota and aging
    • O'Toole PW, Jeffery IB. Gut microbiota and aging. Science. 2015;350:1214-1215.
    • (2015) Science , vol.350 , pp. 1214-1215
    • O'Toole, P.W.1    Jeffery, I.B.2
  • 61
    • 84904012264 scopus 로고    scopus 로고
    • Pharmacomicrobiomics: the impact of human microbiome variations on systems pharmacology and personalized therapeutics
    • ElRakaiby M, Dutilh BE, Rizkallah MR, Boleij A, Cole JN, Aziz RK. Pharmacomicrobiomics: the impact of human microbiome variations on systems pharmacology and personalized therapeutics. OMICS. 2014;18:402-414.
    • (2014) OMICS , vol.18 , pp. 402-414
    • ElRakaiby, M.1    Dutilh, B.E.2    Rizkallah, M.R.3    Boleij, A.4    Cole, J.N.5    Aziz, R.K.6
  • 62
    • 84904089464 scopus 로고    scopus 로고
    • Regulation of intestinal homeostasis by innate immune cells
    • Kayama H, Nishimura J, Takeda K. Regulation of intestinal homeostasis by innate immune cells. Immune Netw. 2013;13:227-234.
    • (2013) Immune Netw , vol.13 , pp. 227-234
    • Kayama, H.1    Nishimura, J.2    Takeda, K.3
  • 64
    • 85072745611 scopus 로고    scopus 로고
    • The food-gut human axis: the effects of diet on gut microbiota and metabolome
    • [Epub ahead of print]
    • De AngelisM, Garruti G, Minervini F, Bonfrate L, Portincasac P, Gobbetti M. The food-gut human axis: the effects of diet on gut microbiota and metabolome. Curr Med Chem 2017. https://doi.org/10.2174/0929867324666170428103848. [Epub ahead of print].
    • (2017) Curr Med Chem
    • De, A.M.1    Garruti, G.2    Minervini, F.3    Bonfrate, L.4    Portincasac, P.5    Gobbetti, M.6
  • 65
    • 84920598184 scopus 로고    scopus 로고
    • From lifetime to evolution: timescales of human gut microbiota adaptation
    • Quercia S, Candela M, Giuliani C, et al. From lifetime to evolution: timescales of human gut microbiota adaptation. Front Microbiol. 2014;5:587.
    • (2014) Front Microbiol , vol.5 , pp. 587
    • Quercia, S.1    Candela, M.2    Giuliani, C.3
  • 66
    • 84888084911 scopus 로고    scopus 로고
    • The interplay between the innate immune system and the microbiota
    • Thaiss CA, Levy M, Suez J, Elinav E. The interplay between the innate immune system and the microbiota. Curr Opin Immunol. 2014;26:41-48.
    • (2014) Curr Opin Immunol , vol.26 , pp. 41-48
    • Thaiss, C.A.1    Levy, M.2    Suez, J.3    Elinav, E.4
  • 67
    • 84884928600 scopus 로고    scopus 로고
    • Antimicrobial peptides and gut microbiota in homeostasis and pathology
    • Ostaff MJ, Stange EF, Wehkamp J. Antimicrobial peptides and gut microbiota in homeostasis and pathology. EMBO Mol Med. 2013;5:1465-1483.
    • (2013) EMBO Mol Med , vol.5 , pp. 1465-1483
    • Ostaff, M.J.1    Stange, E.F.2    Wehkamp, J.3
  • 68
    • 85014721388 scopus 로고    scopus 로고
    • Microbiota-induced obesity requires farnesoid X receptor
    • Parseus A, Sommer N, Sommer F, et al. Microbiota-induced obesity requires farnesoid X receptor. Gut. 2017;66:429-437.
    • (2017) Gut , vol.66 , pp. 429-437
    • Parseus, A.1    Sommer, N.2    Sommer, F.3
  • 69
    • 84957620876 scopus 로고    scopus 로고
    • Fostering of advanced mutualism with gut microbiota by immunoglobulin A
    • Sutherland DB, Suzuki K, Fagarasan S. Fostering of advanced mutualism with gut microbiota by immunoglobulin A. Immunol Rev. 2016;270:20-31.
    • (2016) Immunol Rev , vol.270 , pp. 20-31
    • Sutherland, D.B.1    Suzuki, K.2    Fagarasan, S.3
  • 70
    • 0031983410 scopus 로고    scopus 로고
    • Isolation and characterization of a putative multidrug resistance pump from Vibrio cholerae
    • Colmer JA, Fralick JA, Hamood AN. Isolation and characterization of a putative multidrug resistance pump from Vibrio cholerae. Mol Microbiol. 1998;27:63-72.
    • (1998) Mol Microbiol , vol.27 , pp. 63-72
    • Colmer, J.A.1    Fralick, J.A.2    Hamood, A.N.3
  • 71
    • 0030045627 scopus 로고    scopus 로고
    • Salmonella typhimurium acrB-like gene: identification and role in resistance to biliary salts and detergents and in murine infection
    • Lacroix FJ, Cloeckaert A, Grepinet O, et al. Salmonella typhimurium acrB-like gene: identification and role in resistance to biliary salts and detergents and in murine infection. FEMS Microbiol Lett. 1996;135:161-167.
    • (1996) FEMS Microbiol Lett , vol.135 , pp. 161-167
    • Lacroix, F.J.1    Cloeckaert, A.2    Grepinet, O.3
  • 72
    • 0030934759 scopus 로고    scopus 로고
    • Active efflux of bile salts by Escherichia coli
    • Thanassi DG, Cheng LW, Nikaido H. Active efflux of bile salts by Escherichia coli. J Bacteriol. 1997;179:2512-2518.
    • (1997) J Bacteriol , vol.179 , pp. 2512-2518
    • Thanassi, D.G.1    Cheng, L.W.2    Nikaido, H.3
  • 73
    • 0030028114 scopus 로고    scopus 로고
    • Tauroconjugation of cholic acid stimulates 7 alpha-dehydroxylation by fecal bacteria
    • Van Eldere J, Celis P, De Pauw G, Lesaffre E, Eyssen H. Tauroconjugation of cholic acid stimulates 7 alpha-dehydroxylation by fecal bacteria. Appl Environ Microbiol. 1996;62:656-661.
    • (1996) Appl Environ Microbiol , vol.62 , pp. 656-661
    • Van Eldere, J.1    Celis, P.2    De Pauw, G.3    Lesaffre, E.4    Eyssen, H.5
  • 74
    • 0035821289 scopus 로고    scopus 로고
    • Staphylococcus aureus resistance to human defensins and evasion of neutrophil killing via the novel virulence factor MprF is based on modification of membrane lipids with l-lysine
    • Peschel A, Jack RW, Otto M, et al. Staphylococcus aureus resistance to human defensins and evasion of neutrophil killing via the novel virulence factor MprF is based on modification of membrane lipids with l-lysine. J Exp Med. 2001;193:1067-1076.
    • (2001) J Exp Med , vol.193 , pp. 1067-1076
    • Peschel, A.1    Jack, R.W.2    Otto, M.3
  • 75
    • 0033214433 scopus 로고    scopus 로고
    • Regulation of intestinal alpha-defensin activation by the metalloproteinase matrilysin in innate host defense
    • Wilson CL, Ouellette AJ, Satchell DP, et al. Regulation of intestinal alpha-defensin activation by the metalloproteinase matrilysin in innate host defense. Science. 1999;286:113-117.
    • (1999) Science , vol.286 , pp. 113-117
    • Wilson, C.L.1    Ouellette, A.J.2    Satchell, D.P.3
  • 76
    • 0027473608 scopus 로고
    • Distribution of pathogen inhibition in the Lactobacillus isolates of a commercial probiotic consortium
    • Chateau N, Castellanos I, Deschamps AM. Distribution of pathogen inhibition in the Lactobacillus isolates of a commercial probiotic consortium. J Appl Bacteriol. 1993;74:36-40.
    • (1993) J Appl Bacteriol , vol.74 , pp. 36-40
    • Chateau, N.1    Castellanos, I.2    Deschamps, A.M.3
  • 78
    • 0034113629 scopus 로고    scopus 로고
    • Innate and adaptive lymphoid cells in the human liver
    • Doherty DG, O'Farrelly C. Innate and adaptive lymphoid cells in the human liver. Immunol Rev. 2000;174:5-20.
    • (2000) Immunol Rev , vol.174 , pp. 5-20
    • Doherty, D.G.1    O'Farrelly, C.2
  • 79
    • 84966311104 scopus 로고    scopus 로고
    • Liver immunology and its role in inflammation and homeostasis
    • Robinson MW, Harmon C, O'Farrelly C. Liver immunology and its role in inflammation and homeostasis. Cell Mol Immunol. 2016;13:267-276.
    • (2016) Cell Mol Immunol , vol.13 , pp. 267-276
    • Robinson, M.W.1    Harmon, C.2    O'Farrelly, C.3
  • 80
    • 44149106177 scopus 로고    scopus 로고
    • Immunology of the gut and liver: a love/hate relationship
    • Adams DH, Eksteen B, Curbishley SM. Immunology of the gut and liver: a love/hate relationship. Gut. 2008;57:838-848.
    • (2008) Gut , vol.57 , pp. 838-848
    • Adams, D.H.1    Eksteen, B.2    Curbishley, S.M.3
  • 81
    • 84875466830 scopus 로고    scopus 로고
    • IL-7 licenses activation of human liver intrasinusoidal mucosal-associated invariant T cells
    • Tang X-Z, Jo J, Tan AT, et al. IL-7 licenses activation of human liver intrasinusoidal mucosal-associated invariant T cells. J Immunol. 2013;190:3142-3152.
    • (2013) J Immunol , vol.190 , pp. 3142-3152
    • Tang, X.-Z.1    Jo, J.2    Tan, A.T.3
  • 82
    • 0037434974 scopus 로고    scopus 로고
    • Selection of evolutionarily conserved mucosal-associated invariant T cells by MR1
    • Treiner E, Duban L, Bahram S, Radosavljevic M, Wanner V, Tilloy F. Selection of evolutionarily conserved mucosal-associated invariant T cells by MR1. Nature 2003;422:164-169.
    • (2003) Nature , vol.422 , pp. 164-169
    • Treiner, E.1    Duban, L.2    Bahram, S.3    Radosavljevic, M.4    Wanner, V.5    Tilloy, F.6
  • 83
    • 84944872887 scopus 로고    scopus 로고
    • Identification of phenotypically and functionally heterogeneous mouse mucosal-associated invariant T cells using MR1 tetramers
    • Rahimpour A, Koay H-F, Enders A, et al. Identification of phenotypically and functionally heterogeneous mouse mucosal-associated invariant T cells using MR1 tetramers. J Exp Med. 2015;212:1095-1108.
    • (2015) J Exp Med , vol.212 , pp. 1095-1108
    • Rahimpour, A.1    Koay, H.-F.2    Enders, A.3
  • 84
    • 0033591698 scopus 로고    scopus 로고
    • An invariant T cell receptor α chain defines a novel TAP-independent major histocompatibility complex class Ib–restricted α/β T cell subpopulation in mammals
    • Tilloy F, Treiner E, Park S-H, et al. An invariant T cell receptor α chain defines a novel TAP-independent major histocompatibility complex class Ib–restricted α/β T cell subpopulation in mammals. J Exp Med. 1999;189:1907-1921.
    • (1999) J Exp Med , vol.189 , pp. 1907-1921
    • Tilloy, F.1    Treiner, E.2    Park, S.-H.3
  • 85
    • 65949112929 scopus 로고    scopus 로고
    • Stepwise development of MAIT cells in mouse and human
    • Martin E, Treiner E, Duban L, et al. Stepwise development of MAIT cells in mouse and human. PLoS Biol. 2009;7:e1000054.
    • (2009) PLoS Biol , vol.7
    • Martin, E.1    Treiner, E.2    Duban, L.3
  • 86
    • 43549084588 scopus 로고    scopus 로고
    • MR1 uses an endocytic pathway to activate mucosal-associated invariant T cells
    • Huang S, Gilfillan S, Kim S, et al. MR1 uses an endocytic pathway to activate mucosal-associated invariant T cells. J Exp Med. 2008;205:1201-1211.
    • (2008) J Exp Med , vol.205 , pp. 1201-1211
    • Huang, S.1    Gilfillan, S.2    Kim, S.3
  • 87
    • 84870284140 scopus 로고    scopus 로고
    • MR1 presents microbial vitamin B metabolites to MAIT cells
    • Kjer-Nielsen L, Patel O, Corbett AJ, et al. MR1 presents microbial vitamin B metabolites to MAIT cells. Nature. 2012;491:717-723.
    • (2012) Nature , vol.491 , pp. 717-723
    • Kjer-Nielsen, L.1    Patel, O.2    Corbett, A.J.3
  • 88
    • 84892453502 scopus 로고    scopus 로고
    • CD161++ CD8+ T cells, including the MAIT cell subset, are specifically activated by IL-12+IL-18 in a TCR-independent manner
    • Ussher JE, Bilton M, Attwod E, et al. CD161++ CD8+ T cells, including the MAIT cell subset, are specifically activated by IL-12+IL-18 in a TCR-independent manner. Eur J Immunol. 2014;44:195-203.
    • (2014) Eur J Immunol , vol.44 , pp. 195-203
    • Ussher, J.E.1    Bilton, M.2    Attwod, E.3
  • 89
    • 84867609576 scopus 로고    scopus 로고
    • Polyclonal mucosa-associated invariant T cells have unique innate functions in bacterial infection
    • Chua W-J, Truscott SM, Eickhoff CS, Blazevic A, Hoft DF, Hansen TH. Polyclonal mucosa-associated invariant T cells have unique innate functions in bacterial infection. Infect Immun. 2012;80:3256-3267.
    • (2012) Infect Immun , vol.80 , pp. 3256-3267
    • Chua, W.-J.1    Truscott, S.M.2    Eickhoff, C.S.3    Blazevic, A.4    Hoft, D.F.5    Hansen, T.H.6
  • 90
    • 0032522801 scopus 로고    scopus 로고
    • Differential capacities of CD4+, CD8+, and CD4-CD8- T cell subsets to express IL-18 receptor and produce IFN-gamma in response to IL-18
    • Tomura M, Maruo S, Mu J, et al. Differential capacities of CD4+, CD8+, and CD4-CD8- T cell subsets to express IL-18 receptor and produce IFN-gamma in response to IL-18. J Immunol. 1998;160:3759-3765.
    • (1998) J Immunol , vol.160 , pp. 3759-3765
    • Tomura, M.1    Maruo, S.2    Mu, J.3
  • 91
    • 77954701928 scopus 로고    scopus 로고
    • Human mucosal associated invariant T cells detect bacterially infected cells
    • Gold MC, Cerri S, Smyk-Pearson S, et al. Human mucosal associated invariant T cells detect bacterially infected cells. PLoS Biol. 2010;8:e1000407.
    • (2010) PLoS Biol , vol.8
    • Gold, M.C.1    Cerri, S.2    Smyk-Pearson, S.3
  • 92
    • 77954914800 scopus 로고    scopus 로고
    • Antimicrobial activity of mucosal-associated invariant T cells
    • Le Bourhis L, Martin E, Péguillet I, et al. Antimicrobial activity of mucosal-associated invariant T cells. Nat Immunol. 2010;11:701-708.
    • (2010) Nat Immunol , vol.11 , pp. 701-708
    • Le Bourhis, L.1    Martin, E.2    Péguillet, I.3
  • 93
    • 84867608542 scopus 로고    scopus 로고
    • Human thymic MR1-restricted MAIT cells are innate pathogen-reactive effectors that adapt following thymic egress
    • Gold MC, Eid T, Smyk-Pearson S, et al. Human thymic MR1-restricted MAIT cells are innate pathogen-reactive effectors that adapt following thymic egress. Mucosal Immunol. 2013;6:35-44.
    • (2013) Mucosal Immunol , vol.6 , pp. 35-44
    • Gold, M.C.1    Eid, T.2    Smyk-Pearson, S.3
  • 95
    • 84985992329 scopus 로고    scopus 로고
    • Nonreversible MAIT cell-dysfunction in chronic hepatitis C virus infection despite successful interferon-free therapy
    • Hengst J, Strunz B, Deterding K, et al. Nonreversible MAIT cell-dysfunction in chronic hepatitis C virus infection despite successful interferon-free therapy. Eur J Immunol. 2016;46:2204-2210.
    • (2016) Eur J Immunol , vol.46 , pp. 2204-2210
    • Hengst, J.1    Strunz, B.2    Deterding, K.3
  • 97
    • 84874085954 scopus 로고    scopus 로고
    • Activation, exhaustion, and persistent decline of the antimicrobial MR1-restricted MAIT-cell population in chronic HIV-1 infection
    • Leeansyah E, Ganesh A, Quigley MF, Sönnerborg A, Andersson J, Hunt PW. Activation, exhaustion, and persistent decline of the antimicrobial MR1-restricted MAIT-cell population in chronic HIV-1 infection. Blood. 2013;121:1124-1135.
    • (2013) Blood , vol.121 , pp. 1124-1135
    • Leeansyah, E.1    Ganesh, A.2    Quigley, M.F.3    Sönnerborg, A.4    Andersson, J.5    Hunt, P.W.6
  • 98
  • 99
    • 84867577705 scopus 로고    scopus 로고
    • CXCR3-dependent recruitment and CCR6-mediated positioning of Th-17 cells in the inflamed liver
    • Oo YH, Banz V, Kavanagh D, et al. CXCR3-dependent recruitment and CCR6-mediated positioning of Th-17 cells in the inflamed liver. J Hepatol. 2012;57:1044-1051.
    • (2012) J Hepatol , vol.57 , pp. 1044-1051
    • Oo, Y.H.1    Banz, V.2    Kavanagh, D.3
  • 100
    • 84975726320 scopus 로고    scopus 로고
    • Biliary epithelium and liver B cells exposed to bacteria activate intrahepatic MAIT cells through MR1
    • Jeffery HC, van Wilgenburg B, Kurioka A, et al. Biliary epithelium and liver B cells exposed to bacteria activate intrahepatic MAIT cells through MR1. J Hepatol. 2016;64:1118-1127.
    • (2016) J Hepatol , vol.64 , pp. 1118-1127
    • Jeffery, H.C.1    van Wilgenburg, B.2    Kurioka, A.3
  • 102
    • 84920109139 scopus 로고    scopus 로고
    • G-protein-coupled bile acid receptor 1 (GPBAR1, TGR5) agonists reduce the production of proinflammatory cytokines and stabilize the alternative macrophage phenotype
    • Högenauer K, Arista L, Schmiedeberg N, et al. G-protein-coupled bile acid receptor 1 (GPBAR1, TGR5) agonists reduce the production of proinflammatory cytokines and stabilize the alternative macrophage phenotype. J Med Chem. 2014;57:10343-10354.
    • (2014) J Med Chem , vol.57 , pp. 10343-10354
    • Högenauer, K.1    Arista, L.2    Schmiedeberg, N.3
  • 103
    • 33748809238 scopus 로고    scopus 로고
    • Nuclear receptors in human immune cells: expression and correlations
    • Schote AB, Turner JD, Schiltz J, Muller CP. Nuclear receptors in human immune cells: expression and correlations. Mol Immunol. 2007;44:1436-1445.
    • (2007) Mol Immunol , vol.44 , pp. 1436-1445
    • Schote, A.B.1    Turner, J.D.2    Schiltz, J.3    Muller, C.P.4
  • 104
    • 84888798215 scopus 로고    scopus 로고
    • Bile acids PKA-dependently induce a switch of the IL-10/IL-12 ratio and reduce proinflammatory capability of human macrophages
    • Haselow K, Bode JG, Wammers M, et al. Bile acids PKA-dependently induce a switch of the IL-10/IL-12 ratio and reduce proinflammatory capability of human macrophages. J Leukoc Biol. 2013;94:1253-1264.
    • (2013) J Leukoc Biol , vol.94 , pp. 1253-1264
    • Haselow, K.1    Bode, J.G.2    Wammers, M.3
  • 106
  • 107
    • 80053308007 scopus 로고    scopus 로고
    • The G-Protein-coupled bile acid receptor, Gpbar1 (TGR5), negatively regulates hepatic inflammatory response through antagonizing nuclear factor kappa light-chain enhancer of activated B cells (NF-κB) in mice
    • Wang YD, Chen WD, Yu D, Forman BM, Huang W. The G-Protein-coupled bile acid receptor, Gpbar1 (TGR5), negatively regulates hepatic inflammatory response through antagonizing nuclear factor kappa light-chain enhancer of activated B cells (NF-κB) in mice. Hepatology. 2011;54:1421-1432.
    • (2011) Hepatology , vol.54 , pp. 1421-1432
    • Wang, Y.D.1    Chen, W.D.2    Yu, D.3    Forman, B.M.4    Huang, W.5
  • 108
    • 0026657890 scopus 로고
    • Differential effects of chenodeoxycholic and ursodeoxycholic acids on interleukin 1, interleukin 6 and tumor necrosis factor-alpha production by monocytes
    • Calmus Y, Guechot J, Podevin P, Bonnefis MT, Giboudeau J, Poupon R. Differential effects of chenodeoxycholic and ursodeoxycholic acids on interleukin 1, interleukin 6 and tumor necrosis factor-alpha production by monocytes. Hepatology. 1992;16:719-723.
    • (1992) Hepatology , vol.16 , pp. 719-723
    • Calmus, Y.1    Guechot, J.2    Podevin, P.3    Bonnefis, M.T.4    Giboudeau, J.5    Poupon, R.6
  • 109
    • 77149159568 scopus 로고    scopus 로고
    • The bile acid receptor FXR is a modulator of intestinal innate immunity
    • Vavassori P, Mencarelli A, Renga B, Distrutti E, Fiorucci S. The bile acid receptor FXR is a modulator of intestinal innate immunity. J Immunol. 2009;183:6251-6261.
    • (2009) J Immunol , vol.183 , pp. 6251-6261
    • Vavassori, P.1    Mencarelli, A.2    Renga, B.3    Distrutti, E.4    Fiorucci, S.5
  • 110
    • 84994817318 scopus 로고    scopus 로고
    • Bile acids control inflammation and metabolic disorder through inhibition of NLRP3 inflammasome
    • Guo C, Xie S, Chi Z, et al. Bile acids control inflammation and metabolic disorder through inhibition of NLRP3 inflammasome. Immunity. 2016;45:802-816.
    • (2016) Immunity , vol.45 , pp. 802-816
    • Guo, C.1    Xie, S.2    Chi, Z.3
  • 111
    • 65649124573 scopus 로고    scopus 로고
    • Bile-acid-induced cell injury and protection
    • Perez MJ, Briz O. Bile-acid-induced cell injury and protection. World J Gastroenterol. 2009;15:1677-1689.
    • (2009) World J Gastroenterol , vol.15 , pp. 1677-1689
    • Perez, M.J.1    Briz, O.2
  • 112
    • 85014700985 scopus 로고    scopus 로고
    • The role of inflammation in the mechanisms of bile acid-induced liver damage
    • Cai S-Y, Boyer JL. The role of inflammation in the mechanisms of bile acid-induced liver damage. Dig Dis. 2017;35:232-234.
    • (2017) Dig Dis , vol.35 , pp. 232-234
    • Cai, S.-Y.1    Boyer, J.L.2
  • 113
    • 85022085353 scopus 로고    scopus 로고
    • Bile acids initiate cholestatic liver injury by triggering a hepatocyte-specific inflammatory response
    • Cai S-Y, Ouyang X, Chen Y, et al. Bile acids initiate cholestatic liver injury by triggering a hepatocyte-specific inflammatory response. JCI Insight. 2017;2:e90780.
    • (2017) JCI Insight , vol.2
    • Cai, S.-Y.1    Ouyang, X.2    Chen, Y.3
  • 114
    • 34250894871 scopus 로고    scopus 로고
    • In vivo imaging of farnesoid X receptor activity reveals the ileum as the primary bile acid signaling tissue
    • Houten SM, Volle DH, Cummins CL, Mangelsdorf DJ, Auwerx J. In vivo imaging of farnesoid X receptor activity reveals the ileum as the primary bile acid signaling tissue. Mol Endocrinol. 2007;21:1312-1323.
    • (2007) Mol Endocrinol , vol.21 , pp. 1312-1323
    • Houten, S.M.1    Volle, D.H.2    Cummins, C.L.3    Mangelsdorf, D.J.4    Auwerx, J.5
  • 115
    • 78650793157 scopus 로고    scopus 로고
    • Bile acids induce inflammatory genes in hepatocytes
    • Allen K, Jaeschke H, Copple BL. Bile acids induce inflammatory genes in hepatocytes. Am J Pathol. 2011;178:175-186.
    • (2011) Am J Pathol , vol.178 , pp. 175-186
    • Allen, K.1    Jaeschke, H.2    Copple, B.L.3
  • 116
    • 0042766884 scopus 로고    scopus 로고
    • Neutrophils aggravate acute liver injury during obstructive cholestasis in bile duct–ligated mice
    • Gujral JS, Farhood A, Bajt ML, Jaeschke H. Neutrophils aggravate acute liver injury during obstructive cholestasis in bile duct–ligated mice. Hepatology. 2003;38:355-363.
    • (2003) Hepatology , vol.38 , pp. 355-363
    • Gujral, J.S.1    Farhood, A.2    Bajt, M.L.3    Jaeschke, H.4
  • 117
    • 85007483163 scopus 로고    scopus 로고
    • Chenodeoxycholic acid activates NLRP3 inflammasome and contributes to cholestatic liver fibrosis
    • Gong Z, Zhou J, Zhao S, et al. Chenodeoxycholic acid activates NLRP3 inflammasome and contributes to cholestatic liver fibrosis. Oncotarget. 2016;7:83951-83963.
    • (2016) Oncotarget , vol.7 , pp. 83951-83963
    • Gong, Z.1    Zhou, J.2    Zhao, S.3
  • 118
    • 85016994536 scopus 로고    scopus 로고
    • Farnesoid X receptor regulation of the NLRP3 inflammasome underlies cholestasis-associated sepsis
    • Hao H, Cao L, Jiang C, et al. Farnesoid X receptor regulation of the NLRP3 inflammasome underlies cholestasis-associated sepsis. Cell Metab. 2017;25:856-867.e5.
    • (2017) Cell Metab , vol.25 , pp. 856-867.e5
    • Hao, H.1    Cao, L.2    Jiang, C.3
  • 119
    • 77952674868 scopus 로고    scopus 로고
    • The bile acid sensor farnesoid X receptor is a modulator of liver immunity in a rodent model of acute hepatitis
    • Mencarelli A, Renga B, Migliorati M, et al. The bile acid sensor farnesoid X receptor is a modulator of liver immunity in a rodent model of acute hepatitis. J Immunol. 2009;183:6657-6666.
    • (2009) J Immunol , vol.183 , pp. 6657-6666
    • Mencarelli, A.1    Renga, B.2    Migliorati, M.3
  • 120
    • 0034603119 scopus 로고    scopus 로고
    • Eta-1 (osteopontin): An early component of type-1 (cell-mediated) immunity
    • Ashkar S, Weber GF, Panoutsakopoulou V, et al. Eta-1 (osteopontin): An early component of type-1 (cell-mediated) immunity. Science. 2000;287:860-864.
    • (2000) Science , vol.287 , pp. 860-864
    • Ashkar, S.1    Weber, G.F.2    Panoutsakopoulou, V.3
  • 121
    • 84912132591 scopus 로고    scopus 로고
    • Shaping macrophages function and innate immunity by bile acids: mechanisms and implication in cholestatic liver diseases
    • Calmus Y, Poupon R. Shaping macrophages function and innate immunity by bile acids: mechanisms and implication in cholestatic liver diseases. Clin Res Hepatol Gastroenterol. 2014;38:550-556.
    • (2014) Clin Res Hepatol Gastroenterol , vol.38 , pp. 550-556
    • Calmus, Y.1    Poupon, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.