메뉴 건너뛰기




Volumn 26, Issue 1, 2014, Pages 41-48

The interplay between the innate immune system and the microbiota

Author keywords

[No Author keywords available]

Indexed keywords

BETA INTERFERON; CHEMOKINE RECEPTOR CX3CR1; INTERLEUKIN 22; INTERLEUKIN 25; LECTIN; NUCLEOTIDE BINDING OLIGOMERIZATION DOMAIN LIKE RECEPTOR; PATTERN RECOGNITION RECEPTOR; RETINOID RELATED ORPHAN RECEPTOR GAMMA; TOLL LIKE RECEPTOR; TOLL LIKE RECEPTOR 5;

EID: 84888084911     PISSN: 09527915     EISSN: 18790372     Source Type: Journal    
DOI: 10.1016/j.coi.2013.10.016     Document Type: Review
Times cited : (113)

References (74)
  • 1
    • 0024955886 scopus 로고
    • Approaching the asymptote? Evolution and revolution in immunology
    • Janeway C.A. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol 1989, 54(Pt 1):1-13.
    • (1989) Cold Spring Harb Symp Quant Biol , vol.54 , Issue.PART 1 , pp. 1-13
    • Janeway, C.A.1
  • 2
    • 66949122854 scopus 로고    scopus 로고
    • Approaching the asymptote: 20 years later
    • Medzhitov R. Approaching the asymptote: 20 years later. Immunity 2009, 30:766-775.
    • (2009) Immunity , vol.30 , pp. 766-775
    • Medzhitov, R.1
  • 3
    • 3242664636 scopus 로고    scopus 로고
    • Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis
    • Rakoff-Nahoum S., et al. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 2004, 118:229-241.
    • (2004) Cell , vol.118 , pp. 229-241
    • Rakoff-Nahoum, S.1
  • 4
    • 68149091349 scopus 로고    scopus 로고
    • Innate and adaptive immunity cooperate flexibly to maintain host-microbiota mutualism
    • Slack E., et al. Innate and adaptive immunity cooperate flexibly to maintain host-microbiota mutualism. Science 2009, 325:617-620.
    • (2009) Science , vol.325 , pp. 617-620
    • Slack, E.1
  • 5
    • 0030831210 scopus 로고    scopus 로고
    • A human homologue of the Drosophila Toll protein signals activation of adaptive immunity
    • Medzhitov R., Preston-Hurlburt P., Janeway C.A. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 1997, 388:394-397.
    • (1997) Nature , vol.388 , pp. 394-397
    • Medzhitov, R.1    Preston-Hurlburt, P.2    Janeway, C.A.3
  • 6
    • 0032509295 scopus 로고    scopus 로고
    • Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene
    • Poltorak A., et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 1998, 282:2085-2088.
    • (1998) Science , vol.282 , pp. 2085-2088
    • Poltorak, A.1
  • 8
    • 5444262511 scopus 로고    scopus 로고
    • Toll-like receptor control of the adaptive immune responses
    • Iwasaki A., Medzhitov R. Toll-like receptor control of the adaptive immune responses. Nat Immunol 2004, 5:987-995.
    • (2004) Nat Immunol , vol.5 , pp. 987-995
    • Iwasaki, A.1    Medzhitov, R.2
  • 9
    • 0032133278 scopus 로고    scopus 로고
    • MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways
    • Medzhitov R., et al. MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Mol Cell 1998, 2:253-258.
    • (1998) Mol Cell , vol.2 , pp. 253-258
    • Medzhitov, R.1
  • 10
    • 0031423761 scopus 로고    scopus 로고
    • MyD88: an adapter that recruits IRAK to the IL-1 receptor complex
    • Wesche H., et al. MyD88: an adapter that recruits IRAK to the IL-1 receptor complex. Immunity 1997, 7:837-847.
    • (1997) Immunity , vol.7 , pp. 837-847
    • Wesche, H.1
  • 11
    • 77950250064 scopus 로고    scopus 로고
    • Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5
    • Vijay-Kumar M., et al. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science 2010, 328:228-231.
    • (2010) Science , vol.328 , pp. 228-231
    • Vijay-Kumar, M.1
  • 12
    • 54549122338 scopus 로고    scopus 로고
    • Innate immunity and intestinal microbiota in the development of Type 1 diabetes
    • Wen L., et al. Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature 2008, 455:1109-1113.
    • (2008) Nature , vol.455 , pp. 1109-1113
    • Wen, L.1
  • 13
    • 84866461477 scopus 로고    scopus 로고
    • Familial transmission rather than defective innate immunity shapes the distinct intestinal microbiota of TLR-deficient mice
    • Ubeda C., et al. Familial transmission rather than defective innate immunity shapes the distinct intestinal microbiota of TLR-deficient mice. J Exp Med 2012, 209:1445-1456.
    • (2012) J Exp Med , vol.209 , pp. 1445-1456
    • Ubeda, C.1
  • 14
    • 79956311926 scopus 로고    scopus 로고
    • The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota
    • Round J.L., et al. The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science 2011, 332:974-977.
    • (2011) Science , vol.332 , pp. 974-977
    • Round, J.L.1
  • 15
    • 56749146467 scopus 로고    scopus 로고
    • Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis
    • Bouskra D., et al. Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature 2008, 456:507-510.
    • (2008) Nature , vol.456 , pp. 507-510
    • Bouskra, D.1
  • 16
    • 76249120134 scopus 로고    scopus 로고
    • Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity
    • Clarke T.B., et al. Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nat Med 2010, 16:228-231.
    • (2010) Nat Med , vol.16 , pp. 228-231
    • Clarke, T.B.1
  • 17
    • 70349468054 scopus 로고    scopus 로고
    • Nod2 is required for the regulation of commensal microbiota in the intestine
    • Petnicki-Ocwieja T., et al. Nod2 is required for the regulation of commensal microbiota in the intestine. Proc Natl Acad Sci U S A 2009, 106:15813-15818.
    • (2009) Proc Natl Acad Sci U S A , vol.106 , pp. 15813-15818
    • Petnicki-Ocwieja, T.1
  • 18
    • 44349124113 scopus 로고    scopus 로고
    • The genetics and immunopathogenesis of inflammatory bowel disease
    • Cho J.H. The genetics and immunopathogenesis of inflammatory bowel disease. Nat Rev Immunol 2008, 8:458-466.
    • (2008) Nat Rev Immunol , vol.8 , pp. 458-466
    • Cho, J.H.1
  • 19
    • 13244292161 scopus 로고    scopus 로고
    • Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract
    • Kobayashi K.S., et al. Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science 2005, 307:731-734.
    • (2005) Science , vol.307 , pp. 731-734
    • Kobayashi, K.S.1
  • 20
    • 58549111588 scopus 로고    scopus 로고
    • Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface
    • Vaishnava S., et al. Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface. Proc Natl Acad Sci U S A 2008, 105:20858-20863.
    • (2008) Proc Natl Acad Sci U S A , vol.105 , pp. 20858-20863
    • Vaishnava, S.1
  • 21
    • 74049122536 scopus 로고    scopus 로고
    • Enteric defensins are essential regulators of intestinal microbial ecology
    • Salzman N.H., et al. Enteric defensins are essential regulators of intestinal microbial ecology. Nat Immunol 2010, 11:76-83.
    • (2010) Nat Immunol , vol.11 , pp. 76-83
    • Salzman, N.H.1
  • 22
    • 80054122238 scopus 로고    scopus 로고
    • The antibacterial lectin RegIIIgamma promotes the spatial segregation of microbiota and host in the intestine
    • Vaishnava S., et al. The antibacterial lectin RegIIIgamma promotes the spatial segregation of microbiota and host in the intestine. Science 2011, 334:255-258.
    • (2011) Science , vol.334 , pp. 255-258
    • Vaishnava, S.1
  • 23
    • 60749104683 scopus 로고    scopus 로고
    • The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis
    • Franchi L., et al. The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat Immunol 2009, 10:241-247.
    • (2009) Nat Immunol , vol.10 , pp. 241-247
    • Franchi, L.1
  • 24
    • 79957576718 scopus 로고    scopus 로고
    • NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis
    • Elinav E., et al. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell 2011, 145:745-757.
    • (2011) Cell , vol.145 , pp. 745-757
    • Elinav, E.1
  • 25
    • 84878971321 scopus 로고    scopus 로고
    • Microbiota-induced activation of epithelial IL-6 signaling links inflammasome-driven inflammation with transmissible cancer
    • Hu B., et al. Microbiota-induced activation of epithelial IL-6 signaling links inflammasome-driven inflammation with transmissible cancer. Proc Natl Acad Sci U S A 2013, 110:9862-9867.
    • (2013) Proc Natl Acad Sci U S A , vol.110 , pp. 9862-9867
    • Hu, B.1
  • 26
    • 84856957894 scopus 로고    scopus 로고
    • Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity
    • Henao-Mejia J., et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 2012, 482:179-185.
    • (2012) Nature , vol.482 , pp. 179-185
    • Henao-Mejia, J.1
  • 27
    • 84855989829 scopus 로고    scopus 로고
    • Inflammasomes in health and disease
    • Strowig T., et al. Inflammasomes in health and disease. Nature 2012, 481:278-286.
    • (2012) Nature , vol.481 , pp. 278-286
    • Strowig, T.1
  • 28
    • 77955390094 scopus 로고    scopus 로고
    • Redundant roles for inflammasome receptors NLRP3 and NLRC4 in host defense against Salmonella
    • Broz P., et al. Redundant roles for inflammasome receptors NLRP3 and NLRC4 in host defense against Salmonella. J Exp Med 2010, 207:1745-1755.
    • (2010) J Exp Med , vol.207 , pp. 1745-1755
    • Broz, P.1
  • 29
    • 84859911615 scopus 로고    scopus 로고
    • NLRC4-driven production of IL-1beta discriminates between pathogenic and commensal bacteria and promotes host intestinal defense
    • Franchi L., et al. NLRC4-driven production of IL-1beta discriminates between pathogenic and commensal bacteria and promotes host intestinal defense. Nat Immunol 2012, 13:449-456.
    • (2012) Nat Immunol , vol.13 , pp. 449-456
    • Franchi, L.1
  • 30
    • 79956314385 scopus 로고    scopus 로고
    • Host defense pathways: role of redundancy and compensation in infectious disease phenotypes
    • Nish S., Medzhitov R. Host defense pathways: role of redundancy and compensation in infectious disease phenotypes. Immunity 2011, 34:629-636.
    • (2011) Immunity , vol.34 , pp. 629-636
    • Nish, S.1    Medzhitov, R.2
  • 31
    • 84861964286 scopus 로고    scopus 로고
    • Interactions between commensal fungi and the C-type lectin receptor Dectin-1 influence colitis
    • Iliev I.D., et al. Interactions between commensal fungi and the C-type lectin receptor Dectin-1 influence colitis. Science 2012, 336:1314-1317.
    • (2012) Science , vol.336 , pp. 1314-1317
    • Iliev, I.D.1
  • 32
    • 34548399000 scopus 로고    scopus 로고
    • Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae
    • Lupp C., et al. Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell Host Microbe 2007, 2:204.
    • (2007) Cell Host Microbe , vol.2 , pp. 204
    • Lupp, C.1
  • 33
    • 78649686679 scopus 로고    scopus 로고
    • A pyrosequencing study in twins shows that gastrointestinal microbial profiles vary with inflammatory bowel disease phenotypes
    • 1844-1854 e1
    • Willing B.P., et al. A pyrosequencing study in twins shows that gastrointestinal microbial profiles vary with inflammatory bowel disease phenotypes. Gastroenterology 2010, 139. 1844-1854 e1.
    • (2010) Gastroenterology , vol.139
    • Willing, B.P.1
  • 34
    • 84879786685 scopus 로고    scopus 로고
    • The emerging world of the fungal microbiome
    • Huffnagle G.B., Noverr M.C. The emerging world of the fungal microbiome. Trends Microbiol 2013, 21:334-341.
    • (2013) Trends Microbiol , vol.21 , pp. 334-341
    • Huffnagle, G.B.1    Noverr, M.C.2
  • 35
    • 57449118239 scopus 로고    scopus 로고
    • Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense
    • Satoh-Takayama N., et al. Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense. Immunity 2008, 29:958-970.
    • (2008) Immunity , vol.29 , pp. 958-970
    • Satoh-Takayama, N.1
  • 36
    • 57849117363 scopus 로고    scopus 로고
    • RORgammat and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+ cells
    • Sanos S.L., et al. RORgammat and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+ cells. Nat Immunol 2009, 10:83-91.
    • (2009) Nat Immunol , vol.10 , pp. 83-91
    • Sanos, S.L.1
  • 37
    • 78049385155 scopus 로고    scopus 로고
    • Lineage relationship analysis of RORgammat+ innate lymphoid cells
    • Sawa S., et al. Lineage relationship analysis of RORgammat+ innate lymphoid cells. Science 2010, 330:665-669.
    • (2010) Science , vol.330 , pp. 665-669
    • Sawa, S.1
  • 38
    • 79952986650 scopus 로고    scopus 로고
    • RORgammat+ innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota
    • Sawa S., et al. RORgammat+ innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota. Nat Immunol 2011, 12:320-326.
    • (2011) Nat Immunol , vol.12 , pp. 320-326
    • Sawa, S.1
  • 39
    • 84874082076 scopus 로고    scopus 로고
    • CX(3)CR1(+) macrophages support IL-22 production by innate lymphoid cells during infection with Citrobacter rodentium
    • Manta C., et al. CX(3)CR1(+) macrophages support IL-22 production by innate lymphoid cells during infection with Citrobacter rodentium. Mucosal Immunol 2013, 6:177-188.
    • (2013) Mucosal Immunol , vol.6 , pp. 177-188
    • Manta, C.1
  • 40
    • 84857444876 scopus 로고    scopus 로고
    • Interleukin 23 production by intestinal CD103(+)CD11b(+) dendritic cells in response to bacterial flagellin enhances mucosal innate immune defense
    • Kinnebrew M.A., et al. Interleukin 23 production by intestinal CD103(+)CD11b(+) dendritic cells in response to bacterial flagellin enhances mucosal innate immune defense. Immunity 2012, 36:276-287.
    • (2012) Immunity , vol.36 , pp. 276-287
    • Kinnebrew, M.A.1
  • 41
    • 78651500757 scopus 로고    scopus 로고
    • Microbiota-induced tertiary lymphoid tissues aggravate inflammatory disease in the absence of RORgamma t and LTi cells
    • Lochner M., et al. Microbiota-induced tertiary lymphoid tissues aggravate inflammatory disease in the absence of RORgamma t and LTi cells. J Exp Med 2011, 208:125-134.
    • (2011) J Exp Med , vol.208 , pp. 125-134
    • Lochner, M.1
  • 42
    • 84861989207 scopus 로고    scopus 로고
    • Innate lymphoid cells promote anatomical containment of lymphoid-resident commensal bacteria
    • Sonnenberg G.F., et al. Innate lymphoid cells promote anatomical containment of lymphoid-resident commensal bacteria. Science 2012, 336:1321-1325.
    • (2012) Science , vol.336 , pp. 1321-1325
    • Sonnenberg, G.F.1
  • 43
    • 78751706261 scopus 로고    scopus 로고
    • CD4(+) lymphoid tissue-inducer cells promote innate immunity in the gut
    • Sonnenberg G.F., et al. CD4(+) lymphoid tissue-inducer cells promote innate immunity in the gut. Immunity 2011, 34:122-134.
    • (2011) Immunity , vol.34 , pp. 122-134
    • Sonnenberg, G.F.1
  • 44
    • 84866547629 scopus 로고    scopus 로고
    • Lymphotoxin regulates commensal responses to enable diet-induced obesity
    • Upadhyay V., et al. Lymphotoxin regulates commensal responses to enable diet-induced obesity. Nat Immunol 2012, 13:947-953.
    • (2012) Nat Immunol , vol.13 , pp. 947-953
    • Upadhyay, V.1
  • 45
    • 84864322646 scopus 로고    scopus 로고
    • Priming of natural killer cells by nonmucosal mononuclear phagocytes requires instructive signals from commensal microbiota
    • Ganal S.C., et al. Priming of natural killer cells by nonmucosal mononuclear phagocytes requires instructive signals from commensal microbiota. Immunity 2012, 37:171-186.
    • (2012) Immunity , vol.37 , pp. 171-186
    • Ganal, S.C.1
  • 46
    • 84864311450 scopus 로고    scopus 로고
    • Commensal bacteria calibrate the activation threshold of innate antiviral immunity
    • Abt M.C., et al. Commensal bacteria calibrate the activation threshold of innate antiviral immunity. Immunity 2012, 37:158-170.
    • (2012) Immunity , vol.37 , pp. 158-170
    • Abt, M.C.1
  • 47
    • 34848889673 scopus 로고    scopus 로고
    • Communicable ulcerative colitis induced by T-bet deficiency in the innate immune system
    • Garrett W.S., et al. Communicable ulcerative colitis induced by T-bet deficiency in the innate immune system. Cell 2007, 131:33-45.
    • (2007) Cell , vol.131 , pp. 33-45
    • Garrett, W.S.1
  • 48
    • 84867856710 scopus 로고    scopus 로고
    • The transcription factor T-bet regulates intestinal inflammation mediated by interleukin-7 receptor+ innate lymphoid cells
    • Powell N., et al. The transcription factor T-bet regulates intestinal inflammation mediated by interleukin-7 receptor+ innate lymphoid cells. Immunity 2012, 37:674-684.
    • (2012) Immunity , vol.37 , pp. 674-684
    • Powell, N.1
  • 49
    • 84873729246 scopus 로고    scopus 로고
    • A T-bet gradient controls the fate and function of CCR6-RORgammat+ innate lymphoid cells
    • Klose C.S., et al. A T-bet gradient controls the fate and function of CCR6-RORgammat+ innate lymphoid cells. Nature 2013, 494:261-265.
    • (2013) Nature , vol.494 , pp. 261-265
    • Klose, C.S.1
  • 50
    • 77951817855 scopus 로고    scopus 로고
    • Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity
    • Neill D.R., et al. Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature 2010, 464:1367-1370.
    • (2010) Nature , vol.464 , pp. 1367-1370
    • Neill, D.R.1
  • 51
    • 75749122181 scopus 로고    scopus 로고
    • Innate production of T(H)2 cytokines by adipose tissue-associated c-Kit(+)Sca-1(+) lymphoid cells
    • Moro K., et al. Innate production of T(H)2 cytokines by adipose tissue-associated c-Kit(+)Sca-1(+) lymphoid cells. Nature 2010, 463:540-544.
    • (2010) Nature , vol.463 , pp. 540-544
    • Moro, K.1
  • 52
    • 77951817294 scopus 로고    scopus 로고
    • IL25 elicits a multipotent progenitor cell population that promotes T(H)2 cytokine responses
    • Saenz S.A., et al. IL25 elicits a multipotent progenitor cell population that promotes T(H)2 cytokine responses. Nature 2010, 464:1362-1366.
    • (2010) Nature , vol.464 , pp. 1362-1366
    • Saenz, S.A.1
  • 53
    • 84872943896 scopus 로고    scopus 로고
    • Invariant natural killer T cells: an innate activation scheme linked to diverse effector functions
    • Brennan P.J., Brigl M., Brenner M.B. Invariant natural killer T cells: an innate activation scheme linked to diverse effector functions. Nat Rev Immunol 2013, 13:101-117.
    • (2013) Nat Rev Immunol , vol.13 , pp. 101-117
    • Brennan, P.J.1    Brigl, M.2    Brenner, M.B.3
  • 54
    • 77949316299 scopus 로고    scopus 로고
    • Commensal microbiota and CD8+ T cells shape the formation of invariant NKT cells
    • Wei B., et al. Commensal microbiota and CD8+ T cells shape the formation of invariant NKT cells. J Immunol 2010, 184:1218-1226.
    • (2010) J Immunol , vol.184 , pp. 1218-1226
    • Wei, B.1
  • 55
    • 84860216630 scopus 로고    scopus 로고
    • Microbial exposure during early life has persistent effects on natural killer T cell function
    • Olszak T., et al. Microbial exposure during early life has persistent effects on natural killer T cell function. Science 2012, 336:489-493.
    • (2012) Science , vol.336 , pp. 489-493
    • Olszak, T.1
  • 56
    • 73949107838 scopus 로고    scopus 로고
    • Intestinal CD103+, but not CX3CR1+, antigen sampling cells migrate in lymph and serve classical dendritic cell functions
    • Schulz O., et al. Intestinal CD103+, but not CX3CR1+, antigen sampling cells migrate in lymph and serve classical dendritic cell functions. J Exp Med 2009, 206:3101-3114.
    • (2009) J Exp Med , vol.206 , pp. 3101-3114
    • Schulz, O.1
  • 57
    • 26844468978 scopus 로고    scopus 로고
    • Essential role for CD103 in the T cell-mediated regulation of experimental colitis
    • Annacker O., et al. Essential role for CD103 in the T cell-mediated regulation of experimental colitis. J Exp Med 2005, 202:1051-1061.
    • (2005) J Exp Med , vol.202 , pp. 1051-1061
    • Annacker, O.1
  • 58
    • 26844538936 scopus 로고    scopus 로고
    • Functional specialization of gut CD103+ dendritic cells in the regulation of tissue-selective T cell homing
    • Johansson-Lindbom B., et al. Functional specialization of gut CD103+ dendritic cells in the regulation of tissue-selective T cell homing. J Exp Med 2005, 202:1063-1073.
    • (2005) J Exp Med , vol.202 , pp. 1063-1073
    • Johansson-Lindbom, B.1
  • 59
    • 84875489998 scopus 로고    scopus 로고
    • Luminal bacteria recruit CD103+ dendritic cells into the intestinal epithelium to sample bacterial antigens for presentation
    • Farache J., et al. Luminal bacteria recruit CD103+ dendritic cells into the intestinal epithelium to sample bacterial antigens for presentation. Immunity 2013, 38:581-595.
    • (2013) Immunity , vol.38 , pp. 581-595
    • Farache, J.1
  • 60
    • 12244297799 scopus 로고    scopus 로고
    • CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance
    • Niess J.H., et al. CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science 2005, 307:254-258.
    • (2005) Science , vol.307 , pp. 254-258
    • Niess, J.H.1
  • 61
    • 84870900504 scopus 로고    scopus 로고
    • Ly6C hi monocytes in the inflamed colon give rise to proinflammatory effector cells and migratory antigen-presenting cells
    • Zigmond E., et al. Ly6C hi monocytes in the inflamed colon give rise to proinflammatory effector cells and migratory antigen-presenting cells. Immunity 2012, 37:1076-1090.
    • (2012) Immunity , vol.37 , pp. 1076-1090
    • Zigmond, E.1
  • 62
    • 84874688283 scopus 로고    scopus 로고
    • Microbiota restricts trafficking of bacteria to mesenteric lymph nodes by CX(3)CR1(hi) cells
    • Diehl G.E., et al. Microbiota restricts trafficking of bacteria to mesenteric lymph nodes by CX(3)CR1(hi) cells. Nature 2013, 494:116-120.
    • (2013) Nature , vol.494 , pp. 116-120
    • Diehl, G.E.1
  • 63
    • 78650647326 scopus 로고    scopus 로고
    • Has the microbiota played a critical role in the evolution of the adaptive immune system?
    • Lee Y.K., Mazmanian S.K. Has the microbiota played a critical role in the evolution of the adaptive immune system?. Science 2010, 330:1768-1773.
    • (2010) Science , vol.330 , pp. 1768-1773
    • Lee, Y.K.1    Mazmanian, S.K.2
  • 64
    • 84862637797 scopus 로고    scopus 로고
    • Gut immune maturation depends on colonization with a host-specific microbiota
    • Chung H., et al. Gut immune maturation depends on colonization with a host-specific microbiota. Cell 2012, 149:1578-1593.
    • (2012) Cell , vol.149 , pp. 1578-1593
    • Chung, H.1
  • 65
    • 84864270714 scopus 로고    scopus 로고
    • ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation
    • Hashimoto T., et al. ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation. Nature 2012, 487:477-481.
    • (2012) Nature , vol.487 , pp. 477-481
    • Hashimoto, T.1
  • 66
    • 77952683762 scopus 로고    scopus 로고
    • Peroxisome proliferator-activated receptor gamma activation is required for maintenance of innate antimicrobial immunity in the colon
    • Peyrin-Biroulet L., et al. Peroxisome proliferator-activated receptor gamma activation is required for maintenance of innate antimicrobial immunity in the colon. Proc Natl Acad Sci U S A 2010, 107:8772-8777.
    • (2010) Proc Natl Acad Sci U S A , vol.107 , pp. 8772-8777
    • Peyrin-Biroulet, L.1
  • 67
    • 84882664672 scopus 로고    scopus 로고
    • Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22
    • Zelante T., et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity 2013, 39:372-385.
    • (2013) Immunity , vol.39 , pp. 372-385
    • Zelante, T.1
  • 68
    • 80155164160 scopus 로고    scopus 로고
    • Exogenous stimuli maintain intraepithelial lymphocytes via aryl hydrocarbon receptor activation
    • Li Y., et al. Exogenous stimuli maintain intraepithelial lymphocytes via aryl hydrocarbon receptor activation. Cell 2011, 147:629-640.
    • (2011) Cell , vol.147 , pp. 629-640
    • Li, Y.1
  • 69
    • 83855160821 scopus 로고    scopus 로고
    • Natural aryl hydrocarbon receptor ligands control organogenesis of intestinal lymphoid follicles
    • Kiss E.A., et al. Natural aryl hydrocarbon receptor ligands control organogenesis of intestinal lymphoid follicles. Science 2011, 334:1561-1565.
    • (2011) Science , vol.334 , pp. 1561-1565
    • Kiss, E.A.1
  • 70
    • 84883432951 scopus 로고    scopus 로고
    • SIGIRR, a negative regulator of TLR/IL-1R signalling promotes microbiota dependent resistance to colonization by enteric bacterial pathogens
    • Sham H.P., et al. SIGIRR, a negative regulator of TLR/IL-1R signalling promotes microbiota dependent resistance to colonization by enteric bacterial pathogens. PLoS Pathog 2013, 9:pe1003539.
    • (2013) PLoS Pathog , vol.9
    • Sham, H.P.1
  • 71
    • 84873372079 scopus 로고    scopus 로고
    • NOD2-mediated dysbiosis predisposes mice to transmissible colitis and colorectal cancer
    • Couturier-Maillard A., et al. NOD2-mediated dysbiosis predisposes mice to transmissible colitis and colorectal cancer. J Clin Invest 2013, 123:700-711.
    • (2013) J Clin Invest , vol.123 , pp. 700-711
    • Couturier-Maillard, A.1
  • 72
    • 80052580369 scopus 로고    scopus 로고
    • Nod2 is essential for temporal development of intestinal microbial communities
    • Rehman A., et al. Nod2 is essential for temporal development of intestinal microbial communities. Gut 2011, 60:1354-1362.
    • (2011) Gut , vol.60 , pp. 1354-1362
    • Rehman, A.1
  • 73
    • 84877292277 scopus 로고    scopus 로고
    • Nod1 and Nod2 signaling does not alter the composition of intestinal bacterial communities at homeostasis
    • Robertson S.J., et al. Nod1 and Nod2 signaling does not alter the composition of intestinal bacterial communities at homeostasis. Gut Microbes 2013, 4:222-231.
    • (2013) Gut Microbes , vol.4 , pp. 222-231
    • Robertson, S.J.1
  • 74
    • 84863718303 scopus 로고    scopus 로고
    • Analysis of gut microbial regulation of host gene expression along the length of the gut and regulation of gut microbial ecology through MyD88
    • Larsson E., et al. Analysis of gut microbial regulation of host gene expression along the length of the gut and regulation of gut microbial ecology through MyD88. Gut 2012, 61:1124-1131.
    • (2012) Gut , vol.61 , pp. 1124-1131
    • Larsson, E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.