-
1
-
-
0035994641
-
Normal mammalian skeletal muscle and its phenotypic plasticity
-
Hoppeler H, Fluck M. Normal mammalian skeletal muscle and its phenotypic plasticity. J Exp Biol. 2002;205:2143-52.
-
(2002)
J Exp Biol
, vol.205
, pp. 2143-2152
-
-
Hoppeler, H.1
Fluck, M.2
-
2
-
-
0025047553
-
Skeletal muscle metabolism is a major determinant of resting energy expenditure
-
Zurlo F, Larson K, Bogardus C, Ravussin E. Skeletal muscle metabolism is a major determinant of resting energy expenditure. J Clin Invest. 1990;86:1423-7.
-
(1990)
J Clin Invest
, vol.86
, pp. 1423-1427
-
-
Zurlo, F.1
Larson, K.2
Bogardus, C.3
Ravussin, E.4
-
3
-
-
84873378527
-
Exercise metabolism and the molecular regulation of skeletal muscle adaptation
-
Egan B, Zierath JR. Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab. 2013;17:162-84.
-
(2013)
Cell Metab
, vol.17
, pp. 162-184
-
-
Egan, B.1
Zierath, J.R.2
-
4
-
-
85028214297
-
-
Frontera WR, Ochala J. Skeletal muscle, a brief review of structure and function: Calcif Tissue Int. 2014.
-
(2014)
-
-
Frontera, W.R.1
Ochala, J.2
-
5
-
-
0021943001
-
Energetic aspects of skeletal muscle contraction: implications of fiber types
-
Rall JA. Energetic aspects of skeletal muscle contraction: implications of fiber types. Exerc Sport Sci Rev. 1985;13:33-74.
-
(1985)
Exerc Sport Sci Rev
, vol.13
, pp. 33-74
-
-
Rall, J.A.1
-
6
-
-
0019758267
-
Insulin resistance: a universal finding in diabetic states
-
Bull Schweiz Akad Med Wiss
-
Defronzo RA, Simonson D, Ferrannini E, Barrett E. Insulin resistance: a universal finding in diabetic states. Bull Schweiz Akad Med Wiss. 1981-1982:223-238.
-
(1981)
, pp. 223-238
-
-
Defronzo, R.A.1
Simonson, D.2
Ferrannini, E.3
Barrett, E.4
-
7
-
-
0023838435
-
The disposal of an oral glucose load in patients with non-insulin-dependent diabetes
-
Ferrannini E, Simonson DC, Katz LD, Reichard Jr G, Bevilacqua S, Barrett EJ, et al. The disposal of an oral glucose load in patients with non-insulin-dependent diabetes. Metabolism. 1988;37:79-85.
-
(1988)
Metabolism
, vol.37
, pp. 79-85
-
-
Ferrannini, E.1
Simonson, D.C.2
Katz, L.D.3
Reichard, G.4
Bevilacqua, S.5
Barrett, E.J.6
-
8
-
-
0026566258
-
Metabolic adaptations to training precede changes in muscle mitochondrial capacity
-
Green HJ, Helyar R, Ball-Burnett M, Kowalchuk N, Symon S, Farrance B. Metabolic adaptations to training precede changes in muscle mitochondrial capacity. J Appl Physiol. 1992;72:484-91.
-
(1992)
J Appl Physiol
, vol.72
, pp. 484-491
-
-
Green, H.J.1
Helyar, R.2
Ball-Burnett, M.3
Kowalchuk, N.4
Symon, S.5
Farrance, B.6
-
9
-
-
57349091231
-
Divergent cell signaling after short-term intensified endurance training in human skeletal muscle
-
Benziane B, Burton TJ, Scanlan B, Galuska D, Canny BJ, Chibalin AV, et al. Divergent cell signaling after short-term intensified endurance training in human skeletal muscle. Am J Physiol Endocrinol Metab. 2008;295:E1427-38.
-
(2008)
Am J Physiol Endocrinol Metab
, vol.295
, pp. E1427-E1438
-
-
Benziane, B.1
Burton, T.J.2
Scanlan, B.3
Galuska, D.4
Canny, B.J.5
Chibalin, A.V.6
-
10
-
-
0036291378
-
Regulation of fat metabolism in skeletal muscle
-
Jeukendrup AE. Regulation of fat metabolism in skeletal muscle. Ann N Y Acad Sci. 2002;967:217-35.
-
(2002)
Ann N Y Acad Sci
, vol.967
, pp. 217-235
-
-
Jeukendrup, A.E.1
-
11
-
-
77951444244
-
Anabolic and catabolic pathways regulating skeletal muscle mass
-
McCarthy JJ, Esser KA. Anabolic and catabolic pathways regulating skeletal muscle mass. Curr Opin Clin Nutr Metab Care. 2010;13:230-5.
-
(2010)
Curr Opin Clin Nutr Metab Care
, vol.13
, pp. 230-235
-
-
McCarthy, J.J.1
Esser, K.A.2
-
12
-
-
0037341240
-
Effect of short-term fasting and refeeding on transcriptional regulation of metabolic genes in human skeletal muscle
-
Pilegaard H, Saltin B, Neufer PD. Effect of short-term fasting and refeeding on transcriptional regulation of metabolic genes in human skeletal muscle. Diabetes. 2003;52:657-62.
-
(2003)
Diabetes
, vol.52
, pp. 657-662
-
-
Pilegaard, H.1
Saltin, B.2
Neufer, P.D.3
-
13
-
-
0027378025
-
Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration
-
Romijn JA, Coyle EF, Sidossis LS, Gastaldelli A, Horowitz JF, Endert E, et al. Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am J Physiol. 1993;265:E380-91.
-
(1993)
Am J Physiol
, vol.265
, pp. E380-E391
-
-
Romijn, J.A.1
Coyle, E.F.2
Sidossis, L.S.3
Gastaldelli, A.4
Horowitz, J.F.5
Endert, E.6
-
14
-
-
0035476881
-
The effects of increasing exercise intensity on muscle fuel utilisation in humans
-
van Loon LJ, Greenhaff PL, Constantin-Teodosiu D, Saris WH, Wagenmakers AJ. The effects of increasing exercise intensity on muscle fuel utilisation in humans. J Physiol. 2001;536:295-304.
-
(2001)
J Physiol
, vol.536
, pp. 295-304
-
-
Loon, L.J.1
Greenhaff, P.L.2
Constantin-Teodosiu, D.3
Saris, W.H.4
Wagenmakers, A.J.5
-
15
-
-
84925843375
-
Physiological mechanisms of action of incretin and insulin in regulating skeletal muscle metabolism
-
Abdulla H, Phillips B, Smith K, Wilkinson D, Atherton PJ, Idris I. Physiological mechanisms of action of incretin and insulin in regulating skeletal muscle metabolism. Curr Diabetes Rev. 2014;10:327-35.
-
(2014)
Curr Diabetes Rev
, vol.10
, pp. 327-335
-
-
Abdulla, H.1
Phillips, B.2
Smith, K.3
Wilkinson, D.4
Atherton, P.J.5
Idris, I.6
-
17
-
-
33749031807
-
Molecular components of the mammalian circadian clock
-
15 Spec No 2
-
Ko CH, Takahashi JS. Molecular components of the mammalian circadian clock. Hum Mol Genet. 2006;15 Spec No 2:R271-7.
-
(2006)
Hum Mol Genet
, pp. R271-R277
-
-
Ko, C.H.1
Takahashi, J.S.2
-
18
-
-
0344323530
-
Peripheral circadian oscillators and their rhythmic regulation
-
Fukuhara C, Tosini G. Peripheral circadian oscillators and their rhythmic regulation. Front Biosci. 2003;8:d642-51.
-
(2003)
Front Biosci
, vol.8
, pp. d642-d651
-
-
Fukuhara, C.1
Tosini, G.2
-
19
-
-
84255190045
-
Circadian expression of clock and putative clock-controlled genes in skeletal muscle of the zebrafish
-
Amaral IP, Johnston IA. Circadian expression of clock and putative clock-controlled genes in skeletal muscle of the zebrafish. Am J Physiol Regul Integr Comp Physiol. 2012;302:R193-206.
-
(2012)
Am J Physiol Regul Integr Comp Physiol
, vol.302
, pp. R193-206
-
-
Amaral, I.P.1
Johnston, I.A.2
-
20
-
-
78650501389
-
CLOCK and BMAL1 regulate MyoD and are necessary for maintenance of skeletal muscle phenotype and function
-
Andrews JL, Zhang X, McCarthy JJ, McDearmon EL, Hornberger TA, Russell B, et al. CLOCK and BMAL1 regulate MyoD and are necessary for maintenance of skeletal muscle phenotype and function. Proc Natl Acad Sci U S A. 2010;107:19090-5.
-
(2010)
Proc Natl Acad Sci U S A
, vol.107
, pp. 19090-19095
-
-
Andrews, J.L.1
Zhang, X.2
McCarthy, J.J.3
McDearmon, E.L.4
Hornberger, T.A.5
Russell, B.6
-
21
-
-
84906968912
-
Running on time: the role of circadian clocks in the musculoskeletal system
-
Dudek M, Meng QJ. Running on time: the role of circadian clocks in the musculoskeletal system. Biochem J. 2014;463:1-8.
-
(2014)
Biochem J
, vol.463
, pp. 1-8
-
-
Dudek, M.1
Meng, Q.J.2
-
22
-
-
84903393350
-
Daily rhythmicity of clock gene transcripts in Atlantic cod fast skeletal muscle
-
Lazado CC, Kumaratunga HP, Nagasawa K, Babiak I, Giannetto A, Fernandes JM. Daily rhythmicity of clock gene transcripts in Atlantic cod fast skeletal muscle. PLoS One. 2014;9, e99172.
-
(2014)
PLoS One
, vol.9
-
-
Lazado, C.C.1
Kumaratunga, H.P.2
Nagasawa, K.3
Babiak, I.4
Giannetto, A.5
Fernandes, J.M.6
-
23
-
-
84902551629
-
Exercise influences circadian gene expression in equine skeletal muscle
-
Murphy BA, Wagner AL, McGlynn OF, Kharazyan F, Browne JA, Elliott JA. Exercise influences circadian gene expression in equine skeletal muscle. Vet J. 2014;201:39-45.
-
(2014)
Vet J
, vol.201
, pp. 39-45
-
-
Murphy, B.A.1
Wagner, A.L.2
McGlynn, O.F.3
Kharazyan, F.4
Browne, J.A.5
Elliott, J.A.6
-
24
-
-
84885171676
-
Circadian rhythms, skeletal muscle molecular clocks, and exercise
-
Schroder EA, Esser KA. Circadian rhythms, skeletal muscle molecular clocks, and exercise. Exerc Sport Sci Rev. 2013;41:224-9.
-
(2013)
Exerc Sport Sci Rev
, vol.41
, pp. 224-229
-
-
Schroder, E.A.1
Esser, K.A.2
-
25
-
-
84872303354
-
Free-running circadian rhythms of muscle strength, reaction time, and body temperature in totally blind people
-
Squarcini CF, Pires ML, Lopes C, Benedito-Silva AA, Esteves AM, Cornelissen-Guillaume G, et al. Free-running circadian rhythms of muscle strength, reaction time, and body temperature in totally blind people. Eur J Appl Physiol. 2013;113:157-65.
-
(2013)
Eur J Appl Physiol
, vol.113
, pp. 157-165
-
-
Squarcini, C.F.1
Pires, M.L.2
Lopes, C.3
Benedito-Silva, A.A.4
Esteves, A.M.5
Cornelissen-Guillaume, G.6
-
26
-
-
84881453812
-
Chronic phase advance alters circadian physiological rhythms and peripheral molecular clocks
-
Wolff G, Duncan MJ, Esser KA. Chronic phase advance alters circadian physiological rhythms and peripheral molecular clocks. J Appl Physiol. 2013;115:373-82.
-
(2013)
J Appl Physiol
, vol.115
, pp. 373-382
-
-
Wolff, G.1
Duncan, M.J.2
Esser, K.A.3
-
27
-
-
84869036539
-
Circadian topology of metabolism
-
Bass J. Circadian topology of metabolism. Nature. 2012;491:348-56.
-
(2012)
Nature
, vol.491
, pp. 348-356
-
-
Bass, J.1
-
28
-
-
84905256595
-
Timing of circadian genes in mammalian tissues
-
Korencic A, Kosir R, Bordyugov G, Lehmann R, Rozman D, Herzel H. Timing of circadian genes in mammalian tissues. Sci Rep. 2014;4:5782.
-
(2014)
Sci Rep
, vol.4
, pp. 5782
-
-
Korencic, A.1
Kosir, R.2
Bordyugov, G.3
Lehmann, R.4
Rozman, D.5
Herzel, H.6
-
29
-
-
0032510778
-
The basic-helix-loop-helix-PAS orphan MOP3 forms transcriptionally active complexes with circadian and hypoxia factors
-
Hogenesch JB, Gu YZ, Jain S, Bradfield CA. The basic-helix-loop-helix-PAS orphan MOP3 forms transcriptionally active complexes with circadian and hypoxia factors. Proc Natl Acad Sci U S A. 1998;95:5474-9.
-
(1998)
Proc Natl Acad Sci U S A
, vol.95
, pp. 5474-5479
-
-
Hogenesch, J.B.1
Gu, Y.Z.2
Jain, S.3
Bradfield, C.A.4
-
30
-
-
0035966317
-
Posttranslational mechanisms regulate the mammalian circadian clock
-
Lee C, Etchegaray JP, Cagampang FR, Loudon AS, Reppert SM. Posttranslational mechanisms regulate the mammalian circadian clock. Cell. 2001;107:855-67.
-
(2001)
Cell
, vol.107
, pp. 855-867
-
-
Lee, C.1
Etchegaray, J.P.2
Cagampang, F.R.3
Loudon, A.S.4
Reppert, S.M.5
-
31
-
-
4544362674
-
Mammalian circadian biology: elucidating genome-wide levels of temporal organization
-
Lowrey PL, Takahashi JS. Mammalian circadian biology: elucidating genome-wide levels of temporal organization. Annu Rev Genomics Hum Genet. 2004;5:407-41.
-
(2004)
Annu Rev Genomics Hum Genet
, vol.5
, pp. 407-441
-
-
Lowrey, P.L.1
Takahashi, J.S.2
-
32
-
-
14044264801
-
BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis
-
Rudic RD, McNamara P, Curtis AM, Boston RC, Panda S, Hogenesch JB, et al. BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis. PLoS Biol. 2004;2, e377.
-
(2004)
PLoS Biol
, vol.2
-
-
Rudic, R.D.1
McNamara, P.2
Curtis, A.M.3
Boston, R.C.4
Panda, S.5
Hogenesch, J.B.6
-
33
-
-
24744470282
-
Brain and muscle Arnt-like protein-1 (BMAL1), a component of the molecular clock, regulates adipogenesis
-
Shimba S, Ishii N, Ohta Y, Ohno T, Watabe Y, Hayashi M, et al. Brain and muscle Arnt-like protein-1 (BMAL1), a component of the molecular clock, regulates adipogenesis. Proc Natl Acad Sci U S A. 2005;102:12071-6.
-
(2005)
Proc Natl Acad Sci U S A
, vol.102
, pp. 12071-12076
-
-
Shimba, S.1
Ishii, N.2
Ohta, Y.3
Ohno, T.4
Watabe, Y.5
Hayashi, M.6
-
34
-
-
20844461135
-
Obesity and metabolic syndrome in circadian Clock mutant mice
-
Turek FW, Joshu C, Kohsaka A, Lin E, Ivanova G, McDearmon E, et al. Obesity and metabolic syndrome in circadian Clock mutant mice. Science. 2005;308:1043-5.
-
(2005)
Science
, vol.308
, pp. 1043-1045
-
-
Turek, F.W.1
Joshu, C.2
Kohsaka, A.3
Lin, E.4
Ivanova, G.5
McDearmon, E.6
-
35
-
-
79953329154
-
Diurnal regulation of MTP and plasma triglyceride by CLOCK is mediated by SHP
-
Pan X, Zhang Y, Wang L, Hussain MM. Diurnal regulation of MTP and plasma triglyceride by CLOCK is mediated by SHP. Cell Metab. 2010;12:174-86.
-
(2010)
Cell Metab
, vol.12
, pp. 174-186
-
-
Pan, X.1
Zhang, Y.2
Wang, L.3
Hussain, M.M.4
-
36
-
-
80053054824
-
Deficient of a clock gene, brain and muscle Arnt-like protein-1 (BMAL1), induces dyslipidemia and ectopic fat formation
-
Shimba S, Ogawa T, Hitosugi S, Ichihashi Y, Nakadaira Y, Kobayashi M, et al. Deficient of a clock gene, brain and muscle Arnt-like protein-1 (BMAL1), induces dyslipidemia and ectopic fat formation. PLoS One. 2011;6, e25231.
-
(2011)
PLoS One
, vol.6
-
-
Shimba, S.1
Ogawa, T.2
Hitosugi, S.3
Ichihashi, Y.4
Nakadaira, Y.5
Kobayashi, M.6
-
37
-
-
84859329911
-
Rev-erbalpha and Rev-erbbeta coordinately protect the circadian clock and normal metabolic function
-
Bugge A, Feng D, Everett LJ, Briggs ER, Mullican SE, Wang F, et al. Rev-erbalpha and Rev-erbbeta coordinately protect the circadian clock and normal metabolic function. Genes Dev. 2012;26:657-67.
-
(2012)
Genes Dev
, vol.26
, pp. 657-667
-
-
Bugge, A.1
Feng, D.2
Everett, L.J.3
Briggs, E.R.4
Mullican, S.E.5
Wang, F.6
-
38
-
-
84860264490
-
Regulation of circadian behaviour and metabolism by REV-ERB-alpha and REV-ERB-beta
-
Cho H, Zhao X, Hatori M, Yu RT, Barish GD, Lam MT, et al. Regulation of circadian behaviour and metabolism by REV-ERB-alpha and REV-ERB-beta. Nature. 2012;485:123-7.
-
(2012)
Nature
, vol.485
, pp. 123-127
-
-
Cho, H.1
Zhao, X.2
Hatori, M.3
Yu, R.T.4
Barish, G.D.5
Lam, M.T.6
-
39
-
-
54449085416
-
Physiological significance of a peripheral tissue circadian clock
-
Lamia KA, Storch KF, Weitz CJ. Physiological significance of a peripheral tissue circadian clock. Proc Natl Acad Sci U S A. 2008;105:15172-7.
-
(2008)
Proc Natl Acad Sci U S A
, vol.105
, pp. 15172-15177
-
-
Lamia, K.A.1
Storch, K.F.2
Weitz, C.J.3
-
40
-
-
70449441222
-
The role of cell-specific circadian clocks in metabolism and disease
-
Bray MS, Young ME. The role of cell-specific circadian clocks in metabolism and disease. Obes Rev. 2009;10 Suppl 2:6-13.
-
(2009)
Obes Rev
, vol.10
, pp. 6-13
-
-
Bray, M.S.1
Young, M.E.2
-
41
-
-
77954848215
-
Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes
-
Marcheva B, Ramsey KM, Buhr ED, Kobayashi Y, Su H, Ko CH, et al. Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature. 2010;466:627-31.
-
(2010)
Nature
, vol.466
, pp. 627-631
-
-
Marcheva, B.1
Ramsey, K.M.2
Buhr, E.D.3
Kobayashi, Y.4
Su, H.5
Ko, C.H.6
-
42
-
-
84870859377
-
Obesity in mice with adipocyte-specific deletion of clock component Arntl
-
Paschos GK, Ibrahim S, Song WL, Kunieda T, Grant G, Reyes TM, et al. Obesity in mice with adipocyte-specific deletion of clock component Arntl. Nat Med. 2012;18:1768-77.
-
(2012)
Nat Med
, vol.18
, pp. 1768-1777
-
-
Paschos, G.K.1
Ibrahim, S.2
Song, W.L.3
Kunieda, T.4
Grant, G.5
Reyes, T.M.6
-
43
-
-
84895128336
-
Muscle insulin sensitivity and glucose metabolism are controlled by the intrinsic muscle clock
-
Dyar KA, Ciciliot S, Wright LE, Bienso RS, Tagliazucchi GM, Patel VR, et al. Muscle insulin sensitivity and glucose metabolism are controlled by the intrinsic muscle clock. Mol Metab. 2014;3:29-41.
-
(2014)
Mol Metab
, vol.3
, pp. 29-41
-
-
Dyar, K.A.1
Ciciliot, S.2
Wright, L.E.3
Bienso, R.S.4
Tagliazucchi, G.M.5
Patel, V.R.6
-
44
-
-
84907523083
-
Evaluation of five methods for genome-wide circadian gene identification
-
Wu G, Zhu J, Yu J, Zhou L, Huang JZ, Zhang Z. Evaluation of five methods for genome-wide circadian gene identification. J Biol Rhythms. 2014;29:231-42.
-
(2014)
J Biol Rhythms
, vol.29
, pp. 231-242
-
-
Wu, G.1
Zhu, J.2
Yu, J.3
Zhou, L.4
Huang, J.Z.5
Zhang, Z.6
-
46
-
-
84909592563
-
A circadian gene expression atlas in mammals: implications for biology and medicine
-
Zhang R, Lahens NF, Ballance HI, Hughes ME, Hogenesch JB. A circadian gene expression atlas in mammals: implications for biology and medicine. Proc Natl Acad Sci U S A. 2014;111:16219-24.
-
(2014)
Proc Natl Acad Sci U S A
, vol.111
, pp. 16219-16224
-
-
Zhang, R.1
Lahens, N.F.2
Ballance, H.I.3
Hughes, M.E.4
Hogenesch, J.B.5
-
47
-
-
77957266573
-
JTK_CYCLE: an efficient nonparametric algorithm for detecting rhythmic components in genome-scale data sets
-
Hughes ME, Hogenesch JB, Kornacker K. JTK_CYCLE: an efficient nonparametric algorithm for detecting rhythmic components in genome-scale data sets. J Biol Rhythms. 2010;25:372-80.
-
(2010)
J Biol Rhythms
, vol.25
, pp. 372-380
-
-
Hughes, M.E.1
Hogenesch, J.B.2
Kornacker, K.3
-
48
-
-
0034069495
-
Gene ontology: tool for the unification of biology
-
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium Nat Genet. 2000;25:25-9.
-
(2000)
The Gene Ontology Consortium Nat Genet
, vol.25
, pp. 25-29
-
-
Ashburner, M.1
Ball, C.A.2
Blake, J.A.3
Botstein, D.4
Butler, H.5
Cherry, J.M.6
-
49
-
-
75549084894
-
PANTHER version 7: improved phylogenetic trees, orthologs and collaboration with the Gene Ontology Consortium
-
Mi H, Dong Q, Muruganujan A, Gaudet P, Lewis S, Thomas PD. PANTHER version 7: improved phylogenetic trees, orthologs and collaboration with the Gene Ontology Consortium. Nucleic Acids Res. 2010;38:D204-10.
-
(2010)
Nucleic Acids Res
, vol.38
, pp. D204-D210
-
-
Mi, H.1
Dong, Q.2
Muruganujan, A.3
Gaudet, P.4
Lewis, S.5
Thomas, P.D.6
-
50
-
-
34547939468
-
Intrinsic circadian clock of the mammalian retina: importance for retinal processing of visual information
-
Storch KF, Paz C, Signorovitch J, Raviola E, Pawlyk B, Li T, et al. Intrinsic circadian clock of the mammalian retina: importance for retinal processing of visual information. Cell. 2007;130:730-41.
-
(2007)
Cell
, vol.130
, pp. 730-741
-
-
Storch, K.F.1
Paz, C.2
Signorovitch, J.3
Raviola, E.4
Pawlyk, B.5
Li, T.6
-
51
-
-
84864331395
-
Inducible Cre transgenic mouse strain for skeletal muscle-specific gene targeting
-
McCarthy JJ, Srikuea R, Kirby TJ, Peterson CA, Esser KA. Inducible Cre transgenic mouse strain for skeletal muscle-specific gene targeting. Skelet Muscle. 2012;2:8.
-
(2012)
Skelet Muscle
, vol.2
, pp. 8
-
-
McCarthy, J.J.1
Srikuea, R.2
Kirby, T.J.3
Peterson, C.A.4
Esser, K.A.5
-
52
-
-
78249275827
-
Processing circadian data collected from the Drosophila Activity Monitoring (DAM) System
-
pdb.prot5519
-
Pfeiffenberger C, Lear BC, Keegan KP, Allada R. Processing circadian data collected from the Drosophila Activity Monitoring (DAM) System. Cold Spring Harb Protoc. 2010;2010:pdb.prot5519.
-
(2010)
Cold Spring Harb Protoc
, vol.2010
-
-
Pfeiffenberger, C.1
Lear, B.C.2
Keegan, K.P.3
Allada, R.4
-
53
-
-
34548853967
-
Identification of the circadian transcriptome in adult mouse skeletal muscle
-
McCarthy JJ, Andrews JL, McDearmon EL, Campbell KS, Barber BK, Miller BH, et al. Identification of the circadian transcriptome in adult mouse skeletal muscle. Physiol Genomics. 2007;31:86-95.
-
(2007)
Physiol Genomics
, vol.31
, pp. 86-95
-
-
McCarthy, J.J.1
Andrews, J.L.2
McDearmon, E.L.3
Campbell, K.S.4
Barber, B.K.5
Miller, B.H.6
-
54
-
-
85015396943
-
High-resolution time course analysis of gene expression from pituitary
-
Hughes M, Deharo L, Pulivarthy SR, Gu J, Hayes K, Panda S, et al. High-resolution time course analysis of gene expression from pituitary. Cold Spring Harb Symp Quant Biol. 2007;72:381-6.
-
(2007)
Cold Spring Harb Symp Quant Biol
, vol.72
, pp. 381-386
-
-
Hughes, M.1
Deharo, L.2
Pulivarthy, S.R.3
Gu, J.4
Hayes, K.5
Panda, S.6
-
55
-
-
84922077002
-
-
Wang L, Li L, Jiang J, Wang Y, Zhong T, Chen Y, et al. Molecular characterization and different expression patterns of the FABP gene family during goat skeletal muscle development: Mol Biol Rep. 2014.
-
(2014)
-
-
Wang, L.1
Li, L.2
Jiang, J.3
Wang, Y.4
Zhong, T.5
Chen, Y.6
-
56
-
-
84900827580
-
Label-free LC-MS profiling of skeletal muscle reveals heart-type fatty acid binding protein as a candidate biomarker of aerobic capacity
-
Malik ZA, Cobley JN, Morton JP, Close GL, Edwards BJ, Koch LG, et al. Label-free LC-MS profiling of skeletal muscle reveals heart-type fatty acid binding protein as a candidate biomarker of aerobic capacity. Proc Natl Acad Sci U S A. 2013;1:290-308.
-
(2013)
Proc Natl Acad Sci U S A
, vol.1
, pp. 290-308
-
-
Malik, Z.A.1
Cobley, J.N.2
Morton, J.P.3
Close, G.L.4
Edwards, B.J.5
Koch, L.G.6
-
57
-
-
84896710962
-
A critical role of fatty acid binding protein 4 and 5 (FABP4/5) in the systemic response to fasting
-
Syamsunarno MR, Iso T, Hanaoka H, Yamaguchi A, Obokata M, Koitabashi N, et al. A critical role of fatty acid binding protein 4 and 5 (FABP4/5) in the systemic response to fasting. PLoS One. 2013;8, e79386.
-
(2013)
PLoS One
, vol.8
-
-
Syamsunarno, M.R.1
Iso, T.2
Hanaoka, H.3
Yamaguchi, A.4
Obokata, M.5
Koitabashi, N.6
-
58
-
-
84898610832
-
Circadian regulation of adipose function
-
Shostak A, Husse J, Oster H. Circadian regulation of adipose function. Adipocyte. 2013;2:201-6.
-
(2013)
Adipocyte
, vol.2
, pp. 201-206
-
-
Shostak, A.1
Husse, J.2
Oster, H.3
-
59
-
-
84901638653
-
Diurnal regulation of lipid metabolism and applications of circadian lipidomics
-
Gooley JJ, Chua EC. Diurnal regulation of lipid metabolism and applications of circadian lipidomics. J Genet Genomics. 2014;41:231-50.
-
(2014)
J Genet Genomics
, vol.41
, pp. 231-250
-
-
Gooley, J.J.1
Chua, E.C.2
-
60
-
-
67649875655
-
Measurement of internal body time by blood metabolomics
-
Minami Y, Kasukawa T, Kakazu Y, Iigo M, Sugimoto M, Ikeda S, et al. Measurement of internal body time by blood metabolomics. Proc Natl Acad Sci U S A. 2009;106:9890-5.
-
(2009)
Proc Natl Acad Sci U S A
, vol.106
, pp. 9890-9895
-
-
Minami, Y.1
Kasukawa, T.2
Kakazu, Y.3
Iigo, M.4
Sugimoto, M.5
Ikeda, S.6
-
61
-
-
84902551389
-
De novo lipogenesis in health and disease
-
Ameer F, Scandiuzzi L, Hasnain S, Kalbacher H, Zaidi N. De novo lipogenesis in health and disease. Metabolism. 2014;63:895-902.
-
(2014)
Metabolism
, vol.63
, pp. 895-902
-
-
Ameer, F.1
Scandiuzzi, L.2
Hasnain, S.3
Kalbacher, H.4
Zaidi, N.5
-
62
-
-
81855201915
-
The mitochondrial carnitine/acylcarnitine carrier: function, structure and physiopathology
-
Indiveri C, Iacobazzi V, Tonazzi A, Giangregorio N, Infantino V, Convertini P, et al. The mitochondrial carnitine/acylcarnitine carrier: function, structure and physiopathology. Mol Aspects Med. 2011;32:223-33.
-
(2011)
Mol Aspects Med
, vol.32
, pp. 223-233
-
-
Indiveri, C.1
Iacobazzi, V.2
Tonazzi, A.3
Giangregorio, N.4
Infantino, V.5
Convertini, P.6
-
63
-
-
0031967121
-
Carnitine palmitoyltransferase I (CPT I) activity and its regulation by malonyl-CoA are modulated by age and cold exposure in skeletal muscle mitochondria from newborn pigs
-
Schmidt I, Herpin P. Carnitine palmitoyltransferase I (CPT I) activity and its regulation by malonyl-CoA are modulated by age and cold exposure in skeletal muscle mitochondria from newborn pigs. J Nutr. 1998;128:886-93.
-
(1998)
J Nutr
, vol.128
, pp. 886-893
-
-
Schmidt, I.1
Herpin, P.2
-
64
-
-
50949087166
-
Malonyl-CoA, a key signaling molecule in mammalian cells
-
Saggerson D. Malonyl-CoA, a key signaling molecule in mammalian cells. Annu Rev Nutr. 2008;28:253-72.
-
(2008)
Annu Rev Nutr
, vol.28
, pp. 253-272
-
-
Saggerson, D.1
-
66
-
-
84949115098
-
PPARs and ERRs: molecular mediators of mitochondrial metabolism
-
Fan W, Evans R. PPARs and ERRs: molecular mediators of mitochondrial metabolism. Curr Opin Cell Biol. 2014;33C:49-54.
-
(2014)
Curr Opin Cell Biol
, vol.33C
, pp. 49-54
-
-
Fan, W.1
Evans, R.2
-
67
-
-
33747157406
-
Nuclear receptor expression links the circadian clock to metabolism
-
Yang X, Downes M, Yu RT, Bookout AL, He W, Straume M, et al. Nuclear receptor expression links the circadian clock to metabolism. Cell. 2006;126:801-10.
-
(2006)
Cell
, vol.126
, pp. 801-810
-
-
Yang, X.1
Downes, M.2
Yu, R.T.3
Bookout, A.L.4
He, W.5
Straume, M.6
-
68
-
-
46349088224
-
Ligand dissociation from estrogen receptor is mediated by receptor dimerization: evidence from molecular dynamics simulations
-
Sonoda MT, Martinez L, Webb P, Skaf MS, Polikarpov I. Ligand dissociation from estrogen receptor is mediated by receptor dimerization: evidence from molecular dynamics simulations. Mol Endocrinol. 2008;22:1565-78.
-
(2008)
Mol Endocrinol
, vol.22
, pp. 1565-1578
-
-
Sonoda, M.T.1
Martinez, L.2
Webb, P.3
Skaf, M.S.4
Polikarpov, I.5
-
69
-
-
48249145719
-
Nuclear receptors, metabolism, and the circadian clock
-
Yang X, Lamia KA, Evans RM. Nuclear receptors, metabolism, and the circadian clock. Cold Spring Harb Symp Quant Biol. 2007;72:387-94.
-
(2007)
Cold Spring Harb Symp Quant Biol
, vol.72
, pp. 387-394
-
-
Yang, X.1
Lamia, K.A.2
Evans, R.M.3
-
70
-
-
0037134493
-
The PGC-1-related protein PERC is a selective coactivator of estrogen receptor alpha
-
Kressler D, Schreiber SN, Knutti D, Kralli A. The PGC-1-related protein PERC is a selective coactivator of estrogen receptor alpha. J Biol Chem. 2002;277:13918-25.
-
(2002)
J Biol Chem
, vol.277
, pp. 13918-13925
-
-
Kressler, D.1
Schreiber, S.N.2
Knutti, D.3
Kralli, A.4
-
71
-
-
33644660537
-
PGC-1 coactivators: inducible regulators of energy metabolism in health and disease
-
Finck BN, Kelly DP. PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. J Clin Invest. 2006;116:615-22.
-
(2006)
J Clin Invest
, vol.116
, pp. 615-622
-
-
Finck, B.N.1
Kelly, D.P.2
-
72
-
-
34548208233
-
The transcriptional corepressor RIP140 regulates oxidative metabolism in skeletal muscle
-
Seth A, Steel JH, Nichol D, Pocock V, Kumaran MK, Fritah A, et al. The transcriptional corepressor RIP140 regulates oxidative metabolism in skeletal muscle. Cell Metab. 2007;6:236-45.
-
(2007)
Cell Metab
, vol.6
, pp. 236-245
-
-
Seth, A.1
Steel, J.H.2
Nichol, D.3
Pocock, V.4
Kumaran, M.K.5
Fritah, A.6
-
73
-
-
84872687809
-
Genetic downregulation of receptor-interacting protein 140 uncovers the central role of Akt signalling in the regulation of fatty acid oxidation in skeletal muscle cells
-
Constantinescu S, Turcotte LP. Genetic downregulation of receptor-interacting protein 140 uncovers the central role of Akt signalling in the regulation of fatty acid oxidation in skeletal muscle cells. Exp Physiol. 2013;98:514-25.
-
(2013)
Exp Physiol
, vol.98
, pp. 514-525
-
-
Constantinescu, S.1
Turcotte, L.P.2
-
75
-
-
67651227759
-
Control of skeletal muscle metabolic properties by the nuclear receptor corepressor RIP140
-
Fritah A. Control of skeletal muscle metabolic properties by the nuclear receptor corepressor RIP140. Appl Physiol Nutr Metab. 2009;34:362-7.
-
(2009)
Appl Physiol Nutr Metab
, vol.34
, pp. 362-367
-
-
Fritah, A.1
-
76
-
-
79960776844
-
Skeletal muscle lipid flux: running water carries no poison
-
Funai K, Semenkovich CF. Skeletal muscle lipid flux: running water carries no poison. Am J Physiol Endocrinol Metab. 2011;301:E245-51.
-
(2011)
Am J Physiol Endocrinol Metab
, vol.301
, pp. E245-E251
-
-
Funai, K.1
Semenkovich, C.F.2
-
77
-
-
34047255220
-
Stearoyl-CoA desaturase-a new player in skeletal muscle metabolism regulation
-
Dobrzyn A, Dobrzyn P. Stearoyl-CoA desaturase-a new player in skeletal muscle metabolism regulation. J Physiol Pharmacol. 2006;57 Suppl 10:31-42.
-
(2006)
J Physiol Pharmacol
, vol.57
, pp. 31-42
-
-
Dobrzyn, A.1
Dobrzyn, P.2
-
78
-
-
0037832581
-
Recent insights into stearoyl-CoA desaturase-1
-
Ntambi JM, Miyazaki M. Recent insights into stearoyl-CoA desaturase-1. Curr Opin Lipidol. 2003;14:255-61.
-
(2003)
Curr Opin Lipidol
, vol.14
, pp. 255-261
-
-
Ntambi, J.M.1
Miyazaki, M.2
-
79
-
-
84905175079
-
Energy metabolism in the liver
-
Rui L. Energy metabolism in the liver. Compr Physiol. 2014;4:177-97.
-
(2014)
Compr Physiol
, vol.4
, pp. 177-197
-
-
Rui, L.1
-
80
-
-
14544289119
-
Carbohydrate responsive element binding protein (ChREBP) and sterol regulatory element binding protein-1c (SREBP-1c): two key regulators of glucose metabolism and lipid synthesis in liver
-
Dentin R, Girard J, Postic C. Carbohydrate responsive element binding protein (ChREBP) and sterol regulatory element binding protein-1c (SREBP-1c): two key regulators of glucose metabolism and lipid synthesis in liver. Biochimie. 2005;87:81-6.
-
(2005)
Biochimie
, vol.87
, pp. 81-86
-
-
Dentin, R.1
Girard, J.2
Postic, C.3
-
81
-
-
18444391229
-
SREBP-1 as a transcriptional integrator of circadian and nutritional cues in the liver
-
Brewer M, Lange D, Baler R, Anzulovich A. SREBP-1 as a transcriptional integrator of circadian and nutritional cues in the liver. J Biol Rhythms. 2005;20:195-205.
-
(2005)
J Biol Rhythms
, vol.20
, pp. 195-205
-
-
Brewer, M.1
Lange, D.2
Baler, R.3
Anzulovich, A.4
-
82
-
-
77958509990
-
Time of day and nutrients in feeding govern daily expression rhythms of the gene for sterol regulatory element-binding protein (SREBP)-1 in the mouse liver
-
Matsumoto E, Ishihara A, Tamai S, Nemoto A, Iwase K, Hiwasa T, et al. Time of day and nutrients in feeding govern daily expression rhythms of the gene for sterol regulatory element-binding protein (SREBP)-1 in the mouse liver. J Biol Chem. 2010;285:33028-36.
-
(2010)
J Biol Chem
, vol.285
, pp. 33028-33036
-
-
Matsumoto, E.1
Ishihara, A.2
Tamai, S.3
Nemoto, A.4
Iwase, K.5
Hiwasa, T.6
-
83
-
-
77954312931
-
Gene expression analysis on the liver of cholestyramine-treated type 2 diabetic model mice
-
Matsumoto K, Yokoyama S. Gene expression analysis on the liver of cholestyramine-treated type 2 diabetic model mice. Biomed Pharmacother. 2010;64:373-8.
-
(2010)
Biomed Pharmacother
, vol.64
, pp. 373-378
-
-
Matsumoto, K.1
Yokoyama, S.2
-
84
-
-
84897425951
-
Genome-wide analysis of SREBP1 activity around the clock reveals its combined dependency on nutrient and circadian signals
-
Gilardi F, Migliavacca E, Naldi A, Baruchet M, Canella D, Le Martelot G, et al. Genome-wide analysis of SREBP1 activity around the clock reveals its combined dependency on nutrient and circadian signals. PLoS Genet. 2014;10, e1004155.
-
(2014)
PLoS Genet
, vol.10
-
-
Gilardi, F.1
Migliavacca, E.2
Naldi, A.3
Baruchet, M.4
Canella, D.5
Martelot, G.6
-
85
-
-
84860465005
-
Adiponutrin functions as a nutritionally regulated lysophosphatidic acid acyltransferase
-
Kumari M, Schoiswohl G, Chitraju C, Paar M, Cornaciu I, Rangrez AY, et al. Adiponutrin functions as a nutritionally regulated lysophosphatidic acid acyltransferase. Cell Metab. 2012;15:691-702.
-
(2012)
Cell Metab
, vol.15
, pp. 691-702
-
-
Kumari, M.1
Schoiswohl, G.2
Chitraju, C.3
Paar, M.4
Cornaciu, I.5
Rangrez, A.Y.6
-
86
-
-
79961064846
-
Lipin 1 in lipid metabolism
-
Ishimoto K. Lipin 1 in lipid metabolism. Yakugaku Zasshi. 2011;131:1189-94.
-
(2011)
Yakugaku Zasshi
, vol.131
, pp. 1189-1194
-
-
Ishimoto, K.1
-
87
-
-
66849089697
-
Biochemistry, physiology, and genetics of GPAT, AGPAT, and lipin enzymes in triglyceride synthesis
-
Takeuchi K, Reue K. Biochemistry, physiology, and genetics of GPAT, AGPAT, and lipin enzymes in triglyceride synthesis. Am J Physiol Endocrinol Metab. 2009;296:E1195-209.
-
(2009)
Am J Physiol Endocrinol Metab
, vol.296
, pp. E1195-E1209
-
-
Takeuchi, K.1
Reue, K.2
-
88
-
-
58149457426
-
Thematic review series: glycerolipids. DGAT enzymes and triacylglycerol biosynthesis
-
Yen CL, Stone SJ, Koliwad S, Harris C, Farese Jr RV. Thematic review series: glycerolipids. DGAT enzymes and triacylglycerol biosynthesis. J Lipid Res. 2008;49:2283-301.
-
(2008)
J Lipid Res
, vol.49
, pp. 2283-2301
-
-
Yen, C.L.1
Stone, S.J.2
Koliwad, S.3
Harris, C.4
Farese, R.V.5
-
89
-
-
33646018341
-
Fatty acid elongases in mammals: their regulation and roles in metabolism
-
Jakobsson A, Westerberg R, Jacobsson A. Fatty acid elongases in mammals: their regulation and roles in metabolism. Prog Lipid Res. 2006;45:237-49.
-
(2006)
Prog Lipid Res
, vol.45
, pp. 237-249
-
-
Jakobsson, A.1
Westerberg, R.2
Jacobsson, A.3
-
90
-
-
78149314978
-
Hepatic long-chain acyl-CoA synthetase 5 mediates fatty acid channeling between anabolic and catabolic pathways
-
Bu SY, Mashek DG. Hepatic long-chain acyl-CoA synthetase 5 mediates fatty acid channeling between anabolic and catabolic pathways. J Lipid Res. 2010;51:3270-80.
-
(2010)
J Lipid Res
, vol.51
, pp. 3270-3280
-
-
Bu, S.Y.1
Mashek, D.G.2
-
91
-
-
84884356128
-
A quick look at biochemistry: carbohydrate metabolism
-
Dashty M. A quick look at biochemistry: carbohydrate metabolism. Clin Biochem. 2013;46:1339-52.
-
(2013)
Clin Biochem
, vol.46
, pp. 1339-1352
-
-
Dashty, M.1
-
92
-
-
0034041702
-
Regulation of hexokinase II expression in human skeletal muscle in vivo
-
Vogt C, Ardehali H, Iozzo P, Yki-Jarvinen H, Koval J, Maezono K, et al. Regulation of hexokinase II expression in human skeletal muscle in vivo. Metabolism. 2000;49:814-8.
-
(2000)
Metabolism
, vol.49
, pp. 814-818
-
-
Vogt, C.1
Ardehali, H.2
Iozzo, P.3
Yki-Jarvinen, H.4
Koval, J.5
Maezono, K.6
-
93
-
-
0036549888
-
Different modes of activating phosphofructokinase, a key regulatory enzyme of glycolysis, in working vertebrate muscle
-
Wegener G, Krause U. Different modes of activating phosphofructokinase, a key regulatory enzyme of glycolysis, in working vertebrate muscle. Biochem Soc Trans. 2002;30:264-70.
-
(2002)
Biochem Soc Trans
, vol.30
, pp. 264-270
-
-
Wegener, G.1
Krause, U.2
-
94
-
-
0025287011
-
Fructose 2,6-bisphosphate and glycolytic flux in skeletal muscle of swimming frog
-
Wegener G, Krause U, Thuy M. Fructose 2,6-bisphosphate and glycolytic flux in skeletal muscle of swimming frog. FEBS Lett. 1990;267:257-60.
-
(1990)
FEBS Lett
, vol.267
, pp. 257-260
-
-
Wegener, G.1
Krause, U.2
Thuy, M.3
-
95
-
-
0023857649
-
Fructose 2,6-bisphosphate and glycolytic oscillations in skeletal muscle extracts
-
Tornheim K. Fructose 2,6-bisphosphate and glycolytic oscillations in skeletal muscle extracts. J Biol Chem. 1988;263:2619-24.
-
(1988)
J Biol Chem
, vol.263
, pp. 2619-2624
-
-
Tornheim, K.1
-
96
-
-
0036220628
-
Regulation of pyruvate dehydrogenase (PDH) activity in human skeletal muscle during exercise
-
Spriet LL, Heigenhauser GJ. Regulation of pyruvate dehydrogenase (PDH) activity in human skeletal muscle during exercise. Exerc Sport Sci Rev. 2002;30:91-5.
-
(2002)
Exerc Sport Sci Rev
, vol.30
, pp. 91-95
-
-
Spriet, L.L.1
Heigenhauser, G.J.2
-
98
-
-
0346158376
-
Regulation of pyruvate dehydrogenase complex activity by reversible phosphorylation
-
Holness MJ, Sugden MC. Regulation of pyruvate dehydrogenase complex activity by reversible phosphorylation. Biochem Soc Trans. 2003;31:1143-51.
-
(2003)
Biochem Soc Trans
, vol.31
, pp. 1143-1151
-
-
Holness, M.J.1
Sugden, M.C.2
-
99
-
-
84907218413
-
Tyr-301 phosphorylation inhibits pyruvate dehydrogenase by blocking substrate binding and promotes the Warburg effect
-
Fan J, Kang HB, Shan C, Elf S, Lin R, Xie J, et al. Tyr-301 phosphorylation inhibits pyruvate dehydrogenase by blocking substrate binding and promotes the Warburg effect. J Biol Chem. 2014;289:26533-41.
-
(2014)
J Biol Chem
, vol.289
, pp. 26533-26541
-
-
Fan, J.1
Kang, H.B.2
Shan, C.3
Elf, S.4
Lin, R.5
Xie, J.6
-
100
-
-
78649863650
-
Beta-adrenergic-regulated phosphorylation of the skeletal muscle Ca(V)1.1 channel in the fight-or-flight response
-
Emrick MA, Sadilek M, Konoki K, Catterall WA. Beta-adrenergic-regulated phosphorylation of the skeletal muscle Ca(V)1.1 channel in the fight-or-flight response. Proc Natl Acad Sci U S A. 2010;107:18712-7.
-
(2010)
Proc Natl Acad Sci U S A
, vol.107
, pp. 18712-18717
-
-
Emrick, M.A.1
Sadilek, M.2
Konoki, K.3
Catterall, W.A.4
-
101
-
-
84913556601
-
Demonstration of a direct interaction between beta2-adrenergic receptor and insulin receptor by BRET and bioinformatics
-
Mandic M, Drinovec L, Glisic S, Veljkovic N, Nohr J, Vrecl M. Demonstration of a direct interaction between beta2-adrenergic receptor and insulin receptor by BRET and bioinformatics. PLoS One. 2014;9, e112664.
-
(2014)
PLoS One
, vol.9
-
-
Mandic, M.1
Drinovec, L.2
Glisic, S.3
Veljkovic, N.4
Nohr, J.5
Vrecl, M.6
-
102
-
-
62349125533
-
Regulation of muscle glycogen synthase phosphorylation and kinetic properties by insulin, exercise, adrenaline and role in insulin resistance
-
Jensen J, Lai YC. Regulation of muscle glycogen synthase phosphorylation and kinetic properties by insulin, exercise, adrenaline and role in insulin resistance. Arch Physiol Biochem. 2009;115:13-21.
-
(2009)
Arch Physiol Biochem
, vol.115
, pp. 13-21
-
-
Jensen, J.1
Lai, Y.C.2
-
103
-
-
84857073365
-
β(2)-Adrenoceptors increase translocation of GLUT4 via GPCR kinase sites in the receptor C-terminal tail
-
Dehvari N, Hutchinson DS, Nevzorova J, Dallner OS, Sato M, Kocan M, et al. β(2)-Adrenoceptors increase translocation of GLUT4 via GPCR kinase sites in the receptor C-terminal tail. Br J Pharmacol. 2012;165:1442-56.
-
(2012)
Br J Pharmacol
, vol.165
, pp. 1442-1456
-
-
Dehvari, N.1
Hutchinson, D.S.2
Nevzorova, J.3
Dallner, O.S.4
Sato, M.5
Kocan, M.6
-
104
-
-
84874221796
-
Peripheral adrenoceptors: the impetus behind glucose dysregulation and insulin resistance
-
Boyda HN, Procyshyn RM, Pang CC, Barr AM. Peripheral adrenoceptors: the impetus behind glucose dysregulation and insulin resistance. J Neuroendocrinol. 2013;25:217-28.
-
(2013)
J Neuroendocrinol
, vol.25
, pp. 217-228
-
-
Boyda, H.N.1
Procyshyn, R.M.2
Pang, C.C.3
Barr, A.M.4
-
105
-
-
77956200571
-
Disrupting circadian homeostasis of sympathetic signaling promotes tumor development in mice
-
Lee S, Donehower LA, Herron AJ, Moore DD, Fu L. Disrupting circadian homeostasis of sympathetic signaling promotes tumor development in mice. PLoS One. 2010;5, e10995.
-
(2010)
PLoS One
, vol.5
-
-
Lee, S.1
Donehower, L.A.2
Herron, A.J.3
Moore, D.D.4
Fu, L.5
-
106
-
-
3543038233
-
GRK2 is an endogenous protein inhibitor of the insulin signaling pathway for glucose transport stimulation
-
Usui I, Imamura T, Satoh H, Huang J, Babendure JL, Hupfeld CJ, et al. GRK2 is an endogenous protein inhibitor of the insulin signaling pathway for glucose transport stimulation. EMBO J. 2004;23:2821-9.
-
(2004)
EMBO J
, vol.23
, pp. 2821-2829
-
-
Usui, I.1
Imamura, T.2
Satoh, H.3
Huang, J.4
Babendure, J.L.5
Hupfeld, C.J.6
-
107
-
-
84860355658
-
An expanded family of arrestins regulate metabolism
-
Patwari P, Lee RT. An expanded family of arrestins regulate metabolism. Trends Endocrinol Metab. 2012;23:216-22.
-
(2012)
Trends Endocrinol Metab
, vol.23
, pp. 216-222
-
-
Patwari, P.1
Lee, R.T.2
-
108
-
-
84873411358
-
Distinct roles for β-arrestin2 and arrestin-domain-containing proteins in β2 adrenergic receptor trafficking
-
Han S-O, Kommaddi RP, Shenoy SK. Distinct roles for β-arrestin2 and arrestin-domain-containing proteins in β2 adrenergic receptor trafficking. EMBO Rep. 2013;14:164-71.
-
(2013)
EMBO Rep
, vol.14
, pp. 164-171
-
-
Han, S.-O.1
Kommaddi, R.P.2
Shenoy, S.K.3
-
109
-
-
84886368558
-
Nuclear receptors and epigenetic signaling: novel regulators of glycogen metabolism in skeletal muscle
-
Wang SC, Muscat GE. Nuclear receptors and epigenetic signaling: novel regulators of glycogen metabolism in skeletal muscle. IUBMB Life. 2013;65:657-64.
-
(2013)
IUBMB Life
, vol.65
, pp. 657-664
-
-
Wang, S.C.1
Muscat, G.E.2
-
110
-
-
84861857806
-
The role of skeletal muscle glycogen breakdown for regulation of insulin sensitivity by exercise
-
Jensen J, Rustad PI, Kolnes AJ, Lai YC. The role of skeletal muscle glycogen breakdown for regulation of insulin sensitivity by exercise. Front Physiol. 2011;2:112.
-
(2011)
Front Physiol
, vol.2
, pp. 112
-
-
Jensen, J.1
Rustad, P.I.2
Kolnes, A.J.3
Lai, Y.C.4
-
111
-
-
0030997893
-
The role of glucose 6-phosphate in the control of glycogen synthase
-
Villar-Palasi C, Guinovart JJ. The role of glucose 6-phosphate in the control of glycogen synthase. FASEB J. 1997;11:544-58.
-
(1997)
FASEB J
, vol.11
, pp. 544-558
-
-
Villar-Palasi, C.1
Guinovart, J.J.2
-
112
-
-
0035085644
-
Control of glycogen synthesis by glucose, glycogen, and insulin in cultured human muscle cells
-
Halse R, Bonavaud SM, Armstrong JL, McCormack JG, Yeaman SJ. Control of glycogen synthesis by glucose, glycogen, and insulin in cultured human muscle cells. Diabetes. 2001;50:720-6.
-
(2001)
Diabetes
, vol.50
, pp. 720-726
-
-
Halse, R.1
Bonavaud, S.M.2
Armstrong, J.L.3
McCormack, J.G.4
Yeaman, S.J.5
-
113
-
-
80155148068
-
Differential pattern of glycogen accumulation after protein phosphatase 1 glycogen-targeting subunit PPP1R6 overexpression, compared to PPP1R3C and PPP1R3A, in skeletal muscle cells
-
Montori-Grau M, Guitart M, Garcia-Martinez C, Orozco A, Gomez-Foix AM. Differential pattern of glycogen accumulation after protein phosphatase 1 glycogen-targeting subunit PPP1R6 overexpression, compared to PPP1R3C and PPP1R3A, in skeletal muscle cells. BMC Biochem. 2011;12:57.
-
(2011)
BMC Biochem
, vol.12
, pp. 57
-
-
Montori-Grau, M.1
Guitart, M.2
Garcia-Martinez, C.3
Orozco, A.4
Gomez-Foix, A.M.5
-
114
-
-
0035787093
-
The role of protein phosphatase-1 in insulin action
-
Brady MJ, Saltiel AR. The role of protein phosphatase-1 in insulin action. Recent Prog Horm Res. 2001;56:157-73.
-
(2001)
Recent Prog Horm Res
, vol.56
, pp. 157-173
-
-
Brady, M.J.1
Saltiel, A.R.2
-
115
-
-
0029670792
-
The beta-adrenergic receptor is a substrate for the insulin receptor tyrosine kinase
-
Baltensperger K, Karoor V, Paul H, Ruoho A, Czech MP, Malbon CC. The beta-adrenergic receptor is a substrate for the insulin receptor tyrosine kinase. J Biol Chem. 1996;271:1061-4.
-
(1996)
J Biol Chem
, vol.271
, pp. 1061-1064
-
-
Baltensperger, K.1
Karoor, V.2
Paul, H.3
Ruoho, A.4
Czech, M.P.5
Malbon, C.C.6
-
116
-
-
84908153217
-
Muscle wasting: an overview of recent developments in basic research
-
Palus S, von Haehling S, Springer J. Muscle wasting: an overview of recent developments in basic research. Int J Cardiol. 2014;176:640-4.
-
(2014)
Int J Cardiol
, vol.176
, pp. 640-644
-
-
Palus, S.1
Haehling, S.2
Springer, J.3
-
117
-
-
80755175849
-
The SCF-Fbxo40 complex induces IRS1 ubiquitination in skeletal muscle, limiting IGF1 signaling
-
Shi J, Luo L, Eash J, Ibebunjo C, Glass DJ. The SCF-Fbxo40 complex induces IRS1 ubiquitination in skeletal muscle, limiting IGF1 signaling. Dev Cell. 2011;21:835-47.
-
(2011)
Dev Cell
, vol.21
, pp. 835-847
-
-
Shi, J.1
Luo, L.2
Eash, J.3
Ibebunjo, C.4
Glass, D.J.5
-
118
-
-
0023692891
-
Pancreatic amylin and calcitonin gene-related peptide cause resistance to insulin in skeletal muscle in vitro
-
Leighton B, Cooper GJ. Pancreatic amylin and calcitonin gene-related peptide cause resistance to insulin in skeletal muscle in vitro. Nature. 1988;335:632-5.
-
(1988)
Nature
, vol.335
, pp. 632-635
-
-
Leighton, B.1
Cooper, G.J.2
-
119
-
-
0023786916
-
Circadian rhythm in sensitivity of glucose metabolism to insulin in rat soleus muscle
-
Leighton B, Kowalchuk JM, Challiss RA, Newsholme EA. Circadian rhythm in sensitivity of glucose metabolism to insulin in rat soleus muscle. Am J Physiol. 1988;255:E41-5.
-
(1988)
Am J Physiol
, vol.255
, pp. E41-E45
-
-
Leighton, B.1
Kowalchuk, J.M.2
Challiss, R.A.3
Newsholme, E.A.4
-
120
-
-
0023672777
-
Effects of adenosine deaminase on the sensitivity of glucose transport, glycolysis and glycogen synthesis to insulin in muscles of the rat
-
Leighton B, Lozeman FJ, Vlachonikolis IG, Challiss RA, Pitcher JA, Newsholme EA. Effects of adenosine deaminase on the sensitivity of glucose transport, glycolysis and glycogen synthesis to insulin in muscles of the rat. Int J Biochem. 1988;20:23-7.
-
(1988)
Int J Biochem
, vol.20
, pp. 23-27
-
-
Leighton, B.1
Lozeman, F.J.2
Vlachonikolis, I.G.3
Challiss, R.A.4
Pitcher, J.A.5
Newsholme, E.A.6
-
121
-
-
0033153025
-
Synip: a novel insulin-regulated syntaxin 4-binding protein mediating GLUT4 translocation in adipocytes
-
Min J, Okada S, Kanzaki M, Elmendorf JS, Coker KJ, Ceresa BP, et al. Synip: a novel insulin-regulated syntaxin 4-binding protein mediating GLUT4 translocation in adipocytes. Mol Cell. 1999;3:751-60.
-
(1999)
Mol Cell
, vol.3
, pp. 751-760
-
-
Min, J.1
Okada, S.2
Kanzaki, M.3
Elmendorf, J.S.4
Coker, K.J.5
Ceresa, B.P.6
-
122
-
-
33947128563
-
Synip phosphorylation is required for insulin-stimulated Glut4 translocation
-
Okada S, Ohshima K, Uehara Y, Shimizu H, Hashimoto K, Yamada M, et al. Synip phosphorylation is required for insulin-stimulated Glut4 translocation. Biochem Biophys Res Commun. 2007;356:102-6.
-
(2007)
Biochem Biophys Res Commun
, vol.356
, pp. 102-106
-
-
Okada, S.1
Ohshima, K.2
Uehara, Y.3
Shimizu, H.4
Hashimoto, K.5
Yamada, M.6
-
123
-
-
84864534029
-
Syntaxin4 interacting protein (Synip) binds phosphatidylinositol (3,4,5) triphosphate
-
Saito T, Okada S, Nohara A, Tagaya Y, Osaki A, Oh IS, et al. Syntaxin4 interacting protein (Synip) binds phosphatidylinositol (3,4,5) triphosphate. PLoS One. 2012;7, e42782.
-
(2012)
PLoS One
, vol.7
-
-
Saito, T.1
Okada, S.2
Nohara, A.3
Tagaya, Y.4
Osaki, A.5
Oh, I.S.6
-
124
-
-
77953195622
-
TBC1D1 regulates insulin- and contraction-induced glucose transport in mouse skeletal muscle
-
An D, Toyoda T, Taylor EB, Yu H, Fujii N, Hirshman MF, et al. TBC1D1 regulates insulin- and contraction-induced glucose transport in mouse skeletal muscle. Diabetes. 2010;59:1358-65.
-
(2010)
Diabetes
, vol.59
, pp. 1358-1365
-
-
An, D.1
Toyoda, T.2
Taylor, E.B.3
Yu, H.4
Fujii, N.5
Hirshman, M.F.6
-
125
-
-
84916596916
-
Roles of TBC1D1 and TBC1D4 in insulin- and exercise-stimulated glucose transport of skeletal muscle
-
Cartee GD. Roles of TBC1D1 and TBC1D4 in insulin- and exercise-stimulated glucose transport of skeletal muscle. Diabetologia. 2015;58:19-30.
-
(2015)
Diabetologia
, vol.58
, pp. 19-30
-
-
Cartee, G.D.1
-
126
-
-
84865152468
-
The Rab-GTPase-activating protein TBC1D1 regulates skeletal muscle glucose metabolism
-
Szekeres F, Chadt A, Tom RZ, Deshmukh AS, Chibalin AV, Bjornholm M, et al. The Rab-GTPase-activating protein TBC1D1 regulates skeletal muscle glucose metabolism. Am J Physiol Endocrinol Metab. 2012;303:E524-33.
-
(2012)
Am J Physiol Endocrinol Metab
, vol.303
, pp. E524-E533
-
-
Szekeres, F.1
Chadt, A.2
Tom, R.Z.3
Deshmukh, A.S.4
Chibalin, A.V.5
Bjornholm, M.6
-
127
-
-
55449106027
-
Analysis of gene regulatory networks in the mammalian circadian rhythm
-
Yan J, Wang H, Liu Y, Shao C. Analysis of gene regulatory networks in the mammalian circadian rhythm. PLoS Comput Biol. 2008;4, e1000193.
-
(2008)
PLoS Comput Biol
, vol.4
-
-
Yan, J.1
Wang, H.2
Liu, Y.3
Shao, C.4
-
130
-
-
84879864816
-
Brain and muscle Arnt-like 1 is a key regulator of myogenesis
-
Chatterjee S, Nam D, Guo B, Kim JM, Winnier GE, Lee J, et al. Brain and muscle Arnt-like 1 is a key regulator of myogenesis. J Cell Sci. 2013;126:2213-24.
-
(2013)
J Cell Sci
, vol.126
, pp. 2213-2224
-
-
Chatterjee, S.1
Nam, D.2
Guo, B.3
Kim, J.M.4
Winnier, G.E.5
Lee, J.6
-
131
-
-
33751565112
-
Dissecting the functions of the mammalian clock protein BMAL1 by tissue-specific rescue in mice
-
McDearmon EL, Patel KN, Ko CH, Walisser JA, Schook AC, Chong JL, et al. Dissecting the functions of the mammalian clock protein BMAL1 by tissue-specific rescue in mice. Science. 2006;314:1304-8.
-
(2006)
Science
, vol.314
, pp. 1304-1308
-
-
McDearmon, E.L.1
Patel, K.N.2
Ko, C.H.3
Walisser, J.A.4
Schook, A.C.5
Chong, J.L.6
-
132
-
-
80054760368
-
Fiber types in mammalian skeletal muscles
-
Schiaffino S, Reggiani C. Fiber types in mammalian skeletal muscles. Physiol Rev. 2011;91:1447-531.
-
(2011)
Physiol Rev
, vol.91
, pp. 1447-1531
-
-
Schiaffino, S.1
Reggiani, C.2
-
133
-
-
84893149530
-
Mechanisms modulating skeletal muscle phenotype
-
Blaauw B, Schiaffino S, Reggiani C. Mechanisms modulating skeletal muscle phenotype. Compr Physiol. 2013;3:1645-87.
-
(2013)
Compr Physiol
, vol.3
, pp. 1645-1687
-
-
Blaauw, B.1
Schiaffino, S.2
Reggiani, C.3
-
134
-
-
0036690310
-
The adaptive potential of skeletal muscle fibers
-
Pette D. The adaptive potential of skeletal muscle fibers. Can J Appl Physiol. 2002;27:423-48.
-
(2002)
Can J Appl Physiol
, vol.27
, pp. 423-448
-
-
Pette, D.1
-
135
-
-
8844256241
-
Skeletal muscle fiber type: influence on contractile and metabolic properties
-
Zierath JR, Hawley JA. Skeletal muscle fiber type: influence on contractile and metabolic properties. PLoS Biol. 2004;2, e348.
-
(2004)
PLoS Biol
, vol.2
-
-
Zierath, J.R.1
Hawley, J.A.2
-
136
-
-
79952055409
-
Microgenomic analysis in skeletal muscle: expression signatures of individual fast and slow myofibers
-
Chemello F, Bean C, Cancellara P, Laveder P, Reggiani C, Lanfranchi G. Microgenomic analysis in skeletal muscle: expression signatures of individual fast and slow myofibers. PLoS One. 2011;6, e16807.
-
(2011)
PLoS One
, vol.6
-
-
Chemello, F.1
Bean, C.2
Cancellara, P.3
Laveder, P.4
Reggiani, C.5
Lanfranchi, G.6
-
137
-
-
34548256825
-
Effects of aging on type II muscle fibers: a systematic review of the literature
-
Brunner F, Schmid A, Sheikhzadeh A, Nordin M, Yoon J, Frankel V. Effects of aging on type II muscle fibers: a systematic review of the literature. J Aging Phys Act. 2007;15:336-48.
-
(2007)
J Aging Phys Act
, vol.15
, pp. 336-348
-
-
Brunner, F.1
Schmid, A.2
Sheikhzadeh, A.3
Nordin, M.4
Yoon, J.5
Frankel, V.6
-
139
-
-
77952552718
-
Impact of aging on diurnal expression patterns of CLOCK and BMAL1 in the mouse brain
-
Wyse CA, Coogan AN. Impact of aging on diurnal expression patterns of CLOCK and BMAL1 in the mouse brain. Brain Res. 2010;1337:21-31.
-
(2010)
Brain Res
, vol.1337
, pp. 21-31
-
-
Wyse, C.A.1
Coogan, A.N.2
-
140
-
-
33746191906
-
Early aging and age-related pathologies in mice deficient in BMAL1, the core component of the circadian clock
-
Kondratov RV, Kondratova AA, Gorbacheva VY, Vykhovanets OV, Antoch MP. Early aging and age-related pathologies in mice deficient in BMAL1, the core component of the circadian clock. Genes Dev. 2006;20:1868-73.
-
(2006)
Genes Dev
, vol.20
, pp. 1868-1873
-
-
Kondratov, R.V.1
Kondratova, A.A.2
Gorbacheva, V.Y.3
Vykhovanets, O.V.4
Antoch, M.P.5
|