메뉴 건너뛰기




Volumn 5, Issue 1, 2015, Pages

The endogenous molecular clock orchestrates the temporal separation of substrate metabolism in skeletal muscle

Author keywords

Anabolic; Bmal1; Catabolic; Circadian; Metabolism; Molecular clock; Rev erb ; Skeletal muscle; Temporal separation

Indexed keywords

MUS;

EID: 85027955830     PISSN: None     EISSN: 20445040     Source Type: Journal    
DOI: 10.1186/s13395-015-0039-5     Document Type: Article
Times cited : (121)

References (140)
  • 1
    • 0035994641 scopus 로고    scopus 로고
    • Normal mammalian skeletal muscle and its phenotypic plasticity
    • Hoppeler H, Fluck M. Normal mammalian skeletal muscle and its phenotypic plasticity. J Exp Biol. 2002;205:2143-52.
    • (2002) J Exp Biol , vol.205 , pp. 2143-2152
    • Hoppeler, H.1    Fluck, M.2
  • 2
    • 0025047553 scopus 로고
    • Skeletal muscle metabolism is a major determinant of resting energy expenditure
    • Zurlo F, Larson K, Bogardus C, Ravussin E. Skeletal muscle metabolism is a major determinant of resting energy expenditure. J Clin Invest. 1990;86:1423-7.
    • (1990) J Clin Invest , vol.86 , pp. 1423-1427
    • Zurlo, F.1    Larson, K.2    Bogardus, C.3    Ravussin, E.4
  • 3
    • 84873378527 scopus 로고    scopus 로고
    • Exercise metabolism and the molecular regulation of skeletal muscle adaptation
    • Egan B, Zierath JR. Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab. 2013;17:162-84.
    • (2013) Cell Metab , vol.17 , pp. 162-184
    • Egan, B.1    Zierath, J.R.2
  • 4
    • 85028214297 scopus 로고    scopus 로고
    • Frontera WR, Ochala J. Skeletal muscle, a brief review of structure and function: Calcif Tissue Int. 2014.
    • (2014)
    • Frontera, W.R.1    Ochala, J.2
  • 5
    • 0021943001 scopus 로고
    • Energetic aspects of skeletal muscle contraction: implications of fiber types
    • Rall JA. Energetic aspects of skeletal muscle contraction: implications of fiber types. Exerc Sport Sci Rev. 1985;13:33-74.
    • (1985) Exerc Sport Sci Rev , vol.13 , pp. 33-74
    • Rall, J.A.1
  • 6
    • 0019758267 scopus 로고
    • Insulin resistance: a universal finding in diabetic states
    • Bull Schweiz Akad Med Wiss
    • Defronzo RA, Simonson D, Ferrannini E, Barrett E. Insulin resistance: a universal finding in diabetic states. Bull Schweiz Akad Med Wiss. 1981-1982:223-238.
    • (1981) , pp. 223-238
    • Defronzo, R.A.1    Simonson, D.2    Ferrannini, E.3    Barrett, E.4
  • 10
    • 0036291378 scopus 로고    scopus 로고
    • Regulation of fat metabolism in skeletal muscle
    • Jeukendrup AE. Regulation of fat metabolism in skeletal muscle. Ann N Y Acad Sci. 2002;967:217-35.
    • (2002) Ann N Y Acad Sci , vol.967 , pp. 217-235
    • Jeukendrup, A.E.1
  • 11
    • 77951444244 scopus 로고    scopus 로고
    • Anabolic and catabolic pathways regulating skeletal muscle mass
    • McCarthy JJ, Esser KA. Anabolic and catabolic pathways regulating skeletal muscle mass. Curr Opin Clin Nutr Metab Care. 2010;13:230-5.
    • (2010) Curr Opin Clin Nutr Metab Care , vol.13 , pp. 230-235
    • McCarthy, J.J.1    Esser, K.A.2
  • 12
    • 0037341240 scopus 로고    scopus 로고
    • Effect of short-term fasting and refeeding on transcriptional regulation of metabolic genes in human skeletal muscle
    • Pilegaard H, Saltin B, Neufer PD. Effect of short-term fasting and refeeding on transcriptional regulation of metabolic genes in human skeletal muscle. Diabetes. 2003;52:657-62.
    • (2003) Diabetes , vol.52 , pp. 657-662
    • Pilegaard, H.1    Saltin, B.2    Neufer, P.D.3
  • 13
    • 0027378025 scopus 로고
    • Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration
    • Romijn JA, Coyle EF, Sidossis LS, Gastaldelli A, Horowitz JF, Endert E, et al. Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am J Physiol. 1993;265:E380-91.
    • (1993) Am J Physiol , vol.265 , pp. E380-E391
    • Romijn, J.A.1    Coyle, E.F.2    Sidossis, L.S.3    Gastaldelli, A.4    Horowitz, J.F.5    Endert, E.6
  • 15
    • 84925843375 scopus 로고    scopus 로고
    • Physiological mechanisms of action of incretin and insulin in regulating skeletal muscle metabolism
    • Abdulla H, Phillips B, Smith K, Wilkinson D, Atherton PJ, Idris I. Physiological mechanisms of action of incretin and insulin in regulating skeletal muscle metabolism. Curr Diabetes Rev. 2014;10:327-35.
    • (2014) Curr Diabetes Rev , vol.10 , pp. 327-335
    • Abdulla, H.1    Phillips, B.2    Smith, K.3    Wilkinson, D.4    Atherton, P.J.5    Idris, I.6
  • 17
    • 33749031807 scopus 로고    scopus 로고
    • Molecular components of the mammalian circadian clock
    • 15 Spec No 2
    • Ko CH, Takahashi JS. Molecular components of the mammalian circadian clock. Hum Mol Genet. 2006;15 Spec No 2:R271-7.
    • (2006) Hum Mol Genet , pp. R271-R277
    • Ko, C.H.1    Takahashi, J.S.2
  • 18
    • 0344323530 scopus 로고    scopus 로고
    • Peripheral circadian oscillators and their rhythmic regulation
    • Fukuhara C, Tosini G. Peripheral circadian oscillators and their rhythmic regulation. Front Biosci. 2003;8:d642-51.
    • (2003) Front Biosci , vol.8 , pp. d642-d651
    • Fukuhara, C.1    Tosini, G.2
  • 19
    • 84255190045 scopus 로고    scopus 로고
    • Circadian expression of clock and putative clock-controlled genes in skeletal muscle of the zebrafish
    • Amaral IP, Johnston IA. Circadian expression of clock and putative clock-controlled genes in skeletal muscle of the zebrafish. Am J Physiol Regul Integr Comp Physiol. 2012;302:R193-206.
    • (2012) Am J Physiol Regul Integr Comp Physiol , vol.302 , pp. R193-206
    • Amaral, I.P.1    Johnston, I.A.2
  • 21
    • 84906968912 scopus 로고    scopus 로고
    • Running on time: the role of circadian clocks in the musculoskeletal system
    • Dudek M, Meng QJ. Running on time: the role of circadian clocks in the musculoskeletal system. Biochem J. 2014;463:1-8.
    • (2014) Biochem J , vol.463 , pp. 1-8
    • Dudek, M.1    Meng, Q.J.2
  • 24
    • 84885171676 scopus 로고    scopus 로고
    • Circadian rhythms, skeletal muscle molecular clocks, and exercise
    • Schroder EA, Esser KA. Circadian rhythms, skeletal muscle molecular clocks, and exercise. Exerc Sport Sci Rev. 2013;41:224-9.
    • (2013) Exerc Sport Sci Rev , vol.41 , pp. 224-229
    • Schroder, E.A.1    Esser, K.A.2
  • 26
    • 84881453812 scopus 로고    scopus 로고
    • Chronic phase advance alters circadian physiological rhythms and peripheral molecular clocks
    • Wolff G, Duncan MJ, Esser KA. Chronic phase advance alters circadian physiological rhythms and peripheral molecular clocks. J Appl Physiol. 2013;115:373-82.
    • (2013) J Appl Physiol , vol.115 , pp. 373-382
    • Wolff, G.1    Duncan, M.J.2    Esser, K.A.3
  • 27
    • 84869036539 scopus 로고    scopus 로고
    • Circadian topology of metabolism
    • Bass J. Circadian topology of metabolism. Nature. 2012;491:348-56.
    • (2012) Nature , vol.491 , pp. 348-356
    • Bass, J.1
  • 29
    • 0032510778 scopus 로고    scopus 로고
    • The basic-helix-loop-helix-PAS orphan MOP3 forms transcriptionally active complexes with circadian and hypoxia factors
    • Hogenesch JB, Gu YZ, Jain S, Bradfield CA. The basic-helix-loop-helix-PAS orphan MOP3 forms transcriptionally active complexes with circadian and hypoxia factors. Proc Natl Acad Sci U S A. 1998;95:5474-9.
    • (1998) Proc Natl Acad Sci U S A , vol.95 , pp. 5474-5479
    • Hogenesch, J.B.1    Gu, Y.Z.2    Jain, S.3    Bradfield, C.A.4
  • 31
    • 4544362674 scopus 로고    scopus 로고
    • Mammalian circadian biology: elucidating genome-wide levels of temporal organization
    • Lowrey PL, Takahashi JS. Mammalian circadian biology: elucidating genome-wide levels of temporal organization. Annu Rev Genomics Hum Genet. 2004;5:407-41.
    • (2004) Annu Rev Genomics Hum Genet , vol.5 , pp. 407-441
    • Lowrey, P.L.1    Takahashi, J.S.2
  • 32
    • 14044264801 scopus 로고    scopus 로고
    • BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis
    • Rudic RD, McNamara P, Curtis AM, Boston RC, Panda S, Hogenesch JB, et al. BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis. PLoS Biol. 2004;2, e377.
    • (2004) PLoS Biol , vol.2
    • Rudic, R.D.1    McNamara, P.2    Curtis, A.M.3    Boston, R.C.4    Panda, S.5    Hogenesch, J.B.6
  • 33
    • 24744470282 scopus 로고    scopus 로고
    • Brain and muscle Arnt-like protein-1 (BMAL1), a component of the molecular clock, regulates adipogenesis
    • Shimba S, Ishii N, Ohta Y, Ohno T, Watabe Y, Hayashi M, et al. Brain and muscle Arnt-like protein-1 (BMAL1), a component of the molecular clock, regulates adipogenesis. Proc Natl Acad Sci U S A. 2005;102:12071-6.
    • (2005) Proc Natl Acad Sci U S A , vol.102 , pp. 12071-12076
    • Shimba, S.1    Ishii, N.2    Ohta, Y.3    Ohno, T.4    Watabe, Y.5    Hayashi, M.6
  • 35
    • 79953329154 scopus 로고    scopus 로고
    • Diurnal regulation of MTP and plasma triglyceride by CLOCK is mediated by SHP
    • Pan X, Zhang Y, Wang L, Hussain MM. Diurnal regulation of MTP and plasma triglyceride by CLOCK is mediated by SHP. Cell Metab. 2010;12:174-86.
    • (2010) Cell Metab , vol.12 , pp. 174-186
    • Pan, X.1    Zhang, Y.2    Wang, L.3    Hussain, M.M.4
  • 36
    • 80053054824 scopus 로고    scopus 로고
    • Deficient of a clock gene, brain and muscle Arnt-like protein-1 (BMAL1), induces dyslipidemia and ectopic fat formation
    • Shimba S, Ogawa T, Hitosugi S, Ichihashi Y, Nakadaira Y, Kobayashi M, et al. Deficient of a clock gene, brain and muscle Arnt-like protein-1 (BMAL1), induces dyslipidemia and ectopic fat formation. PLoS One. 2011;6, e25231.
    • (2011) PLoS One , vol.6
    • Shimba, S.1    Ogawa, T.2    Hitosugi, S.3    Ichihashi, Y.4    Nakadaira, Y.5    Kobayashi, M.6
  • 37
    • 84859329911 scopus 로고    scopus 로고
    • Rev-erbalpha and Rev-erbbeta coordinately protect the circadian clock and normal metabolic function
    • Bugge A, Feng D, Everett LJ, Briggs ER, Mullican SE, Wang F, et al. Rev-erbalpha and Rev-erbbeta coordinately protect the circadian clock and normal metabolic function. Genes Dev. 2012;26:657-67.
    • (2012) Genes Dev , vol.26 , pp. 657-667
    • Bugge, A.1    Feng, D.2    Everett, L.J.3    Briggs, E.R.4    Mullican, S.E.5    Wang, F.6
  • 38
    • 84860264490 scopus 로고    scopus 로고
    • Regulation of circadian behaviour and metabolism by REV-ERB-alpha and REV-ERB-beta
    • Cho H, Zhao X, Hatori M, Yu RT, Barish GD, Lam MT, et al. Regulation of circadian behaviour and metabolism by REV-ERB-alpha and REV-ERB-beta. Nature. 2012;485:123-7.
    • (2012) Nature , vol.485 , pp. 123-127
    • Cho, H.1    Zhao, X.2    Hatori, M.3    Yu, R.T.4    Barish, G.D.5    Lam, M.T.6
  • 39
    • 54449085416 scopus 로고    scopus 로고
    • Physiological significance of a peripheral tissue circadian clock
    • Lamia KA, Storch KF, Weitz CJ. Physiological significance of a peripheral tissue circadian clock. Proc Natl Acad Sci U S A. 2008;105:15172-7.
    • (2008) Proc Natl Acad Sci U S A , vol.105 , pp. 15172-15177
    • Lamia, K.A.1    Storch, K.F.2    Weitz, C.J.3
  • 40
    • 70449441222 scopus 로고    scopus 로고
    • The role of cell-specific circadian clocks in metabolism and disease
    • Bray MS, Young ME. The role of cell-specific circadian clocks in metabolism and disease. Obes Rev. 2009;10 Suppl 2:6-13.
    • (2009) Obes Rev , vol.10 , pp. 6-13
    • Bray, M.S.1    Young, M.E.2
  • 41
    • 77954848215 scopus 로고    scopus 로고
    • Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes
    • Marcheva B, Ramsey KM, Buhr ED, Kobayashi Y, Su H, Ko CH, et al. Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature. 2010;466:627-31.
    • (2010) Nature , vol.466 , pp. 627-631
    • Marcheva, B.1    Ramsey, K.M.2    Buhr, E.D.3    Kobayashi, Y.4    Su, H.5    Ko, C.H.6
  • 42
    • 84870859377 scopus 로고    scopus 로고
    • Obesity in mice with adipocyte-specific deletion of clock component Arntl
    • Paschos GK, Ibrahim S, Song WL, Kunieda T, Grant G, Reyes TM, et al. Obesity in mice with adipocyte-specific deletion of clock component Arntl. Nat Med. 2012;18:1768-77.
    • (2012) Nat Med , vol.18 , pp. 1768-1777
    • Paschos, G.K.1    Ibrahim, S.2    Song, W.L.3    Kunieda, T.4    Grant, G.5    Reyes, T.M.6
  • 43
    • 84895128336 scopus 로고    scopus 로고
    • Muscle insulin sensitivity and glucose metabolism are controlled by the intrinsic muscle clock
    • Dyar KA, Ciciliot S, Wright LE, Bienso RS, Tagliazucchi GM, Patel VR, et al. Muscle insulin sensitivity and glucose metabolism are controlled by the intrinsic muscle clock. Mol Metab. 2014;3:29-41.
    • (2014) Mol Metab , vol.3 , pp. 29-41
    • Dyar, K.A.1    Ciciliot, S.2    Wright, L.E.3    Bienso, R.S.4    Tagliazucchi, G.M.5    Patel, V.R.6
  • 44
    • 84907523083 scopus 로고    scopus 로고
    • Evaluation of five methods for genome-wide circadian gene identification
    • Wu G, Zhu J, Yu J, Zhou L, Huang JZ, Zhang Z. Evaluation of five methods for genome-wide circadian gene identification. J Biol Rhythms. 2014;29:231-42.
    • (2014) J Biol Rhythms , vol.29 , pp. 231-242
    • Wu, G.1    Zhu, J.2    Yu, J.3    Zhou, L.4    Huang, J.Z.5    Zhang, Z.6
  • 45
    • 84875498250 scopus 로고    scopus 로고
    • CircaDB: a database of mammalian circadian gene expression profiles
    • Pizarro A, Hayer K, Lahens NF, Hogenesch JB. CircaDB: a database of mammalian circadian gene expression profiles. Nucleic Acids Res. 2013;41:D1009-13.
    • (2013) Nucleic Acids Res , vol.41 , pp. D1009-D1013
    • Pizarro, A.1    Hayer, K.2    Lahens, N.F.3    Hogenesch, J.B.4
  • 47
    • 77957266573 scopus 로고    scopus 로고
    • JTK_CYCLE: an efficient nonparametric algorithm for detecting rhythmic components in genome-scale data sets
    • Hughes ME, Hogenesch JB, Kornacker K. JTK_CYCLE: an efficient nonparametric algorithm for detecting rhythmic components in genome-scale data sets. J Biol Rhythms. 2010;25:372-80.
    • (2010) J Biol Rhythms , vol.25 , pp. 372-380
    • Hughes, M.E.1    Hogenesch, J.B.2    Kornacker, K.3
  • 49
    • 75549084894 scopus 로고    scopus 로고
    • PANTHER version 7: improved phylogenetic trees, orthologs and collaboration with the Gene Ontology Consortium
    • Mi H, Dong Q, Muruganujan A, Gaudet P, Lewis S, Thomas PD. PANTHER version 7: improved phylogenetic trees, orthologs and collaboration with the Gene Ontology Consortium. Nucleic Acids Res. 2010;38:D204-10.
    • (2010) Nucleic Acids Res , vol.38 , pp. D204-D210
    • Mi, H.1    Dong, Q.2    Muruganujan, A.3    Gaudet, P.4    Lewis, S.5    Thomas, P.D.6
  • 50
    • 34547939468 scopus 로고    scopus 로고
    • Intrinsic circadian clock of the mammalian retina: importance for retinal processing of visual information
    • Storch KF, Paz C, Signorovitch J, Raviola E, Pawlyk B, Li T, et al. Intrinsic circadian clock of the mammalian retina: importance for retinal processing of visual information. Cell. 2007;130:730-41.
    • (2007) Cell , vol.130 , pp. 730-741
    • Storch, K.F.1    Paz, C.2    Signorovitch, J.3    Raviola, E.4    Pawlyk, B.5    Li, T.6
  • 52
    • 78249275827 scopus 로고    scopus 로고
    • Processing circadian data collected from the Drosophila Activity Monitoring (DAM) System
    • pdb.prot5519
    • Pfeiffenberger C, Lear BC, Keegan KP, Allada R. Processing circadian data collected from the Drosophila Activity Monitoring (DAM) System. Cold Spring Harb Protoc. 2010;2010:pdb.prot5519.
    • (2010) Cold Spring Harb Protoc , vol.2010
    • Pfeiffenberger, C.1    Lear, B.C.2    Keegan, K.P.3    Allada, R.4
  • 55
    • 84922077002 scopus 로고    scopus 로고
    • Wang L, Li L, Jiang J, Wang Y, Zhong T, Chen Y, et al. Molecular characterization and different expression patterns of the FABP gene family during goat skeletal muscle development: Mol Biol Rep. 2014.
    • (2014)
    • Wang, L.1    Li, L.2    Jiang, J.3    Wang, Y.4    Zhong, T.5    Chen, Y.6
  • 56
    • 84900827580 scopus 로고    scopus 로고
    • Label-free LC-MS profiling of skeletal muscle reveals heart-type fatty acid binding protein as a candidate biomarker of aerobic capacity
    • Malik ZA, Cobley JN, Morton JP, Close GL, Edwards BJ, Koch LG, et al. Label-free LC-MS profiling of skeletal muscle reveals heart-type fatty acid binding protein as a candidate biomarker of aerobic capacity. Proc Natl Acad Sci U S A. 2013;1:290-308.
    • (2013) Proc Natl Acad Sci U S A , vol.1 , pp. 290-308
    • Malik, Z.A.1    Cobley, J.N.2    Morton, J.P.3    Close, G.L.4    Edwards, B.J.5    Koch, L.G.6
  • 57
    • 84896710962 scopus 로고    scopus 로고
    • A critical role of fatty acid binding protein 4 and 5 (FABP4/5) in the systemic response to fasting
    • Syamsunarno MR, Iso T, Hanaoka H, Yamaguchi A, Obokata M, Koitabashi N, et al. A critical role of fatty acid binding protein 4 and 5 (FABP4/5) in the systemic response to fasting. PLoS One. 2013;8, e79386.
    • (2013) PLoS One , vol.8
    • Syamsunarno, M.R.1    Iso, T.2    Hanaoka, H.3    Yamaguchi, A.4    Obokata, M.5    Koitabashi, N.6
  • 58
    • 84898610832 scopus 로고    scopus 로고
    • Circadian regulation of adipose function
    • Shostak A, Husse J, Oster H. Circadian regulation of adipose function. Adipocyte. 2013;2:201-6.
    • (2013) Adipocyte , vol.2 , pp. 201-206
    • Shostak, A.1    Husse, J.2    Oster, H.3
  • 59
    • 84901638653 scopus 로고    scopus 로고
    • Diurnal regulation of lipid metabolism and applications of circadian lipidomics
    • Gooley JJ, Chua EC. Diurnal regulation of lipid metabolism and applications of circadian lipidomics. J Genet Genomics. 2014;41:231-50.
    • (2014) J Genet Genomics , vol.41 , pp. 231-250
    • Gooley, J.J.1    Chua, E.C.2
  • 63
    • 0031967121 scopus 로고    scopus 로고
    • Carnitine palmitoyltransferase I (CPT I) activity and its regulation by malonyl-CoA are modulated by age and cold exposure in skeletal muscle mitochondria from newborn pigs
    • Schmidt I, Herpin P. Carnitine palmitoyltransferase I (CPT I) activity and its regulation by malonyl-CoA are modulated by age and cold exposure in skeletal muscle mitochondria from newborn pigs. J Nutr. 1998;128:886-93.
    • (1998) J Nutr , vol.128 , pp. 886-893
    • Schmidt, I.1    Herpin, P.2
  • 64
    • 50949087166 scopus 로고    scopus 로고
    • Malonyl-CoA, a key signaling molecule in mammalian cells
    • Saggerson D. Malonyl-CoA, a key signaling molecule in mammalian cells. Annu Rev Nutr. 2008;28:253-72.
    • (2008) Annu Rev Nutr , vol.28 , pp. 253-272
    • Saggerson, D.1
  • 66
    • 84949115098 scopus 로고    scopus 로고
    • PPARs and ERRs: molecular mediators of mitochondrial metabolism
    • Fan W, Evans R. PPARs and ERRs: molecular mediators of mitochondrial metabolism. Curr Opin Cell Biol. 2014;33C:49-54.
    • (2014) Curr Opin Cell Biol , vol.33C , pp. 49-54
    • Fan, W.1    Evans, R.2
  • 67
    • 33747157406 scopus 로고    scopus 로고
    • Nuclear receptor expression links the circadian clock to metabolism
    • Yang X, Downes M, Yu RT, Bookout AL, He W, Straume M, et al. Nuclear receptor expression links the circadian clock to metabolism. Cell. 2006;126:801-10.
    • (2006) Cell , vol.126 , pp. 801-810
    • Yang, X.1    Downes, M.2    Yu, R.T.3    Bookout, A.L.4    He, W.5    Straume, M.6
  • 68
    • 46349088224 scopus 로고    scopus 로고
    • Ligand dissociation from estrogen receptor is mediated by receptor dimerization: evidence from molecular dynamics simulations
    • Sonoda MT, Martinez L, Webb P, Skaf MS, Polikarpov I. Ligand dissociation from estrogen receptor is mediated by receptor dimerization: evidence from molecular dynamics simulations. Mol Endocrinol. 2008;22:1565-78.
    • (2008) Mol Endocrinol , vol.22 , pp. 1565-1578
    • Sonoda, M.T.1    Martinez, L.2    Webb, P.3    Skaf, M.S.4    Polikarpov, I.5
  • 70
    • 0037134493 scopus 로고    scopus 로고
    • The PGC-1-related protein PERC is a selective coactivator of estrogen receptor alpha
    • Kressler D, Schreiber SN, Knutti D, Kralli A. The PGC-1-related protein PERC is a selective coactivator of estrogen receptor alpha. J Biol Chem. 2002;277:13918-25.
    • (2002) J Biol Chem , vol.277 , pp. 13918-13925
    • Kressler, D.1    Schreiber, S.N.2    Knutti, D.3    Kralli, A.4
  • 71
    • 33644660537 scopus 로고    scopus 로고
    • PGC-1 coactivators: inducible regulators of energy metabolism in health and disease
    • Finck BN, Kelly DP. PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. J Clin Invest. 2006;116:615-22.
    • (2006) J Clin Invest , vol.116 , pp. 615-622
    • Finck, B.N.1    Kelly, D.P.2
  • 72
    • 34548208233 scopus 로고    scopus 로고
    • The transcriptional corepressor RIP140 regulates oxidative metabolism in skeletal muscle
    • Seth A, Steel JH, Nichol D, Pocock V, Kumaran MK, Fritah A, et al. The transcriptional corepressor RIP140 regulates oxidative metabolism in skeletal muscle. Cell Metab. 2007;6:236-45.
    • (2007) Cell Metab , vol.6 , pp. 236-245
    • Seth, A.1    Steel, J.H.2    Nichol, D.3    Pocock, V.4    Kumaran, M.K.5    Fritah, A.6
  • 73
    • 84872687809 scopus 로고    scopus 로고
    • Genetic downregulation of receptor-interacting protein 140 uncovers the central role of Akt signalling in the regulation of fatty acid oxidation in skeletal muscle cells
    • Constantinescu S, Turcotte LP. Genetic downregulation of receptor-interacting protein 140 uncovers the central role of Akt signalling in the regulation of fatty acid oxidation in skeletal muscle cells. Exp Physiol. 2013;98:514-25.
    • (2013) Exp Physiol , vol.98 , pp. 514-525
    • Constantinescu, S.1    Turcotte, L.P.2
  • 75
    • 67651227759 scopus 로고    scopus 로고
    • Control of skeletal muscle metabolic properties by the nuclear receptor corepressor RIP140
    • Fritah A. Control of skeletal muscle metabolic properties by the nuclear receptor corepressor RIP140. Appl Physiol Nutr Metab. 2009;34:362-7.
    • (2009) Appl Physiol Nutr Metab , vol.34 , pp. 362-367
    • Fritah, A.1
  • 76
    • 79960776844 scopus 로고    scopus 로고
    • Skeletal muscle lipid flux: running water carries no poison
    • Funai K, Semenkovich CF. Skeletal muscle lipid flux: running water carries no poison. Am J Physiol Endocrinol Metab. 2011;301:E245-51.
    • (2011) Am J Physiol Endocrinol Metab , vol.301 , pp. E245-E251
    • Funai, K.1    Semenkovich, C.F.2
  • 77
    • 34047255220 scopus 로고    scopus 로고
    • Stearoyl-CoA desaturase-a new player in skeletal muscle metabolism regulation
    • Dobrzyn A, Dobrzyn P. Stearoyl-CoA desaturase-a new player in skeletal muscle metabolism regulation. J Physiol Pharmacol. 2006;57 Suppl 10:31-42.
    • (2006) J Physiol Pharmacol , vol.57 , pp. 31-42
    • Dobrzyn, A.1    Dobrzyn, P.2
  • 78
    • 0037832581 scopus 로고    scopus 로고
    • Recent insights into stearoyl-CoA desaturase-1
    • Ntambi JM, Miyazaki M. Recent insights into stearoyl-CoA desaturase-1. Curr Opin Lipidol. 2003;14:255-61.
    • (2003) Curr Opin Lipidol , vol.14 , pp. 255-261
    • Ntambi, J.M.1    Miyazaki, M.2
  • 79
    • 84905175079 scopus 로고    scopus 로고
    • Energy metabolism in the liver
    • Rui L. Energy metabolism in the liver. Compr Physiol. 2014;4:177-97.
    • (2014) Compr Physiol , vol.4 , pp. 177-197
    • Rui, L.1
  • 80
    • 14544289119 scopus 로고    scopus 로고
    • Carbohydrate responsive element binding protein (ChREBP) and sterol regulatory element binding protein-1c (SREBP-1c): two key regulators of glucose metabolism and lipid synthesis in liver
    • Dentin R, Girard J, Postic C. Carbohydrate responsive element binding protein (ChREBP) and sterol regulatory element binding protein-1c (SREBP-1c): two key regulators of glucose metabolism and lipid synthesis in liver. Biochimie. 2005;87:81-6.
    • (2005) Biochimie , vol.87 , pp. 81-86
    • Dentin, R.1    Girard, J.2    Postic, C.3
  • 81
    • 18444391229 scopus 로고    scopus 로고
    • SREBP-1 as a transcriptional integrator of circadian and nutritional cues in the liver
    • Brewer M, Lange D, Baler R, Anzulovich A. SREBP-1 as a transcriptional integrator of circadian and nutritional cues in the liver. J Biol Rhythms. 2005;20:195-205.
    • (2005) J Biol Rhythms , vol.20 , pp. 195-205
    • Brewer, M.1    Lange, D.2    Baler, R.3    Anzulovich, A.4
  • 82
    • 77958509990 scopus 로고    scopus 로고
    • Time of day and nutrients in feeding govern daily expression rhythms of the gene for sterol regulatory element-binding protein (SREBP)-1 in the mouse liver
    • Matsumoto E, Ishihara A, Tamai S, Nemoto A, Iwase K, Hiwasa T, et al. Time of day and nutrients in feeding govern daily expression rhythms of the gene for sterol regulatory element-binding protein (SREBP)-1 in the mouse liver. J Biol Chem. 2010;285:33028-36.
    • (2010) J Biol Chem , vol.285 , pp. 33028-33036
    • Matsumoto, E.1    Ishihara, A.2    Tamai, S.3    Nemoto, A.4    Iwase, K.5    Hiwasa, T.6
  • 83
    • 77954312931 scopus 로고    scopus 로고
    • Gene expression analysis on the liver of cholestyramine-treated type 2 diabetic model mice
    • Matsumoto K, Yokoyama S. Gene expression analysis on the liver of cholestyramine-treated type 2 diabetic model mice. Biomed Pharmacother. 2010;64:373-8.
    • (2010) Biomed Pharmacother , vol.64 , pp. 373-378
    • Matsumoto, K.1    Yokoyama, S.2
  • 84
    • 84897425951 scopus 로고    scopus 로고
    • Genome-wide analysis of SREBP1 activity around the clock reveals its combined dependency on nutrient and circadian signals
    • Gilardi F, Migliavacca E, Naldi A, Baruchet M, Canella D, Le Martelot G, et al. Genome-wide analysis of SREBP1 activity around the clock reveals its combined dependency on nutrient and circadian signals. PLoS Genet. 2014;10, e1004155.
    • (2014) PLoS Genet , vol.10
    • Gilardi, F.1    Migliavacca, E.2    Naldi, A.3    Baruchet, M.4    Canella, D.5    Martelot, G.6
  • 85
    • 84860465005 scopus 로고    scopus 로고
    • Adiponutrin functions as a nutritionally regulated lysophosphatidic acid acyltransferase
    • Kumari M, Schoiswohl G, Chitraju C, Paar M, Cornaciu I, Rangrez AY, et al. Adiponutrin functions as a nutritionally regulated lysophosphatidic acid acyltransferase. Cell Metab. 2012;15:691-702.
    • (2012) Cell Metab , vol.15 , pp. 691-702
    • Kumari, M.1    Schoiswohl, G.2    Chitraju, C.3    Paar, M.4    Cornaciu, I.5    Rangrez, A.Y.6
  • 86
    • 79961064846 scopus 로고    scopus 로고
    • Lipin 1 in lipid metabolism
    • Ishimoto K. Lipin 1 in lipid metabolism. Yakugaku Zasshi. 2011;131:1189-94.
    • (2011) Yakugaku Zasshi , vol.131 , pp. 1189-1194
    • Ishimoto, K.1
  • 87
    • 66849089697 scopus 로고    scopus 로고
    • Biochemistry, physiology, and genetics of GPAT, AGPAT, and lipin enzymes in triglyceride synthesis
    • Takeuchi K, Reue K. Biochemistry, physiology, and genetics of GPAT, AGPAT, and lipin enzymes in triglyceride synthesis. Am J Physiol Endocrinol Metab. 2009;296:E1195-209.
    • (2009) Am J Physiol Endocrinol Metab , vol.296 , pp. E1195-E1209
    • Takeuchi, K.1    Reue, K.2
  • 88
    • 58149457426 scopus 로고    scopus 로고
    • Thematic review series: glycerolipids. DGAT enzymes and triacylglycerol biosynthesis
    • Yen CL, Stone SJ, Koliwad S, Harris C, Farese Jr RV. Thematic review series: glycerolipids. DGAT enzymes and triacylglycerol biosynthesis. J Lipid Res. 2008;49:2283-301.
    • (2008) J Lipid Res , vol.49 , pp. 2283-2301
    • Yen, C.L.1    Stone, S.J.2    Koliwad, S.3    Harris, C.4    Farese, R.V.5
  • 89
    • 33646018341 scopus 로고    scopus 로고
    • Fatty acid elongases in mammals: their regulation and roles in metabolism
    • Jakobsson A, Westerberg R, Jacobsson A. Fatty acid elongases in mammals: their regulation and roles in metabolism. Prog Lipid Res. 2006;45:237-49.
    • (2006) Prog Lipid Res , vol.45 , pp. 237-249
    • Jakobsson, A.1    Westerberg, R.2    Jacobsson, A.3
  • 90
    • 78149314978 scopus 로고    scopus 로고
    • Hepatic long-chain acyl-CoA synthetase 5 mediates fatty acid channeling between anabolic and catabolic pathways
    • Bu SY, Mashek DG. Hepatic long-chain acyl-CoA synthetase 5 mediates fatty acid channeling between anabolic and catabolic pathways. J Lipid Res. 2010;51:3270-80.
    • (2010) J Lipid Res , vol.51 , pp. 3270-3280
    • Bu, S.Y.1    Mashek, D.G.2
  • 91
    • 84884356128 scopus 로고    scopus 로고
    • A quick look at biochemistry: carbohydrate metabolism
    • Dashty M. A quick look at biochemistry: carbohydrate metabolism. Clin Biochem. 2013;46:1339-52.
    • (2013) Clin Biochem , vol.46 , pp. 1339-1352
    • Dashty, M.1
  • 93
    • 0036549888 scopus 로고    scopus 로고
    • Different modes of activating phosphofructokinase, a key regulatory enzyme of glycolysis, in working vertebrate muscle
    • Wegener G, Krause U. Different modes of activating phosphofructokinase, a key regulatory enzyme of glycolysis, in working vertebrate muscle. Biochem Soc Trans. 2002;30:264-70.
    • (2002) Biochem Soc Trans , vol.30 , pp. 264-270
    • Wegener, G.1    Krause, U.2
  • 94
    • 0025287011 scopus 로고
    • Fructose 2,6-bisphosphate and glycolytic flux in skeletal muscle of swimming frog
    • Wegener G, Krause U, Thuy M. Fructose 2,6-bisphosphate and glycolytic flux in skeletal muscle of swimming frog. FEBS Lett. 1990;267:257-60.
    • (1990) FEBS Lett , vol.267 , pp. 257-260
    • Wegener, G.1    Krause, U.2    Thuy, M.3
  • 95
    • 0023857649 scopus 로고
    • Fructose 2,6-bisphosphate and glycolytic oscillations in skeletal muscle extracts
    • Tornheim K. Fructose 2,6-bisphosphate and glycolytic oscillations in skeletal muscle extracts. J Biol Chem. 1988;263:2619-24.
    • (1988) J Biol Chem , vol.263 , pp. 2619-2624
    • Tornheim, K.1
  • 96
    • 0036220628 scopus 로고    scopus 로고
    • Regulation of pyruvate dehydrogenase (PDH) activity in human skeletal muscle during exercise
    • Spriet LL, Heigenhauser GJ. Regulation of pyruvate dehydrogenase (PDH) activity in human skeletal muscle during exercise. Exerc Sport Sci Rev. 2002;30:91-5.
    • (2002) Exerc Sport Sci Rev , vol.30 , pp. 91-95
    • Spriet, L.L.1    Heigenhauser, G.J.2
  • 97
    • 0036377351 scopus 로고    scopus 로고
    • Regulation of the activity of the pyruvate dehydrogenase complex
    • Harris RA, Bowker-Kinley MM, Huang B, Wu P. Regulation of the activity of the pyruvate dehydrogenase complex. Adv Enzyme Regul. 2002;42:249-59.
    • (2002) Adv Enzyme Regul , vol.42 , pp. 249-259
    • Harris, R.A.1    Bowker-Kinley, M.M.2    Huang, B.3    Wu, P.4
  • 98
    • 0346158376 scopus 로고    scopus 로고
    • Regulation of pyruvate dehydrogenase complex activity by reversible phosphorylation
    • Holness MJ, Sugden MC. Regulation of pyruvate dehydrogenase complex activity by reversible phosphorylation. Biochem Soc Trans. 2003;31:1143-51.
    • (2003) Biochem Soc Trans , vol.31 , pp. 1143-1151
    • Holness, M.J.1    Sugden, M.C.2
  • 99
    • 84907218413 scopus 로고    scopus 로고
    • Tyr-301 phosphorylation inhibits pyruvate dehydrogenase by blocking substrate binding and promotes the Warburg effect
    • Fan J, Kang HB, Shan C, Elf S, Lin R, Xie J, et al. Tyr-301 phosphorylation inhibits pyruvate dehydrogenase by blocking substrate binding and promotes the Warburg effect. J Biol Chem. 2014;289:26533-41.
    • (2014) J Biol Chem , vol.289 , pp. 26533-26541
    • Fan, J.1    Kang, H.B.2    Shan, C.3    Elf, S.4    Lin, R.5    Xie, J.6
  • 100
    • 78649863650 scopus 로고    scopus 로고
    • Beta-adrenergic-regulated phosphorylation of the skeletal muscle Ca(V)1.1 channel in the fight-or-flight response
    • Emrick MA, Sadilek M, Konoki K, Catterall WA. Beta-adrenergic-regulated phosphorylation of the skeletal muscle Ca(V)1.1 channel in the fight-or-flight response. Proc Natl Acad Sci U S A. 2010;107:18712-7.
    • (2010) Proc Natl Acad Sci U S A , vol.107 , pp. 18712-18717
    • Emrick, M.A.1    Sadilek, M.2    Konoki, K.3    Catterall, W.A.4
  • 101
    • 84913556601 scopus 로고    scopus 로고
    • Demonstration of a direct interaction between beta2-adrenergic receptor and insulin receptor by BRET and bioinformatics
    • Mandic M, Drinovec L, Glisic S, Veljkovic N, Nohr J, Vrecl M. Demonstration of a direct interaction between beta2-adrenergic receptor and insulin receptor by BRET and bioinformatics. PLoS One. 2014;9, e112664.
    • (2014) PLoS One , vol.9
    • Mandic, M.1    Drinovec, L.2    Glisic, S.3    Veljkovic, N.4    Nohr, J.5    Vrecl, M.6
  • 102
    • 62349125533 scopus 로고    scopus 로고
    • Regulation of muscle glycogen synthase phosphorylation and kinetic properties by insulin, exercise, adrenaline and role in insulin resistance
    • Jensen J, Lai YC. Regulation of muscle glycogen synthase phosphorylation and kinetic properties by insulin, exercise, adrenaline and role in insulin resistance. Arch Physiol Biochem. 2009;115:13-21.
    • (2009) Arch Physiol Biochem , vol.115 , pp. 13-21
    • Jensen, J.1    Lai, Y.C.2
  • 103
    • 84857073365 scopus 로고    scopus 로고
    • β(2)-Adrenoceptors increase translocation of GLUT4 via GPCR kinase sites in the receptor C-terminal tail
    • Dehvari N, Hutchinson DS, Nevzorova J, Dallner OS, Sato M, Kocan M, et al. β(2)-Adrenoceptors increase translocation of GLUT4 via GPCR kinase sites in the receptor C-terminal tail. Br J Pharmacol. 2012;165:1442-56.
    • (2012) Br J Pharmacol , vol.165 , pp. 1442-1456
    • Dehvari, N.1    Hutchinson, D.S.2    Nevzorova, J.3    Dallner, O.S.4    Sato, M.5    Kocan, M.6
  • 104
    • 84874221796 scopus 로고    scopus 로고
    • Peripheral adrenoceptors: the impetus behind glucose dysregulation and insulin resistance
    • Boyda HN, Procyshyn RM, Pang CC, Barr AM. Peripheral adrenoceptors: the impetus behind glucose dysregulation and insulin resistance. J Neuroendocrinol. 2013;25:217-28.
    • (2013) J Neuroendocrinol , vol.25 , pp. 217-228
    • Boyda, H.N.1    Procyshyn, R.M.2    Pang, C.C.3    Barr, A.M.4
  • 105
    • 77956200571 scopus 로고    scopus 로고
    • Disrupting circadian homeostasis of sympathetic signaling promotes tumor development in mice
    • Lee S, Donehower LA, Herron AJ, Moore DD, Fu L. Disrupting circadian homeostasis of sympathetic signaling promotes tumor development in mice. PLoS One. 2010;5, e10995.
    • (2010) PLoS One , vol.5
    • Lee, S.1    Donehower, L.A.2    Herron, A.J.3    Moore, D.D.4    Fu, L.5
  • 106
    • 3543038233 scopus 로고    scopus 로고
    • GRK2 is an endogenous protein inhibitor of the insulin signaling pathway for glucose transport stimulation
    • Usui I, Imamura T, Satoh H, Huang J, Babendure JL, Hupfeld CJ, et al. GRK2 is an endogenous protein inhibitor of the insulin signaling pathway for glucose transport stimulation. EMBO J. 2004;23:2821-9.
    • (2004) EMBO J , vol.23 , pp. 2821-2829
    • Usui, I.1    Imamura, T.2    Satoh, H.3    Huang, J.4    Babendure, J.L.5    Hupfeld, C.J.6
  • 107
    • 84860355658 scopus 로고    scopus 로고
    • An expanded family of arrestins regulate metabolism
    • Patwari P, Lee RT. An expanded family of arrestins regulate metabolism. Trends Endocrinol Metab. 2012;23:216-22.
    • (2012) Trends Endocrinol Metab , vol.23 , pp. 216-222
    • Patwari, P.1    Lee, R.T.2
  • 108
    • 84873411358 scopus 로고    scopus 로고
    • Distinct roles for β-arrestin2 and arrestin-domain-containing proteins in β2 adrenergic receptor trafficking
    • Han S-O, Kommaddi RP, Shenoy SK. Distinct roles for β-arrestin2 and arrestin-domain-containing proteins in β2 adrenergic receptor trafficking. EMBO Rep. 2013;14:164-71.
    • (2013) EMBO Rep , vol.14 , pp. 164-171
    • Han, S.-O.1    Kommaddi, R.P.2    Shenoy, S.K.3
  • 109
    • 84886368558 scopus 로고    scopus 로고
    • Nuclear receptors and epigenetic signaling: novel regulators of glycogen metabolism in skeletal muscle
    • Wang SC, Muscat GE. Nuclear receptors and epigenetic signaling: novel regulators of glycogen metabolism in skeletal muscle. IUBMB Life. 2013;65:657-64.
    • (2013) IUBMB Life , vol.65 , pp. 657-664
    • Wang, S.C.1    Muscat, G.E.2
  • 110
    • 84861857806 scopus 로고    scopus 로고
    • The role of skeletal muscle glycogen breakdown for regulation of insulin sensitivity by exercise
    • Jensen J, Rustad PI, Kolnes AJ, Lai YC. The role of skeletal muscle glycogen breakdown for regulation of insulin sensitivity by exercise. Front Physiol. 2011;2:112.
    • (2011) Front Physiol , vol.2 , pp. 112
    • Jensen, J.1    Rustad, P.I.2    Kolnes, A.J.3    Lai, Y.C.4
  • 111
    • 0030997893 scopus 로고    scopus 로고
    • The role of glucose 6-phosphate in the control of glycogen synthase
    • Villar-Palasi C, Guinovart JJ. The role of glucose 6-phosphate in the control of glycogen synthase. FASEB J. 1997;11:544-58.
    • (1997) FASEB J , vol.11 , pp. 544-558
    • Villar-Palasi, C.1    Guinovart, J.J.2
  • 112
    • 0035085644 scopus 로고    scopus 로고
    • Control of glycogen synthesis by glucose, glycogen, and insulin in cultured human muscle cells
    • Halse R, Bonavaud SM, Armstrong JL, McCormack JG, Yeaman SJ. Control of glycogen synthesis by glucose, glycogen, and insulin in cultured human muscle cells. Diabetes. 2001;50:720-6.
    • (2001) Diabetes , vol.50 , pp. 720-726
    • Halse, R.1    Bonavaud, S.M.2    Armstrong, J.L.3    McCormack, J.G.4    Yeaman, S.J.5
  • 113
    • 80155148068 scopus 로고    scopus 로고
    • Differential pattern of glycogen accumulation after protein phosphatase 1 glycogen-targeting subunit PPP1R6 overexpression, compared to PPP1R3C and PPP1R3A, in skeletal muscle cells
    • Montori-Grau M, Guitart M, Garcia-Martinez C, Orozco A, Gomez-Foix AM. Differential pattern of glycogen accumulation after protein phosphatase 1 glycogen-targeting subunit PPP1R6 overexpression, compared to PPP1R3C and PPP1R3A, in skeletal muscle cells. BMC Biochem. 2011;12:57.
    • (2011) BMC Biochem , vol.12 , pp. 57
    • Montori-Grau, M.1    Guitart, M.2    Garcia-Martinez, C.3    Orozco, A.4    Gomez-Foix, A.M.5
  • 114
    • 0035787093 scopus 로고    scopus 로고
    • The role of protein phosphatase-1 in insulin action
    • Brady MJ, Saltiel AR. The role of protein phosphatase-1 in insulin action. Recent Prog Horm Res. 2001;56:157-73.
    • (2001) Recent Prog Horm Res , vol.56 , pp. 157-173
    • Brady, M.J.1    Saltiel, A.R.2
  • 115
    • 0029670792 scopus 로고    scopus 로고
    • The beta-adrenergic receptor is a substrate for the insulin receptor tyrosine kinase
    • Baltensperger K, Karoor V, Paul H, Ruoho A, Czech MP, Malbon CC. The beta-adrenergic receptor is a substrate for the insulin receptor tyrosine kinase. J Biol Chem. 1996;271:1061-4.
    • (1996) J Biol Chem , vol.271 , pp. 1061-1064
    • Baltensperger, K.1    Karoor, V.2    Paul, H.3    Ruoho, A.4    Czech, M.P.5    Malbon, C.C.6
  • 116
    • 84908153217 scopus 로고    scopus 로고
    • Muscle wasting: an overview of recent developments in basic research
    • Palus S, von Haehling S, Springer J. Muscle wasting: an overview of recent developments in basic research. Int J Cardiol. 2014;176:640-4.
    • (2014) Int J Cardiol , vol.176 , pp. 640-644
    • Palus, S.1    Haehling, S.2    Springer, J.3
  • 117
    • 80755175849 scopus 로고    scopus 로고
    • The SCF-Fbxo40 complex induces IRS1 ubiquitination in skeletal muscle, limiting IGF1 signaling
    • Shi J, Luo L, Eash J, Ibebunjo C, Glass DJ. The SCF-Fbxo40 complex induces IRS1 ubiquitination in skeletal muscle, limiting IGF1 signaling. Dev Cell. 2011;21:835-47.
    • (2011) Dev Cell , vol.21 , pp. 835-847
    • Shi, J.1    Luo, L.2    Eash, J.3    Ibebunjo, C.4    Glass, D.J.5
  • 118
    • 0023692891 scopus 로고
    • Pancreatic amylin and calcitonin gene-related peptide cause resistance to insulin in skeletal muscle in vitro
    • Leighton B, Cooper GJ. Pancreatic amylin and calcitonin gene-related peptide cause resistance to insulin in skeletal muscle in vitro. Nature. 1988;335:632-5.
    • (1988) Nature , vol.335 , pp. 632-635
    • Leighton, B.1    Cooper, G.J.2
  • 119
    • 0023786916 scopus 로고
    • Circadian rhythm in sensitivity of glucose metabolism to insulin in rat soleus muscle
    • Leighton B, Kowalchuk JM, Challiss RA, Newsholme EA. Circadian rhythm in sensitivity of glucose metabolism to insulin in rat soleus muscle. Am J Physiol. 1988;255:E41-5.
    • (1988) Am J Physiol , vol.255 , pp. E41-E45
    • Leighton, B.1    Kowalchuk, J.M.2    Challiss, R.A.3    Newsholme, E.A.4
  • 120
    • 0023672777 scopus 로고
    • Effects of adenosine deaminase on the sensitivity of glucose transport, glycolysis and glycogen synthesis to insulin in muscles of the rat
    • Leighton B, Lozeman FJ, Vlachonikolis IG, Challiss RA, Pitcher JA, Newsholme EA. Effects of adenosine deaminase on the sensitivity of glucose transport, glycolysis and glycogen synthesis to insulin in muscles of the rat. Int J Biochem. 1988;20:23-7.
    • (1988) Int J Biochem , vol.20 , pp. 23-27
    • Leighton, B.1    Lozeman, F.J.2    Vlachonikolis, I.G.3    Challiss, R.A.4    Pitcher, J.A.5    Newsholme, E.A.6
  • 121
    • 0033153025 scopus 로고    scopus 로고
    • Synip: a novel insulin-regulated syntaxin 4-binding protein mediating GLUT4 translocation in adipocytes
    • Min J, Okada S, Kanzaki M, Elmendorf JS, Coker KJ, Ceresa BP, et al. Synip: a novel insulin-regulated syntaxin 4-binding protein mediating GLUT4 translocation in adipocytes. Mol Cell. 1999;3:751-60.
    • (1999) Mol Cell , vol.3 , pp. 751-760
    • Min, J.1    Okada, S.2    Kanzaki, M.3    Elmendorf, J.S.4    Coker, K.J.5    Ceresa, B.P.6
  • 123
    • 84864534029 scopus 로고    scopus 로고
    • Syntaxin4 interacting protein (Synip) binds phosphatidylinositol (3,4,5) triphosphate
    • Saito T, Okada S, Nohara A, Tagaya Y, Osaki A, Oh IS, et al. Syntaxin4 interacting protein (Synip) binds phosphatidylinositol (3,4,5) triphosphate. PLoS One. 2012;7, e42782.
    • (2012) PLoS One , vol.7
    • Saito, T.1    Okada, S.2    Nohara, A.3    Tagaya, Y.4    Osaki, A.5    Oh, I.S.6
  • 124
    • 77953195622 scopus 로고    scopus 로고
    • TBC1D1 regulates insulin- and contraction-induced glucose transport in mouse skeletal muscle
    • An D, Toyoda T, Taylor EB, Yu H, Fujii N, Hirshman MF, et al. TBC1D1 regulates insulin- and contraction-induced glucose transport in mouse skeletal muscle. Diabetes. 2010;59:1358-65.
    • (2010) Diabetes , vol.59 , pp. 1358-1365
    • An, D.1    Toyoda, T.2    Taylor, E.B.3    Yu, H.4    Fujii, N.5    Hirshman, M.F.6
  • 125
    • 84916596916 scopus 로고    scopus 로고
    • Roles of TBC1D1 and TBC1D4 in insulin- and exercise-stimulated glucose transport of skeletal muscle
    • Cartee GD. Roles of TBC1D1 and TBC1D4 in insulin- and exercise-stimulated glucose transport of skeletal muscle. Diabetologia. 2015;58:19-30.
    • (2015) Diabetologia , vol.58 , pp. 19-30
    • Cartee, G.D.1
  • 127
    • 55449106027 scopus 로고    scopus 로고
    • Analysis of gene regulatory networks in the mammalian circadian rhythm
    • Yan J, Wang H, Liu Y, Shao C. Analysis of gene regulatory networks in the mammalian circadian rhythm. PLoS Comput Biol. 2008;4, e1000193.
    • (2008) PLoS Comput Biol , vol.4
    • Yan, J.1    Wang, H.2    Liu, Y.3    Shao, C.4
  • 130
  • 131
    • 33751565112 scopus 로고    scopus 로고
    • Dissecting the functions of the mammalian clock protein BMAL1 by tissue-specific rescue in mice
    • McDearmon EL, Patel KN, Ko CH, Walisser JA, Schook AC, Chong JL, et al. Dissecting the functions of the mammalian clock protein BMAL1 by tissue-specific rescue in mice. Science. 2006;314:1304-8.
    • (2006) Science , vol.314 , pp. 1304-1308
    • McDearmon, E.L.1    Patel, K.N.2    Ko, C.H.3    Walisser, J.A.4    Schook, A.C.5    Chong, J.L.6
  • 132
    • 80054760368 scopus 로고    scopus 로고
    • Fiber types in mammalian skeletal muscles
    • Schiaffino S, Reggiani C. Fiber types in mammalian skeletal muscles. Physiol Rev. 2011;91:1447-531.
    • (2011) Physiol Rev , vol.91 , pp. 1447-1531
    • Schiaffino, S.1    Reggiani, C.2
  • 133
    • 84893149530 scopus 로고    scopus 로고
    • Mechanisms modulating skeletal muscle phenotype
    • Blaauw B, Schiaffino S, Reggiani C. Mechanisms modulating skeletal muscle phenotype. Compr Physiol. 2013;3:1645-87.
    • (2013) Compr Physiol , vol.3 , pp. 1645-1687
    • Blaauw, B.1    Schiaffino, S.2    Reggiani, C.3
  • 134
    • 0036690310 scopus 로고    scopus 로고
    • The adaptive potential of skeletal muscle fibers
    • Pette D. The adaptive potential of skeletal muscle fibers. Can J Appl Physiol. 2002;27:423-48.
    • (2002) Can J Appl Physiol , vol.27 , pp. 423-448
    • Pette, D.1
  • 135
    • 8844256241 scopus 로고    scopus 로고
    • Skeletal muscle fiber type: influence on contractile and metabolic properties
    • Zierath JR, Hawley JA. Skeletal muscle fiber type: influence on contractile and metabolic properties. PLoS Biol. 2004;2, e348.
    • (2004) PLoS Biol , vol.2
    • Zierath, J.R.1    Hawley, J.A.2
  • 136
    • 79952055409 scopus 로고    scopus 로고
    • Microgenomic analysis in skeletal muscle: expression signatures of individual fast and slow myofibers
    • Chemello F, Bean C, Cancellara P, Laveder P, Reggiani C, Lanfranchi G. Microgenomic analysis in skeletal muscle: expression signatures of individual fast and slow myofibers. PLoS One. 2011;6, e16807.
    • (2011) PLoS One , vol.6
    • Chemello, F.1    Bean, C.2    Cancellara, P.3    Laveder, P.4    Reggiani, C.5    Lanfranchi, G.6
  • 139
    • 77952552718 scopus 로고    scopus 로고
    • Impact of aging on diurnal expression patterns of CLOCK and BMAL1 in the mouse brain
    • Wyse CA, Coogan AN. Impact of aging on diurnal expression patterns of CLOCK and BMAL1 in the mouse brain. Brain Res. 2010;1337:21-31.
    • (2010) Brain Res , vol.1337 , pp. 21-31
    • Wyse, C.A.1    Coogan, A.N.2
  • 140
    • 33746191906 scopus 로고    scopus 로고
    • Early aging and age-related pathologies in mice deficient in BMAL1, the core component of the circadian clock
    • Kondratov RV, Kondratova AA, Gorbacheva VY, Vykhovanets OV, Antoch MP. Early aging and age-related pathologies in mice deficient in BMAL1, the core component of the circadian clock. Genes Dev. 2006;20:1868-73.
    • (2006) Genes Dev , vol.20 , pp. 1868-1873
    • Kondratov, R.V.1    Kondratova, A.A.2    Gorbacheva, V.Y.3    Vykhovanets, O.V.4    Antoch, M.P.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.