메뉴 건너뛰기




Volumn 2, Issue 4, 2015, Pages 253-264

A review of heterogeneous data mining for brain disorder identification

Author keywords

Brain diseases; Data mining; Feature selection; Subgraph patterns; Tensor analysis

Indexed keywords

BRAIN; FEATURE EXTRACTION; NEUROIMAGING; TENSORS;

EID: 85027875638     PISSN: 21984018     EISSN: 21984026     Source Type: Journal    
DOI: 10.1007/s40708-015-0021-3     Document Type: Review
Times cited : (17)

References (76)
  • 1
    • 77954385460 scopus 로고    scopus 로고
    • Complex network measures of brain connectivity: uses and interpretations
    • Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52(3):1059–1069
    • (2010) Neuroimage , vol.52 , Issue.3 , pp. 1059-1069
    • Rubinov, M.1    Sporns, O.2
  • 2
    • 84936952038 scopus 로고    scopus 로고
    • Brain network analysis: a data mining perspective
    • Kong X, Yu PS (2014) Brain network analysis: a data mining perspective. ACM SIGKDD Explor Newsl 15(2):30–38
    • (2014) ACM SIGKDD Explor Newsl , vol.15 , Issue.2 , pp. 30-38
    • Kong, X.1    Yu, P.S.2
  • 3
    • 0030162959 scopus 로고    scopus 로고
    • Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI
    • Basser PJ, Pierpaoli C (1996) Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson Ser B 111(3):209–219
    • (1996) J Magn Reson Ser B , vol.111 , Issue.3 , pp. 209-219
    • Basser, P.J.1    Pierpaoli, C.2
  • 4
    • 0022969218 scopus 로고
    • MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders
    • Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M (1986) MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161(2):401–407
    • (1986) Radiology , vol.161 , Issue.2 , pp. 401-407
    • Le Bihan, D.1    Breton, E.2    Lallemand, D.3    Grenier, P.4    Cabanis, E.5    Laval-Jeantet, M.6
  • 5
    • 0025115647 scopus 로고
    • Anisotropic diffusion in human white matter: demonstration with mr techniques in vivo
    • Chenevert TL, Brunberg JA, Pipe J (1990) Anisotropic diffusion in human white matter: demonstration with mr techniques in vivo. Radiology 177(2):401–405
    • (1990) Radiology , vol.177 , Issue.2 , pp. 401-405
    • Chenevert, T.L.1    Brunberg, J.A.2    Pipe, J.3
  • 8
    • 0029166541 scopus 로고
    • Functional connectivity in the motor cortex of resting human brain using echo-planar MRI
    • Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34(4):537–541
    • (1995) Magn Reson Med , vol.34 , Issue.4 , pp. 537-541
    • Biswal, B.1    Yetkin, F.Z.2    Haughton, V.M.3    Hyde, J.S.4
  • 9
    • 0025630001 scopus 로고
    • Brain magnetic resonance imaging with contrast dependent on blood oxygenation
    • Ogawa S, Lee T, Kay A, Tank D (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci 87(24):9868–9872
    • (1990) Proc Natl Acad Sci , vol.87 , Issue.24 , pp. 9868-9872
    • Ogawa, S.1    Lee, T.2    Kay, A.3    Tank, D.4
  • 10
    • 0025336246 scopus 로고
    • Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields
    • Ogawa S, Lee T-M, Nayak AS, Glynn P (1990) Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn Reson Med 14(1):68–78
    • (1990) Magn Reson Med , vol.14 , Issue.1 , pp. 68-78
    • Ogawa, S.1    Lee, T.-M.2    Nayak, A.S.3    Glynn, P.4
  • 11
    • 65449137150 scopus 로고    scopus 로고
    • Ye J, Chen K, Wu T, Li J, Zhao Z, Patel R, Bae M, Janardan R, Liu H, Alexander G et al (2008) Heterogeneous data fusion for Alzheimer’s disease study. In: KDD. ACM, pp 1025–1033
  • 12
    • 85018832771 scopus 로고    scopus 로고
    • Network discovery via constrained tensor analysis of fMRI data. In: KDD. ACM
    • Davidson I, Gilpin S, Carmichael O, Walker P (2013) Network discovery via constrained tensor analysis of fMRI data. In: KDD. ACM, pp 194–202
    • (2013) pp 194–202
    • Davidson, I.1    Gilpin, S.2    Carmichael, O.3    Walker, P.4
  • 14
    • 84890104000 scopus 로고    scopus 로고
    • Tensor regression with applications in neuroimaging data analysis
    • Zhou H, Li L, Zhu H (2013) Tensor regression with applications in neuroimaging data analysis. J Am Stat Assoc 108(502):540–552
    • (2013) J Am Stat Assoc , vol.108 , Issue.502 , pp. 540-552
    • Zhou, H.1    Li, L.2    Zhu, H.3
  • 16
    • 84945961958 scopus 로고    scopus 로고
    • The unsupervised hierarchical convolutional sparse auto-encoder for neuroimaging data classification. In: Brain informatics and health. Springer
    • Han X, Zhong Y, He L, Philip SY, Zhang L (2015) The unsupervised hierarchical convolutional sparse auto-encoder for neuroimaging data classification. In: Brain informatics and health. Springer, pp 156–166
    • (2015) pp 156–166
    • Han, X.1    Zhong, Y.2    He, L.3    Philip, S.Y.4    Zhang, L.5
  • 17
    • 85032780162 scopus 로고    scopus 로고
    • Tensor decompositions for signal processing applications: from two-way to multiway component analysis
    • Cichocki A, Mandic D, De Lathauwer L, Zhou G, Zhao Q, Caiafa C, Phan HA (2015) Tensor decompositions for signal processing applications: from two-way to multiway component analysis. Signal Process Mag 32(2):145–163
    • (2015) Signal Process Mag , vol.32 , Issue.2 , pp. 145-163
    • Cichocki, A.1    Mandic, D.2    De Lathauwer, L.3    Zhou, G.4    Zhao, Q.5    Caiafa, C.6    Phan, H.A.7
  • 20
    • 0036334830 scopus 로고    scopus 로고
    • Thresholding of statistical maps in functional neuroimaging using the false discovery rate
    • Genovese CR, Lazar NA, Nichols T (2002) Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 15(4):870–878
    • (2002) Neuroimage , vol.15 , Issue.4 , pp. 870-878
    • Genovese, C.R.1    Lazar, N.A.2    Nichols, T.3
  • 21
    • 31144436747 scopus 로고    scopus 로고
    • The human connectome: a structural description of the human brain
    • Sporns O, Tononi G, Kötter R (2005) The human connectome: a structural description of the human brain. PLoS Comput Biol 1(4):e42
    • (2005) PLoS Comput Biol , vol.1 , Issue.4 , pp. e42
    • Sporns, O.1    Tononi, G.2    Kötter, R.3
  • 22
    • 84954170577 scopus 로고    scopus 로고
    • Structural graphical lasso for learning mouse brain connectivity. In: KDD. ACM
    • Yang S, Sun Q, Ji S, Wonka P, Davidson I, Ye J (2015) Structural graphical lasso for learning mouse brain connectivity. In: KDD. ACM, pp 1385–1394
    • (2015) pp 1385–1394
    • Yang, S.1    Sun, Q.2    Ji, S.3    Wonka, P.4    Davidson, I.5    Ye, J.6
  • 24
    • 84954104243 scopus 로고    scopus 로고
    • Deep learning architecture with dynamically programmed layers for brain connectome prediction. In: KDD. ACM
    • Veeriah V, Durvasula R, Qi GJ (2015) Deep learning architecture with dynamically programmed layers for brain connectome prediction. In: KDD. ACM, pp 1205–1214
    • (2015) pp 1205–1214
    • Veeriah, V.1    Durvasula, R.2    Qi, G.J.3
  • 28
    • 57749195278 scopus 로고    scopus 로고
    • Kernel methods for graphs: a comprehensive approach. In: Knowledge-based intelligent information and engineering systems. Springer
    • Camastra F, Petrosino A (2008) Kernel methods for graphs: a comprehensive approach. In: Knowledge-based intelligent information and engineering systems. Springer, pp 662–669
    • (2008) pp 662–669
    • Camastra, F.1    Petrosino, A.2
  • 30
    • 9444266406 scopus 로고    scopus 로고
    • On graph kernels: hardness results and efficient alternatives. In: Learning theory and Kernel machines. Springer, pp
    • Gärtner T, Flach P, Wrobel S (2003) On graph kernels: hardness results and efficient alternatives. In: Learning theory and Kernel machines. Springer, pp. 129–143
    • (2003) 129–143
    • Gärtner, T.1    Flach, P.2    Wrobel, S.3
  • 31
    • 1942516986 scopus 로고    scopus 로고
    • Marginalized kernels between labeled graphs
    • Kashima H, Tsuda K, Inokuchi A (2003) Marginalized kernels between labeled graphs. ICML 3:321–328
    • (2003) ICML , vol.3 , pp. 321-328
    • Kashima, H.1    Tsuda, K.2    Inokuchi, A.3
  • 32
    • 12244278576 scopus 로고    scopus 로고
    • Cyclic pattern kernels for predictive graph mining. In: KDD. ACM
    • Horváth T, Gärtner T, Wrobel S (2004) Cyclic pattern kernels for predictive graph mining. In: KDD. ACM, pp 158–167
    • (2004) pp 158–167
    • Horváth, T.1    Gärtner, T.2    Wrobel, S.3
  • 33
    • 84893330870 scopus 로고    scopus 로고
    • Integration of network topological and connectivity properties for neuroimaging classification
    • Jie B, Zhang D, Gao W, Wang Q, Wee C, Shen D (2014) Integration of network topological and connectivity properties for neuroimaging classification. Biomed Eng 61(2):576
    • (2014) Biomed Eng , vol.61 , Issue.2 , pp. 576
    • Jie, B.1    Zhang, D.2    Gao, W.3    Wang, Q.4    Wee, C.5    Shen, D.6
  • 34
    • 77954691039 scopus 로고    scopus 로고
    • GAIA: graph classification using evolutionary computation. In: SIGMOD. ACM
    • Jin N, Young C, Wang W (2010) GAIA: graph classification using evolutionary computation. In: SIGMOD. ACM, pp 879–890
    • (2010) pp 879–890
    • Jin, N.1    Young, C.2    Wang, W.3
  • 35
    • 85008256270 scopus 로고    scopus 로고
    • Identifying bug signatures using discriminative graph mining. In: ISSTA. ACM
    • Cheng H, Lo D, Zhou Y, Wang X, Yan X (2009) Identifying bug signatures using discriminative graph mining. In: ISSTA. ACM, pp 141–152
    • (2009) pp 141–152
    • Cheng, H.1    Lo, D.2    Zhou, Y.3    Wang, X.4    Yan, X.5
  • 37
    • 57149124218 scopus 로고    scopus 로고
    • Mining significant graph patterns by leap search. In: SIGMOD. ACM
    • Yan X, Cheng H, Han J, Yu PS (2008) Mining significant graph patterns by leap search. In: SIGMOD. ACM, pp 433–444
    • (2008) pp 433–444
    • Yan, X.1    Cheng, H.2    Han, J.3    Yu, P.S.4
  • 38
    • 78149333073 scopus 로고    scopus 로고
    • Yan X, Han J (2002) gspan: Graph-based substructure pattern mining. In: ICDM. IEEE, 721–724
    • Yan X, Han J (2002) gspan: Graph-based substructure pattern mining. In: ICDM. IEEE, 721–724
  • 39
    • 84974733299 scopus 로고    scopus 로고
    • An apriori-based algorithm for mining frequent substructures from graph data. In: Principles of data mining and knowledge discovery. Springer
    • Inokuchi A, Washio T, Motoda H (2000) An apriori-based algorithm for mining frequent substructures from graph data. In: Principles of data mining and knowledge discovery. Springer, pp 13–23
    • (2000) pp 13–23
    • Inokuchi, A.1    Washio, T.2    Motoda, H.3
  • 40
    • 78149312583 scopus 로고    scopus 로고
    • Frequent subgraph discovery. In: ICDM. IEEE
    • Kuramochi M, Karypis G (2001) Frequent subgraph discovery. In: ICDM. IEEE, pp 313–320
    • (2001) pp 313–320
    • Kuramochi, M.1    Karypis, G.2
  • 41
    • 2442483205 scopus 로고    scopus 로고
    • Mining molecular fragments: finding relevant substructures of molecules. In: ICDM. IEEE
    • Borgelt C, Berthold MR (2002) Mining molecular fragments: finding relevant substructures of molecules. In: ICDM. IEEE, pp 51–58
    • (2002) pp 51–58
    • Borgelt, C.1    Berthold, M.R.2
  • 42
    • 78149328300 scopus 로고    scopus 로고
    • Efficient mining of frequent subgraphs in the presence of isomorphism. In: ICDM. IEEE
    • Huan J, Wang W, Prins J (2003) Efficient mining of frequent subgraphs in the presence of isomorphism. In: ICDM. IEEE, pp 549–552
    • (2003) pp 549–552
    • Huan, J.1    Wang, W.2    Prins, J.3
  • 43
    • 12244294066 scopus 로고    scopus 로고
    • A quickstart in frequent structure mining can make a difference. In: KDD. ACM
    • Nijssen S, Kok JN (2004) A quickstart in frequent structure mining can make a difference. In: KDD. ACM, 647–652
    • (2004) 647–652
    • Nijssen, S.1    Kok, J.N.2
  • 44
    • 67649644367 scopus 로고    scopus 로고
    • Graphsig: a scalable approach to mining significant subgraphs in large graph databases. In: ICDE. IEEE
    • Ranu S, Singh AK (2009) Graphsig: a scalable approach to mining significant subgraphs in large graph databases. In: ICDE. IEEE, pp 844–855
    • (2009) pp 844–855
    • Ranu, S.1    Singh, A.K.2
  • 45
    • 74549206171 scopus 로고    scopus 로고
    • Graph classification based on pattern co-occurrence. In: CIKM. ACM
    • Jin N, Young C, Wang W (2009) Graph classification based on pattern co-occurrence. In: CIKM. ACM, pp 573–582
    • (2009) pp 573–582
    • Jin, N.1    Young, C.2    Wang, W.3
  • 46
    • 84871039216 scopus 로고    scopus 로고
    • Graph classification: a diversified discriminative feature selection approach. In: CIKM. ACM
    • Zhu Y, Yu JX, Cheng H, Qin L (2012) Graph classification: a diversified discriminative feature selection approach. In: CIKM. ACM, pp 205–214
    • (2012) pp 205–214
    • Zhu, Y.1    Yu, J.X.2    Cheng, H.3    Qin, L.4
  • 47
    • 84945956827 scopus 로고    scopus 로고
    • Identification of discriminative subgraph patterns in fMRI brain networks in bipolar affective disorder. In: Brain informatics and health. Springer, pp
    • Cao B, Zhan L, Kong X, Yu PS, Vizueta N, Altshuler LL, Leow AD (2015) Identification of discriminative subgraph patterns in fMRI brain networks in bipolar affective disorder. In: Brain informatics and health. Springer, pp. 105–114
    • (2015) 105–114
    • Cao, B.1    Zhan, L.2    Kong, X.3    Yu, P.S.4    Vizueta, N.5    Altshuler, L.L.6    Leow, A.D.7
  • 48
    • 84945954858 scopus 로고    scopus 로고
    • Discriminative feature selection for uncertain graph classification. In: SDM. SIAM
    • Kong X, Ragin AB, Wang X, Yu PS (2013) Discriminative feature selection for uncertain graph classification. In: SDM. SIAM, pp 82–93
    • (2013) pp 82–93
    • Kong, X.1    Ragin, A.B.2    Wang, X.3    Yu, P.S.4
  • 50
    • 84939547572 scopus 로고    scopus 로고
    • Determinants of HIV-induced brain changes in three different periods of the early clinical course: a data mining analysis
    • Cao B, Kong X, Kettering C, Yu PS, Ragin AB (2015) Determinants of HIV-induced brain changes in three different periods of the early clinical course: a data mining analysis. NeuroImage 9:75–82
    • (2015) NeuroImage , vol.9 , pp. 75-82
    • Cao, B.1    Kong, X.2    Kettering, C.3    Yu, P.S.4    Ragin, A.B.5
  • 51
    • 84936940691 scopus 로고    scopus 로고
    • Tensor-based multi-view feature selection with applications to brain diseases. In: ICDM. IEEE
    • Cao B, He L, Kong X, Yu PS, Hao Z, Ragin AB (2014) Tensor-based multi-view feature selection with applications to brain diseases. In: ICDM. IEEE, pp 40–49
    • (2014) pp 40–49
    • Cao, B.1    He, L.2    Kong, X.3    Yu, P.S.4    Hao, Z.5    Ragin, A.B.6
  • 52
    • 84894119416 scopus 로고    scopus 로고
    • A survey on multi-view learning
    • Xu C, Tao D, Xu C (2013) A survey on multi-view learning. arXiv
    • (2013) arXiv
    • Xu, C.1    Tao, D.2    Xu, C.3
  • 54
    • 71149100224 scopus 로고    scopus 로고
    • More generality in efficient multiple kernel learning. In: ICML
    • Varma M, Babu R (2009) More generality in efficient multiple kernel learning. In: ICML, pp 1065–1072
    • (2009) pp 1065–1072
    • Varma, M.1    Babu, R.2
  • 56
    • 84887452388 scopus 로고    scopus 로고
    • A survey of multi-view machine learning
    • Sun S (2013) A survey of multi-view machine learning. Neural Comput Appl 23(7–8):2031–2038
    • (2013) Neural Comput Appl , vol.23 , Issue.7-8 , pp. 2031-2038
    • Sun, S.1
  • 57
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res 3:1157–1182
    • (2003) J Mach Learn Res , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 58
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy
    • Peng H, Long F, Ding C (2005) Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. Pattern Anal Mach Intell 27(8):1226–1238
    • (2005) Pattern Anal Mach Intell , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 59
    • 0141990695 scopus 로고    scopus 로고
    • Theoretical and empirical analysis of ReliefF and RReliefF
    • Robnik-Šikonja M, Kononenko I (2003) Theoretical and empirical analysis of ReliefF and RReliefF. Mach Learn 53(1–2):23–69
    • (2003) Mach Learn , vol.53 , Issue.1-2 , pp. 23-69
    • Robnik-Šikonja, M.1    Kononenko, I.2
  • 60
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon I, Weston J, Barnhill S, Vapnik V (2002) Gene selection for cancer classification using support vector machines. Mach Learn 46(1–3):389–422
    • (2002) Mach Learn , vol.46 , Issue.1-3 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 61
    • 84890447445 scopus 로고    scopus 로고
    • Variable selection using SVM-based criteria
    • Rakotomamonjy A (2003) Variable selection using SVM-based criteria. J Mach Learn Res 3:1357–1370
    • (2003) J Mach Learn Res , vol.3 , pp. 1357-1370
    • Rakotomamonjy, A.1
  • 62
    • 44949258241 scopus 로고    scopus 로고
    • Multiclass SVM-RFE for product form feature selection
    • Shieh M-D, Yang C-C (2008) Multiclass SVM-RFE for product form feature selection. Expert Syst Appl 35(1):531–541
    • (2008) Expert Syst Appl , vol.35 , Issue.1 , pp. 531-541
    • Shieh, M.-D.1    Yang, C.-C.2
  • 63
    • 64749086339 scopus 로고    scopus 로고
    • A wrapper method for feature selection using support vector machines
    • Maldonado S, Weber R (2009) A wrapper method for feature selection using support vector machines. Inf Sci 179(13):2208–2217
    • (2009) Inf Sci , vol.179 , Issue.13 , pp. 2208-2217
    • Maldonado, S.1    Weber, R.2
  • 64
    • 84875889840 scopus 로고    scopus 로고
    • Adaptive unsupervised multi-view feature selection for visual concept recognition. In: ACCV, pp
    • Feng Y, Xiao J, Zhuang Y, Liu X (2012) Adaptive unsupervised multi-view feature selection for visual concept recognition. In: ACCV, pp. 343–357
    • (2012) 343–357
    • Feng, Y.1    Xiao, J.2    Zhuang, Y.3    Liu, X.4
  • 65
    • 84889587692 scopus 로고    scopus 로고
    • Discriminative feature selection for multi-view cross-domain learning. In: CIKM. ACM
    • Fang Z, Zhang ZM (2013) Discriminative feature selection for multi-view cross-domain learning. In: CIKM. ACM, pp 1321–1330
    • (2013) pp 1321–1330
    • Fang, Z.1    Zhang, Z.M.2
  • 66
    • 85048564749 scopus 로고    scopus 로고
    • Multi-view clustering and feature learning via structured sparsity. In: ICML
    • Wang H, Nie F, Huang H (2013) Multi-view clustering and feature learning via structured sparsity. In: ICML, pp 352–360
    • (2013) pp 352–360
    • Wang, H.1    Nie, F.2    Huang, H.3
  • 67
    • 84887363909 scopus 로고    scopus 로고
    • Heterogeneous visual features fusion via sparse multimodal machine. In: CVPR
    • Wang H, Nie F, Huang H, Ding C (2013) Heterogeneous visual features fusion via sparse multimodal machine. In: CVPR, pp 3097–3102
    • (2013) pp 3097–3102
    • Wang, H.1    Nie, F.2    Huang, H.3    Ding, C.4
  • 68
    • 33646724524 scopus 로고    scopus 로고
    • Linear penalization support vector machines for feature selection. In: Pattern recognition and machine intelligence. Springer
    • Miranda J, Montoya R, Weber R (2005) Linear penalization support vector machines for feature selection. In: Pattern recognition and machine intelligence. Springer, pp 188–192
    • (2005) pp 188–192
    • Miranda, J.1    Montoya, R.2    Weber, R.3
  • 69
    • 84913530663 scopus 로고    scopus 로고
    • Unsupervised feature selection for multi-view data in social media. In: SDM. SIAM
    • Tang J, Hu X, Gao H, Liu H (2013) Unsupervised feature selection for multi-view data in social media. In: SDM. SIAM, pp 270–278
    • (2013) pp 270–278
    • Tang, J.1    Hu, X.2    Gao, H.3    Liu, H.4
  • 70
    • 0036322886 scopus 로고    scopus 로고
    • Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain
    • Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15(1):273–289
    • (2002) Neuroimage , vol.15 , Issue.1 , pp. 273-289
    • Tzourio-Mazoyer, N.1    Landeau, B.2    Papathanassiou, D.3    Crivello, F.4    Etard, O.5    Delcroix, N.6    Mazoyer, B.7    Joliot, M.8
  • 71
    • 85162377804 scopus 로고    scopus 로고
    • Identifying Alzheimer’s disease-related brain regions from multi-modality neuroimaging data using sparse composite linear discrimination analysis. In: NIPS, pp
    • Huang S, Li J, Ye J, Wu T, Chen K, Fleisher A, Reiman E (2011) Identifying Alzheimer’s disease-related brain regions from multi-modality neuroimaging data using sparse composite linear discrimination analysis. In: NIPS, pp. 1431–1439
    • (2011) 1431–1439
    • Huang, S.1    Li, J.2    Ye, J.3    Wu, T.4    Chen, K.5    Fleisher, A.6    Reiman, E.7
  • 72
    • 84991665233 scopus 로고    scopus 로고
    • Multi-source learning with block-wise missing data for Alzheimer’s disease prediction. In: KDD. ACM
    • Xiang S, Yuan L, Fan W, Wang Y, Thompson PM, Ye J (2013) Multi-source learning with block-wise missing data for Alzheimer’s disease prediction. In: KDD. ACM, pp 185–193
    • (2013) pp 185–193
    • Xiang, S.1    Yuan, L.2    Fan, W.3    Wang, Y.4    Thompson, P.M.5    Ye, J.6
  • 73
    • 77951171264 scopus 로고    scopus 로고
    • Feature selection in the tensor product feature space. In: ICDM
    • Smalter A, Huan J, Lushington G (2009) Feature selection in the tensor product feature space. In: ICDM, pp 1004–1009
    • (2009) pp 1004–1009
    • Smalter, A.1    Huan, J.2    Lushington, G.3
  • 75
    • 84936938554 scopus 로고    scopus 로고
    • Collective prediction of multiple types of links in heterogeneous information networks. In: ICDM. IEEE
    • Cao B, Kong X, Yu PS (2014) Collective prediction of multiple types of links in heterogeneous information networks. In: ICDM. IEEE, pp 50–59
    • (2014) pp 50–59
    • Cao, B.1    Kong, X.2    Yu, P.S.3
  • 76
    • 85016778932 scopus 로고    scopus 로고
    • Multi-label classification by mining label and instance correlations from heterogeneous information networks. In: KDD. ACM
    • Kong X, Cao B, Yu PS (2013) Multi-label classification by mining label and instance correlations from heterogeneous information networks. In: KDD. ACM, pp 614–622
    • (2013) pp 614–622
    • Kong, X.1    Cao, B.2    Yu, P.S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.