-
1
-
-
77954385460
-
Complex network measures of brain connectivity: uses and interpretations
-
Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52(3):1059–1069
-
(2010)
Neuroimage
, vol.52
, Issue.3
, pp. 1059-1069
-
-
Rubinov, M.1
Sporns, O.2
-
2
-
-
84936952038
-
Brain network analysis: a data mining perspective
-
Kong X, Yu PS (2014) Brain network analysis: a data mining perspective. ACM SIGKDD Explor Newsl 15(2):30–38
-
(2014)
ACM SIGKDD Explor Newsl
, vol.15
, Issue.2
, pp. 30-38
-
-
Kong, X.1
Yu, P.S.2
-
3
-
-
0030162959
-
Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI
-
Basser PJ, Pierpaoli C (1996) Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson Ser B 111(3):209–219
-
(1996)
J Magn Reson Ser B
, vol.111
, Issue.3
, pp. 209-219
-
-
Basser, P.J.1
Pierpaoli, C.2
-
4
-
-
0022969218
-
MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders
-
Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M (1986) MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161(2):401–407
-
(1986)
Radiology
, vol.161
, Issue.2
, pp. 401-407
-
-
Le Bihan, D.1
Breton, E.2
Lallemand, D.3
Grenier, P.4
Cabanis, E.5
Laval-Jeantet, M.6
-
5
-
-
0025115647
-
Anisotropic diffusion in human white matter: demonstration with mr techniques in vivo
-
Chenevert TL, Brunberg JA, Pipe J (1990) Anisotropic diffusion in human white matter: demonstration with mr techniques in vivo. Radiology 177(2):401–405
-
(1990)
Radiology
, vol.177
, Issue.2
, pp. 401-405
-
-
Chenevert, T.L.1
Brunberg, J.A.2
Pipe, J.3
-
6
-
-
0031861367
-
Analysis of fMRI data by blind separation into independent spatial components
-
McKeown MJ, Makeig S, Brown GG, Jung T-P, Kindermann SS, Bell AJ, Sejnowski TJ (1998) Analysis of fMRI data by blind separation into independent spatial components. Hum Brain Mapp 6:160–188
-
(1998)
Hum Brain Mapp
, vol.6
, pp. 160-188
-
-
McKeown, M.J.1
Makeig, S.2
Brown, G.G.3
Jung, T.-P.4
Kindermann, S.S.5
Bell, A.J.6
Sejnowski, T.J.7
-
7
-
-
0025323825
-
Diffusion-weighted MR imaging of anisotropic water diffusion in cat central nervous system
-
Moseley ME, Cohen Y, Kucharczyk J, Mintorovitch J, Asgari H, Wendland M, Tsuruda J, Norman D (1990) Diffusion-weighted MR imaging of anisotropic water diffusion in cat central nervous system. Radiology 176(2):439–445
-
(1990)
Radiology
, vol.176
, Issue.2
, pp. 439-445
-
-
Moseley, M.E.1
Cohen, Y.2
Kucharczyk, J.3
Mintorovitch, J.4
Asgari, H.5
Wendland, M.6
Tsuruda, J.7
Norman, D.8
-
8
-
-
0029166541
-
Functional connectivity in the motor cortex of resting human brain using echo-planar MRI
-
Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34(4):537–541
-
(1995)
Magn Reson Med
, vol.34
, Issue.4
, pp. 537-541
-
-
Biswal, B.1
Yetkin, F.Z.2
Haughton, V.M.3
Hyde, J.S.4
-
9
-
-
0025630001
-
Brain magnetic resonance imaging with contrast dependent on blood oxygenation
-
Ogawa S, Lee T, Kay A, Tank D (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci 87(24):9868–9872
-
(1990)
Proc Natl Acad Sci
, vol.87
, Issue.24
, pp. 9868-9872
-
-
Ogawa, S.1
Lee, T.2
Kay, A.3
Tank, D.4
-
10
-
-
0025336246
-
Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields
-
Ogawa S, Lee T-M, Nayak AS, Glynn P (1990) Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn Reson Med 14(1):68–78
-
(1990)
Magn Reson Med
, vol.14
, Issue.1
, pp. 68-78
-
-
Ogawa, S.1
Lee, T.-M.2
Nayak, A.S.3
Glynn, P.4
-
11
-
-
65449137150
-
-
Ye J, Chen K, Wu T, Li J, Zhao Z, Patel R, Bae M, Janardan R, Liu H, Alexander G et al (2008) Heterogeneous data fusion for Alzheimer’s disease study. In: KDD. ACM, pp 1025–1033
-
-
-
-
12
-
-
85018832771
-
Network discovery via constrained tensor analysis of fMRI data. In: KDD. ACM
-
Davidson I, Gilpin S, Carmichael O, Walker P (2013) Network discovery via constrained tensor analysis of fMRI data. In: KDD. ACM, pp 194–202
-
(2013)
pp 194–202
-
-
Davidson, I.1
Gilpin, S.2
Carmichael, O.3
Walker, P.4
-
13
-
-
84936956549
-
-
In, SDM. SIAM
-
He L, Kong X, Yu PS, Ragin AB, Hao Z, Yang X (2014) Dusk: a dual structure-preserving kernel for supervised tensor learning with applications to neuroimages. In: SDM. SIAM
-
(2014)
Dusk: a dual structure-preserving kernel for supervised tensor learning with applications to neuroimages
-
-
He, L.1
Kong, X.2
Yu, P.S.3
Ragin, A.B.4
Hao, Z.5
Yang, X.6
-
14
-
-
84890104000
-
Tensor regression with applications in neuroimaging data analysis
-
Zhou H, Li L, Zhu H (2013) Tensor regression with applications in neuroimaging data analysis. J Am Stat Assoc 108(502):540–552
-
(2013)
J Am Stat Assoc
, vol.108
, Issue.502
, pp. 540-552
-
-
Zhou, H.1
Li, L.2
Zhu, H.3
-
15
-
-
36148990993
-
Supervised tensor learning
-
Tao D, Li X, Wu X, Hu W, Maybank SJ (2007) Supervised tensor learning. Knowl Inf Syst 13(1):1–42
-
(2007)
Knowl Inf Syst
, vol.13
, Issue.1
, pp. 1-42
-
-
Tao, D.1
Li, X.2
Wu, X.3
Hu, W.4
Maybank, S.J.5
-
16
-
-
84945961958
-
The unsupervised hierarchical convolutional sparse auto-encoder for neuroimaging data classification. In: Brain informatics and health. Springer
-
Han X, Zhong Y, He L, Philip SY, Zhang L (2015) The unsupervised hierarchical convolutional sparse auto-encoder for neuroimaging data classification. In: Brain informatics and health. Springer, pp 156–166
-
(2015)
pp 156–166
-
-
Han, X.1
Zhong, Y.2
He, L.3
Philip, S.Y.4
Zhang, L.5
-
17
-
-
85032780162
-
Tensor decompositions for signal processing applications: from two-way to multiway component analysis
-
Cichocki A, Mandic D, De Lathauwer L, Zhou G, Zhao Q, Caiafa C, Phan HA (2015) Tensor decompositions for signal processing applications: from two-way to multiway component analysis. Signal Process Mag 32(2):145–163
-
(2015)
Signal Process Mag
, vol.32
, Issue.2
, pp. 145-163
-
-
Cichocki, A.1
Mandic, D.2
De Lathauwer, L.3
Zhou, G.4
Zhao, Q.5
Caiafa, C.6
Phan, H.A.7
-
18
-
-
84878122541
-
Higher order partial least squares (HOPLS): a generalized multilinear regression method
-
Zhao Q, Caiafa CF, Mandic DP, Chao ZC, Nagasaka Y, Fujii N, Zhang L, Cichocki A (2013) Higher order partial least squares (HOPLS): a generalized multilinear regression method. Pattern Anal Mach Intell 35(7):1660–1673
-
(2013)
Pattern Anal Mach Intell
, vol.35
, Issue.7
, pp. 1660-1673
-
-
Zhao, Q.1
Caiafa, C.F.2
Mandic, D.P.3
Chao, Z.C.4
Nagasaka, Y.5
Fujii, N.6
Zhang, L.7
Cichocki, A.8
-
19
-
-
84889584320
-
Constructing the resting state structural connectome
-
Ajilore O, Zhan L, GadElkarim J, Zhang A, Feusner JD, Yang S, Thompson PM, Kumar A, Leow A (2013) Constructing the resting state structural connectome. Front Neuroinform 7:30
-
(2013)
Front Neuroinform
, vol.7
, pp. 30
-
-
Ajilore, O.1
Zhan, L.2
GadElkarim, J.3
Zhang, A.4
Feusner, J.D.5
Yang, S.6
Thompson, P.M.7
Kumar, A.8
Leow, A.9
-
20
-
-
0036334830
-
Thresholding of statistical maps in functional neuroimaging using the false discovery rate
-
Genovese CR, Lazar NA, Nichols T (2002) Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 15(4):870–878
-
(2002)
Neuroimage
, vol.15
, Issue.4
, pp. 870-878
-
-
Genovese, C.R.1
Lazar, N.A.2
Nichols, T.3
-
21
-
-
31144436747
-
The human connectome: a structural description of the human brain
-
Sporns O, Tononi G, Kötter R (2005) The human connectome: a structural description of the human brain. PLoS Comput Biol 1(4):e42
-
(2005)
PLoS Comput Biol
, vol.1
, Issue.4
, pp. e42
-
-
Sporns, O.1
Tononi, G.2
Kötter, R.3
-
22
-
-
84954170577
-
Structural graphical lasso for learning mouse brain connectivity. In: KDD. ACM
-
Yang S, Sun Q, Ji S, Wonka P, Davidson I, Ye J (2015) Structural graphical lasso for learning mouse brain connectivity. In: KDD. ACM, pp 1385–1394
-
(2015)
pp 1385–1394
-
-
Yang, S.1
Sun, Q.2
Ji, S.3
Wonka, P.4
Davidson, I.5
Ye, J.6
-
23
-
-
84907025300
-
Good-enough brain model: challenges, algorithms and discoveries in multi-subject experiments. In: KDD. ACM
-
Papalexakis EE, Fyshe A, Sidiropoulos ND, Talukdar PP, Mitchell TM, Faloutsos C (2014) Good-enough brain model: challenges, algorithms and discoveries in multi-subject experiments. In: KDD. ACM, pp 95–104
-
(2014)
pp 95–104
-
-
Papalexakis, E.E.1
Fyshe, A.2
Sidiropoulos, N.D.3
Talukdar, P.P.4
Mitchell, T.M.5
Faloutsos, C.6
-
24
-
-
84954104243
-
Deep learning architecture with dynamically programmed layers for brain connectome prediction. In: KDD. ACM
-
Veeriah V, Durvasula R, Qi GJ (2015) Deep learning architecture with dynamically programmed layers for brain connectome prediction. In: KDD. ACM, pp 1205–1214
-
(2015)
pp 1205–1214
-
-
Veeriah, V.1
Durvasula, R.2
Qi, G.J.3
-
25
-
-
84861644119
-
Resting-state multi-spectrum functional connectivity networks for identification of mci patients
-
Wee C-Y, Yap P-T, Denny K, Browndyke JN, Potter GG, Welsh-Bohmer KA, Wang L, Shen D (2012) Resting-state multi-spectrum functional connectivity networks for identification of mci patients. PloS One 7(5):e37828
-
(2012)
PloS One
, vol.7
, Issue.5
, pp. e37828
-
-
Wee, C.-Y.1
Yap, P.-T.2
Denny, K.3
Browndyke, J.N.4
Potter, G.G.5
Welsh-Bohmer, K.A.6
Wang, L.7
Shen, D.8
-
26
-
-
78650237923
-
Enriched white matter connectivity networks for accurate identification of mci patients
-
Wee C-Y, Yap P-T, Li W, Denny K, Browndyke JN, Potter GG, Welsh-Bohmer KA, Wang L, Shen D (2011) Enriched white matter connectivity networks for accurate identification of mci patients. Neuroimage 54(3):1812–1822
-
(2011)
Neuroimage
, vol.54
, Issue.3
, pp. 1812-1822
-
-
Wee, C.-Y.1
Yap, P.-T.2
Li, W.3
Denny, K.4
Browndyke, J.N.5
Potter, G.G.6
Welsh-Bohmer, K.A.7
Wang, L.8
Shen, D.9
-
27
-
-
84855453290
-
Identification of mci individuals using structural and functional connectivity networks
-
Wee C-Y, Yap P-T, Zhang D, Denny K, Browndyke JN, Potter GG, Welsh-Bohmer KA, Wang L, Shen D (2012) Identification of mci individuals using structural and functional connectivity networks. Neuroimage 59(3):2045–2056
-
(2012)
Neuroimage
, vol.59
, Issue.3
, pp. 2045-2056
-
-
Wee, C.-Y.1
Yap, P.-T.2
Zhang, D.3
Denny, K.4
Browndyke, J.N.5
Potter, G.G.6
Welsh-Bohmer, K.A.7
Wang, L.8
Shen, D.9
-
28
-
-
57749195278
-
Kernel methods for graphs: a comprehensive approach. In: Knowledge-based intelligent information and engineering systems. Springer
-
Camastra F, Petrosino A (2008) Kernel methods for graphs: a comprehensive approach. In: Knowledge-based intelligent information and engineering systems. Springer, pp 662–669
-
(2008)
pp 662–669
-
-
Camastra, F.1
Petrosino, A.2
-
29
-
-
80555129683
-
Weisfeiler-lehman graph kernels
-
Shervashidze N, Schweitzer P, Van Leeuwen EJ, Mehlhorn K, Borgwardt KM (2011) Weisfeiler-lehman graph kernels. J Mach Learn Res 12:2539–2561
-
(2011)
J Mach Learn Res
, vol.12
, pp. 2539-2561
-
-
Shervashidze, N.1
Schweitzer, P.2
Van Leeuwen, E.J.3
Mehlhorn, K.4
Borgwardt, K.M.5
-
30
-
-
9444266406
-
On graph kernels: hardness results and efficient alternatives. In: Learning theory and Kernel machines. Springer, pp
-
Gärtner T, Flach P, Wrobel S (2003) On graph kernels: hardness results and efficient alternatives. In: Learning theory and Kernel machines. Springer, pp. 129–143
-
(2003)
129–143
-
-
Gärtner, T.1
Flach, P.2
Wrobel, S.3
-
31
-
-
1942516986
-
Marginalized kernels between labeled graphs
-
Kashima H, Tsuda K, Inokuchi A (2003) Marginalized kernels between labeled graphs. ICML 3:321–328
-
(2003)
ICML
, vol.3
, pp. 321-328
-
-
Kashima, H.1
Tsuda, K.2
Inokuchi, A.3
-
32
-
-
12244278576
-
Cyclic pattern kernels for predictive graph mining. In: KDD. ACM
-
Horváth T, Gärtner T, Wrobel S (2004) Cyclic pattern kernels for predictive graph mining. In: KDD. ACM, pp 158–167
-
(2004)
pp 158–167
-
-
Horváth, T.1
Gärtner, T.2
Wrobel, S.3
-
33
-
-
84893330870
-
Integration of network topological and connectivity properties for neuroimaging classification
-
Jie B, Zhang D, Gao W, Wang Q, Wee C, Shen D (2014) Integration of network topological and connectivity properties for neuroimaging classification. Biomed Eng 61(2):576
-
(2014)
Biomed Eng
, vol.61
, Issue.2
, pp. 576
-
-
Jie, B.1
Zhang, D.2
Gao, W.3
Wang, Q.4
Wee, C.5
Shen, D.6
-
34
-
-
77954691039
-
GAIA: graph classification using evolutionary computation. In: SIGMOD. ACM
-
Jin N, Young C, Wang W (2010) GAIA: graph classification using evolutionary computation. In: SIGMOD. ACM, pp 879–890
-
(2010)
pp 879–890
-
-
Jin, N.1
Young, C.2
Wang, W.3
-
35
-
-
85008256270
-
Identifying bug signatures using discriminative graph mining. In: ISSTA. ACM
-
Cheng H, Lo D, Zhou Y, Wang X, Yan X (2009) Identifying bug signatures using discriminative graph mining. In: ISSTA. ACM, pp 141–152
-
(2009)
pp 141–152
-
-
Cheng, H.1
Lo, D.2
Zhou, Y.3
Wang, X.4
Yan, X.5
-
36
-
-
77956220358
-
Near-optimal supervised feature selection among frequent subgraphs. In: SDM. SIAM
-
Thoma M, Cheng H, Gretton A, Han J, Kriegel HP, Smola AJ, Song L, Philip SY, Yan X, Borgwardt KM (2009) Near-optimal supervised feature selection among frequent subgraphs. In: SDM. SIAM, pp 1076–1087
-
(2009)
pp 1076–1087
-
-
Thoma, M.1
Cheng, H.2
Gretton, A.3
Han, J.4
Kriegel, H.P.5
Smola, A.J.6
Song, L.7
Philip, S.Y.8
Yan, X.9
Borgwardt, K.M.10
-
37
-
-
57149124218
-
Mining significant graph patterns by leap search. In: SIGMOD. ACM
-
Yan X, Cheng H, Han J, Yu PS (2008) Mining significant graph patterns by leap search. In: SIGMOD. ACM, pp 433–444
-
(2008)
pp 433–444
-
-
Yan, X.1
Cheng, H.2
Han, J.3
Yu, P.S.4
-
38
-
-
78149333073
-
-
Yan X, Han J (2002) gspan: Graph-based substructure pattern mining. In: ICDM. IEEE, 721–724
-
Yan X, Han J (2002) gspan: Graph-based substructure pattern mining. In: ICDM. IEEE, 721–724
-
-
-
-
39
-
-
84974733299
-
An apriori-based algorithm for mining frequent substructures from graph data. In: Principles of data mining and knowledge discovery. Springer
-
Inokuchi A, Washio T, Motoda H (2000) An apriori-based algorithm for mining frequent substructures from graph data. In: Principles of data mining and knowledge discovery. Springer, pp 13–23
-
(2000)
pp 13–23
-
-
Inokuchi, A.1
Washio, T.2
Motoda, H.3
-
40
-
-
78149312583
-
Frequent subgraph discovery. In: ICDM. IEEE
-
Kuramochi M, Karypis G (2001) Frequent subgraph discovery. In: ICDM. IEEE, pp 313–320
-
(2001)
pp 313–320
-
-
Kuramochi, M.1
Karypis, G.2
-
41
-
-
2442483205
-
Mining molecular fragments: finding relevant substructures of molecules. In: ICDM. IEEE
-
Borgelt C, Berthold MR (2002) Mining molecular fragments: finding relevant substructures of molecules. In: ICDM. IEEE, pp 51–58
-
(2002)
pp 51–58
-
-
Borgelt, C.1
Berthold, M.R.2
-
42
-
-
78149328300
-
Efficient mining of frequent subgraphs in the presence of isomorphism. In: ICDM. IEEE
-
Huan J, Wang W, Prins J (2003) Efficient mining of frequent subgraphs in the presence of isomorphism. In: ICDM. IEEE, pp 549–552
-
(2003)
pp 549–552
-
-
Huan, J.1
Wang, W.2
Prins, J.3
-
43
-
-
12244294066
-
A quickstart in frequent structure mining can make a difference. In: KDD. ACM
-
Nijssen S, Kok JN (2004) A quickstart in frequent structure mining can make a difference. In: KDD. ACM, 647–652
-
(2004)
647–652
-
-
Nijssen, S.1
Kok, J.N.2
-
44
-
-
67649644367
-
Graphsig: a scalable approach to mining significant subgraphs in large graph databases. In: ICDE. IEEE
-
Ranu S, Singh AK (2009) Graphsig: a scalable approach to mining significant subgraphs in large graph databases. In: ICDE. IEEE, pp 844–855
-
(2009)
pp 844–855
-
-
Ranu, S.1
Singh, A.K.2
-
45
-
-
74549206171
-
Graph classification based on pattern co-occurrence. In: CIKM. ACM
-
Jin N, Young C, Wang W (2009) Graph classification based on pattern co-occurrence. In: CIKM. ACM, pp 573–582
-
(2009)
pp 573–582
-
-
Jin, N.1
Young, C.2
Wang, W.3
-
46
-
-
84871039216
-
Graph classification: a diversified discriminative feature selection approach. In: CIKM. ACM
-
Zhu Y, Yu JX, Cheng H, Qin L (2012) Graph classification: a diversified discriminative feature selection approach. In: CIKM. ACM, pp 205–214
-
(2012)
pp 205–214
-
-
Zhu, Y.1
Yu, J.X.2
Cheng, H.3
Qin, L.4
-
47
-
-
84945956827
-
Identification of discriminative subgraph patterns in fMRI brain networks in bipolar affective disorder. In: Brain informatics and health. Springer, pp
-
Cao B, Zhan L, Kong X, Yu PS, Vizueta N, Altshuler LL, Leow AD (2015) Identification of discriminative subgraph patterns in fMRI brain networks in bipolar affective disorder. In: Brain informatics and health. Springer, pp. 105–114
-
(2015)
105–114
-
-
Cao, B.1
Zhan, L.2
Kong, X.3
Yu, P.S.4
Vizueta, N.5
Altshuler, L.L.6
Leow, A.D.7
-
48
-
-
84945954858
-
Discriminative feature selection for uncertain graph classification. In: SDM. SIAM
-
Kong X, Ragin AB, Wang X, Yu PS (2013) Discriminative feature selection for uncertain graph classification. In: SDM. SIAM, pp 82–93
-
(2013)
pp 82–93
-
-
Kong, X.1
Ragin, A.B.2
Wang, X.3
Yu, P.S.4
-
50
-
-
84939547572
-
Determinants of HIV-induced brain changes in three different periods of the early clinical course: a data mining analysis
-
Cao B, Kong X, Kettering C, Yu PS, Ragin AB (2015) Determinants of HIV-induced brain changes in three different periods of the early clinical course: a data mining analysis. NeuroImage 9:75–82
-
(2015)
NeuroImage
, vol.9
, pp. 75-82
-
-
Cao, B.1
Kong, X.2
Kettering, C.3
Yu, P.S.4
Ragin, A.B.5
-
51
-
-
84936940691
-
Tensor-based multi-view feature selection with applications to brain diseases. In: ICDM. IEEE
-
Cao B, He L, Kong X, Yu PS, Hao Z, Ragin AB (2014) Tensor-based multi-view feature selection with applications to brain diseases. In: ICDM. IEEE, pp 40–49
-
(2014)
pp 40–49
-
-
Cao, B.1
He, L.2
Kong, X.3
Yu, P.S.4
Hao, Z.5
Ragin, A.B.6
-
52
-
-
84894119416
-
A survey on multi-view learning
-
Xu C, Tao D, Xu C (2013) A survey on multi-view learning. arXiv
-
(2013)
arXiv
-
-
Xu, C.1
Tao, D.2
Xu, C.3
-
53
-
-
8844278523
-
Learning the kernel matrix with semidefinite programming
-
Lanckriet GR, Cristianini N, Bartlett P, Ghaoui LE, Jordan MI (2004) Learning the kernel matrix with semidefinite programming. J Mach Learn Res 5:27–72
-
(2004)
J Mach Learn Res
, vol.5
, pp. 27-72
-
-
Lanckriet, G.R.1
Cristianini, N.2
Bartlett, P.3
Ghaoui, L.E.4
Jordan, M.I.5
-
54
-
-
71149100224
-
More generality in efficient multiple kernel learning. In: ICML
-
Varma M, Babu R (2009) More generality in efficient multiple kernel learning. In: ICML, pp 1065–1072
-
(2009)
pp 1065–1072
-
-
Varma, M.1
Babu, R.2
-
56
-
-
84887452388
-
A survey of multi-view machine learning
-
Sun S (2013) A survey of multi-view machine learning. Neural Comput Appl 23(7–8):2031–2038
-
(2013)
Neural Comput Appl
, vol.23
, Issue.7-8
, pp. 2031-2038
-
-
Sun, S.1
-
57
-
-
33745561205
-
An introduction to variable and feature selection
-
Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res 3:1157–1182
-
(2003)
J Mach Learn Res
, vol.3
, pp. 1157-1182
-
-
Guyon, I.1
Elisseeff, A.2
-
58
-
-
24344458137
-
Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy
-
Peng H, Long F, Ding C (2005) Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. Pattern Anal Mach Intell 27(8):1226–1238
-
(2005)
Pattern Anal Mach Intell
, vol.27
, Issue.8
, pp. 1226-1238
-
-
Peng, H.1
Long, F.2
Ding, C.3
-
59
-
-
0141990695
-
Theoretical and empirical analysis of ReliefF and RReliefF
-
Robnik-Šikonja M, Kononenko I (2003) Theoretical and empirical analysis of ReliefF and RReliefF. Mach Learn 53(1–2):23–69
-
(2003)
Mach Learn
, vol.53
, Issue.1-2
, pp. 23-69
-
-
Robnik-Šikonja, M.1
Kononenko, I.2
-
60
-
-
0036161259
-
Gene selection for cancer classification using support vector machines
-
Guyon I, Weston J, Barnhill S, Vapnik V (2002) Gene selection for cancer classification using support vector machines. Mach Learn 46(1–3):389–422
-
(2002)
Mach Learn
, vol.46
, Issue.1-3
, pp. 389-422
-
-
Guyon, I.1
Weston, J.2
Barnhill, S.3
Vapnik, V.4
-
61
-
-
84890447445
-
Variable selection using SVM-based criteria
-
Rakotomamonjy A (2003) Variable selection using SVM-based criteria. J Mach Learn Res 3:1357–1370
-
(2003)
J Mach Learn Res
, vol.3
, pp. 1357-1370
-
-
Rakotomamonjy, A.1
-
62
-
-
44949258241
-
Multiclass SVM-RFE for product form feature selection
-
Shieh M-D, Yang C-C (2008) Multiclass SVM-RFE for product form feature selection. Expert Syst Appl 35(1):531–541
-
(2008)
Expert Syst Appl
, vol.35
, Issue.1
, pp. 531-541
-
-
Shieh, M.-D.1
Yang, C.-C.2
-
63
-
-
64749086339
-
A wrapper method for feature selection using support vector machines
-
Maldonado S, Weber R (2009) A wrapper method for feature selection using support vector machines. Inf Sci 179(13):2208–2217
-
(2009)
Inf Sci
, vol.179
, Issue.13
, pp. 2208-2217
-
-
Maldonado, S.1
Weber, R.2
-
64
-
-
84875889840
-
Adaptive unsupervised multi-view feature selection for visual concept recognition. In: ACCV, pp
-
Feng Y, Xiao J, Zhuang Y, Liu X (2012) Adaptive unsupervised multi-view feature selection for visual concept recognition. In: ACCV, pp. 343–357
-
(2012)
343–357
-
-
Feng, Y.1
Xiao, J.2
Zhuang, Y.3
Liu, X.4
-
65
-
-
84889587692
-
Discriminative feature selection for multi-view cross-domain learning. In: CIKM. ACM
-
Fang Z, Zhang ZM (2013) Discriminative feature selection for multi-view cross-domain learning. In: CIKM. ACM, pp 1321–1330
-
(2013)
pp 1321–1330
-
-
Fang, Z.1
Zhang, Z.M.2
-
66
-
-
85048564749
-
Multi-view clustering and feature learning via structured sparsity. In: ICML
-
Wang H, Nie F, Huang H (2013) Multi-view clustering and feature learning via structured sparsity. In: ICML, pp 352–360
-
(2013)
pp 352–360
-
-
Wang, H.1
Nie, F.2
Huang, H.3
-
67
-
-
84887363909
-
Heterogeneous visual features fusion via sparse multimodal machine. In: CVPR
-
Wang H, Nie F, Huang H, Ding C (2013) Heterogeneous visual features fusion via sparse multimodal machine. In: CVPR, pp 3097–3102
-
(2013)
pp 3097–3102
-
-
Wang, H.1
Nie, F.2
Huang, H.3
Ding, C.4
-
68
-
-
33646724524
-
Linear penalization support vector machines for feature selection. In: Pattern recognition and machine intelligence. Springer
-
Miranda J, Montoya R, Weber R (2005) Linear penalization support vector machines for feature selection. In: Pattern recognition and machine intelligence. Springer, pp 188–192
-
(2005)
pp 188–192
-
-
Miranda, J.1
Montoya, R.2
Weber, R.3
-
69
-
-
84913530663
-
Unsupervised feature selection for multi-view data in social media. In: SDM. SIAM
-
Tang J, Hu X, Gao H, Liu H (2013) Unsupervised feature selection for multi-view data in social media. In: SDM. SIAM, pp 270–278
-
(2013)
pp 270–278
-
-
Tang, J.1
Hu, X.2
Gao, H.3
Liu, H.4
-
70
-
-
0036322886
-
Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain
-
Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15(1):273–289
-
(2002)
Neuroimage
, vol.15
, Issue.1
, pp. 273-289
-
-
Tzourio-Mazoyer, N.1
Landeau, B.2
Papathanassiou, D.3
Crivello, F.4
Etard, O.5
Delcroix, N.6
Mazoyer, B.7
Joliot, M.8
-
71
-
-
85162377804
-
Identifying Alzheimer’s disease-related brain regions from multi-modality neuroimaging data using sparse composite linear discrimination analysis. In: NIPS, pp
-
Huang S, Li J, Ye J, Wu T, Chen K, Fleisher A, Reiman E (2011) Identifying Alzheimer’s disease-related brain regions from multi-modality neuroimaging data using sparse composite linear discrimination analysis. In: NIPS, pp. 1431–1439
-
(2011)
1431–1439
-
-
Huang, S.1
Li, J.2
Ye, J.3
Wu, T.4
Chen, K.5
Fleisher, A.6
Reiman, E.7
-
72
-
-
84991665233
-
Multi-source learning with block-wise missing data for Alzheimer’s disease prediction. In: KDD. ACM
-
Xiang S, Yuan L, Fan W, Wang Y, Thompson PM, Ye J (2013) Multi-source learning with block-wise missing data for Alzheimer’s disease prediction. In: KDD. ACM, pp 185–193
-
(2013)
pp 185–193
-
-
Xiang, S.1
Yuan, L.2
Fan, W.3
Wang, Y.4
Thompson, P.M.5
Ye, J.6
-
73
-
-
77951171264
-
Feature selection in the tensor product feature space. In: ICDM
-
Smalter A, Huan J, Lushington G (2009) Feature selection in the tensor product feature space. In: ICDM, pp 1004–1009
-
(2009)
pp 1004–1009
-
-
Smalter, A.1
Huan, J.2
Lushington, G.3
-
75
-
-
84936938554
-
Collective prediction of multiple types of links in heterogeneous information networks. In: ICDM. IEEE
-
Cao B, Kong X, Yu PS (2014) Collective prediction of multiple types of links in heterogeneous information networks. In: ICDM. IEEE, pp 50–59
-
(2014)
pp 50–59
-
-
Cao, B.1
Kong, X.2
Yu, P.S.3
-
76
-
-
85016778932
-
Multi-label classification by mining label and instance correlations from heterogeneous information networks. In: KDD. ACM
-
Kong X, Cao B, Yu PS (2013) Multi-label classification by mining label and instance correlations from heterogeneous information networks. In: KDD. ACM, pp 614–622
-
(2013)
pp 614–622
-
-
Kong, X.1
Cao, B.2
Yu, P.S.3
|