메뉴 건너뛰기




Volumn 2015-January, Issue January, 2014, Pages 40-49

Tensor-Based Multi-view Feature Selection with Applications to Brain Diseases

Author keywords

brain diseases; feature selection; multi view learning; tensor

Indexed keywords

CLASSIFICATION (OF INFORMATION); COMPUTER AIDED DIAGNOSIS; DATA MINING; MEDICAL IMAGING; SUPPORT VECTOR MACHINES; TENSORS; VECTOR SPACES;

EID: 84936940691     PISSN: 15504786     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICDM.2014.26     Document Type: Conference Paper
Times cited : (64)

References (30)
  • 3
    • 84936930682 scopus 로고    scopus 로고
    • Libsv m: A library for support vector machines 2001
    • available at
    • Chih-Chung Chang and Chih-Jen Lin. LIBSV M: a library for support vector machines, 2001. Software available at http://www.csie.ntu.edu. tw/?cjlin/libsvm.
    • Software
    • Chang, C.-C.1    Lin, C.-J.2
  • 4
    • 84858743760 scopus 로고    scopus 로고
    • Learning non-linear combinations of kernels
    • Corinna Cortes, Mehryar Mohri, and Afshin Rostamizadeh. Learning non-linear combinations of kernels. In NIPS, pages 396-404, 2009.
    • (2009) NIPS , pp. 396-404
    • Cortes, C.1    Mohri, M.2    Rostamizadeh, A.3
  • 6
    • 84889587692 scopus 로고    scopus 로고
    • Discriminative feature selection for multi-view cross-domain learning
    • ACM
    • Zheng Fang and Zhongfei Mark Zhang. Discriminative feature selection for multi-view cross-domain learning. In CIKM, pages 1321-1330. ACM, 2013.
    • (2013) CIKM , pp. 1321-1330
    • Fang, Z.1    Zhang, Z.M.2
  • 7
    • 84875889840 scopus 로고    scopus 로고
    • Adaptive unsupervised multi-view feature selection for visual concept recognition
    • Yinfu Feng, Jun Xiao, Yueting Zhuang, and Xiaoming Liu. Adaptive unsupervised multi-view feature selection for visual concept recognition. In ACCV, pages 343-357, 2012.
    • (2012) ACCV , pp. 343-357
    • Feng, Y.1    Xiao, J.2    Zhuang, Y.3    Liu, X.4
  • 9
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Isabelle Guyon, Jason Weston, Stephen Barnhill, and Vladimir Vapnik. Gene selection for cancer classification using support vector machines. Machine learning, 46(1-3):389-422, 2002.
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 10
    • 84936956549 scopus 로고    scopus 로고
    • Dusk: A dual structure-preserving kernel for supervised tensor learning with applications to neuroimages
    • Lifang He, Xiangnan Kong, Philip S Yu, Ann B Ragin, Zhifeng Hao, and Xiaowei Yang. DuSK: A dual structure-preserving kernel for supervised tensor learning with applications to neuroimages. In SDM. SIAM, 2014.
    • (2014) SDM. SIAM
    • He, L.1    Kong, X.2    Yu, P.S.3    Ragin, A.B.4    Hao, Z.5    Yang, X.6
  • 11
    • 68649096448 scopus 로고    scopus 로고
    • Tens or decompositions and applications
    • Tamara G Kolda and Brett W Bader. Tens or decompositions and applications. SIAM review, 51(3):455-500, 2009.
    • (2009) SIAM Review , vol.51 , Issue.3 , pp. 455-500
    • Kolda, T.G.1    Bader, B.W.2
  • 12
    • 84936952038 scopus 로고    scopus 로고
    • Brain network analysis: A data mining perspective
    • Xiangnan Kong and Philip S Yu. Brain network analysis: a data mining perspective. SIGKDD Explorations Newsletter, 15(2):30-38, 2014.
    • (2014) SIGKDD Explorations Newsletter , vol.15 , Issue.2 , pp. 30-38
    • Kong, X.1    Yu, P.S.2
  • 13
    • 84945954858 scopus 로고    scopus 로고
    • Discriminative feature selection for uncertain graph classification
    • Xiangnan Kong, Philip S Yu, Xue Wang, and Ann B Ragin. Discriminative feature selection for uncertain graph classification. In SDM, 2013.
    • (2013) SDM
    • Kong, X.1    Yu, P.S.2    Wang, X.3    Ragin, A.B.4
  • 15
    • 84936933412 scopus 로고    scopus 로고
    • Alzheimer's disease facts and figures
    • Irma Mebane-Sims. 2009 alzheimer's disease facts and figures. Alzheimer's & Dementia, 2009.
    • (2009) Alzheimer's & Dementia , vol.2009
    • Mebane-Sims, I.1
  • 17
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information criteria of max-dependency, max-relevance, and minredundancy
    • Hanchuan Peng, Fulmi Long, and Chris Ding. Feature selection based on mutual information criteria of max-dependency, max-relevance, and minredundancy. Pattern Analysis and Machine Intelligence, 27(8):1226-1238, 2005.
    • (2005) Pattern Analysis and Machine Intelligence , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 19
    • 84871276520 scopus 로고    scopus 로고
    • Structural brain alterations can be detected early in hiv infection
    • Ann B Ragin, Hongyan Du, Renee Ochs, Ying Wu, Christina L Sammet, Alfred Shoukry, and Leon G Epstein. Structural brain alterations can be detected early in HIV infection. Neurology, 79(24):2328-2334, 2012.
    • (2012) Neurology , vol.79 , Issue.24 , pp. 2328-2334
    • Ragin, A.B.1    Du, H.2    Ochs, R.3    Wu, Y.4    Sammet, C.L.5    Shoukry, A.6    Epstein, L.G.7
  • 20
    • 0141990695 scopus 로고    scopus 로고
    • Theoretical and empirical analysis of relieff and rrelieff
    • Marko Robnik-? Sikonja and Igor Kononenko. Theoretical and empirical analysis of relieff and rrelieff. Machine learning, 53(1-2):23-69, 2003.
    • (2003) Machine Learning , vol.53 , Issue.1-2 , pp. 23-69
    • Robnik-Sikonja, M.1    Kononenko, I.2
  • 21
    • 77951171264 scopus 로고    scopus 로고
    • Feature selection in the tensor product feature space
    • Aaron Smalter, Jun Huan, and Gerald Lushington. Feature selection in the tensor product feature space. In ICDM, pages 1004-1009, 2009.
    • (2009) ICDM , pp. 1004-1009
    • Smalter, A.1    Huan, J.2    Lushington, G.3
  • 22
    • 84887452388 scopus 로고    scopus 로고
    • A survey of multi-view machine learning
    • Shiliang Sun. A survey of multi-view machine learning. Neural Computing and Applications, 23(7-8):2031-2038, 2013.
    • (2013) Neural Computing and Applications , vol.23 , Issue.7-8 , pp. 2031-2038
    • Sun, S.1
  • 23
    • 84913530663 scopus 로고    scopus 로고
    • Unsupervised feature selection for multi-view data in social media
    • Jiliang Tang,Xia Hu,Huiji Gao,Huan Liu. Unsupervised feature selection for multi-view data in social media In SDM 2013.
    • (2013) SDM
    • Tang, J.1    Hu, X.2    Gao, H.3    Liu, H.4
  • 25
    • 71149100224 scopus 로고    scopus 로고
    • More generality in efficient multiple kernel learning
    • Manik Varma and Bodla Rakesh Babu. More generality in efficient multiple kernel learning. In ICML, pages 1065-1072, 2009.
    • (2009) ICML , pp. 1065-1072
    • Varma, M.1    Babu, B.R.2
  • 26
    • 84898806070 scopus 로고    scopus 로고
    • Multi-view clustering and feature learning via structured sparsity
    • Hua Wang, Feiping Nie, and Heng Huang. Multi-view clustering and feature learning via structured sparsity. In ICML, pages 352-360, 2013.
    • (2013) ICML , pp. 352-360
    • Wang, H.1    Nie, F.2    Huang, H.3
  • 27
    • 84887363909 scopus 로고    scopus 로고
    • Heterogeneous visual features fusion via sparse multimodal machine
    • Hua Wang, Feiping Nie, Heng Huang, and Chris Ding. Heterogeneous visual features fusion via sparse multimodal machine. In CVPR, pages 3097-3102, 2013.
    • (2013) CVPR , pp. 3097-3102
    • Wang, H.1    Nie, F.2    Huang, H.3    Ding, C.4
  • 28
    • 0027537028 scopus 로고
    • Neuronal damage in the cerebral cortex of aids brains: A morphometric study
    • S Weis, H Haug, and H Budka. Neuronal damage in the cerebral cortex of AIDS brains: a morphometric study. Acta neuropathologica, 85(2):185-189, 1993.
    • (1993) Acta Neuropathologica , vol.85 , Issue.2 , pp. 185-189
    • Weis, S.1    Haug, H.2    Budka, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.