-
1
-
-
24744435534
-
Kernel methods for predicting protein-protein interactions
-
Suppl 1
-
A. Ben-Hur and W. S. Noble. Kernel methods for predicting protein-protein interactions. Bioinformatics, 21(Suppl 1):i38- i46, 2005.
-
(2005)
Bioinformatics
, vol.21
-
-
Ben-Hur, A.1
Noble, W.S.2
-
2
-
-
0142210290
-
Learning to predict proteinprotein interactions from protein sequences
-
S. Gomez, W. Noble, and A. Rzhetsky. Learning to predict proteinprotein interactions from protein sequences. Bioinformatics, 19(15):1875-1881, 2003.
-
(2003)
Bioinformatics
, vol.19
, Issue.15
, pp. 1875-1881
-
-
Gomez, S.1
Noble, W.2
Rzhetsky, A.3
-
3
-
-
0036161259
-
Gene selection for cancer classification using support vector machines
-
January
-
I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classification using support vector machines. Machine Learning, 46:389-422, 2002 January.
-
(2002)
Machine Learning
, vol.46
, pp. 389-422
-
-
Guyon, I.1
Weston, J.2
Barnhill, S.3
Vapnik, V.4
-
4
-
-
77951186046
-
Link prediction using supervised learning
-
M. A. Hasan, V. Chaoji, S. Salem, and M. Zaki. Link prediction using supervised learning. In In Proc. of SDM 06 workshop on Link Analysis, Counterterrorism and Security, 2006.
-
(2006)
Proc. of SDM 06 Workshop on Link Analysis, Counterterrorism and Security
-
-
Hasan, M.A.1
Chaoji, V.2
Salem, S.3
Zaki, M.4
-
5
-
-
0003684449
-
-
Springer-Verlag
-
T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer-Verlag, 2001.
-
(2001)
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
7
-
-
74549205645
-
Virtual screening of gpcrs: An in silico chemogenomics approach
-
L. Jacob, B. Hoffmann, V. Stoven, and J.-P. Vert. Virtual screening of gpcrs: an in silico chemogenomics approach. Technical Report HAL-00220396, French Center for Computational Biology, 2008.
-
(2008)
Technical Report HAL-00220396, French Center for Computational Biology
-
-
Jacob, L.1
Hoffmann, B.2
Stoven, V.3
Vert, J.-P.4
-
8
-
-
52749085437
-
Protein-ligand interaction prediction: An improved chemogenomics approach
-
L. Jacob and J.-P. Vert. Protein-ligand interaction prediction: an improved chemogenomics approach. Bioinformatics, 24(19), 2008.
-
(2008)
Bioinformatics
, vol.24
, Issue.19
-
-
Jacob, L.1
Vert, J.-P.2
-
9
-
-
38349114038
-
Genome scale enzymemetabolite and drug-target interaction predictions using the signature molecular descriptor
-
F. JL, M. M, M. S, S. K, and S. R. Genome scale enzymemetabolite and drug-target interaction predictions using the signature molecular descriptor. Bioinformatics, 24(2):225-33, 2007.
-
(2007)
Bioinformatics
, vol.24
, Issue.2
, pp. 225-233
-
-
Jl, F.1
M., M.2
S., M.3
K., S.4
R., S.5
-
10
-
-
34547688865
-
An interior-point method for largescale l1-regularized logistic regression
-
Koh, Kim, and Boyd. An interior-point method for largescale l1-regularized logistic regression. J. Machine Learning Research, 2007.
-
(2007)
J. Machine Learning Research
-
-
Koh, K.1
Boyd2
-
11
-
-
0031381525
-
Wrappers for feature subset selection
-
R. Kohavi and G. H. John. Wrappers for feature subset selection. Artificial Intelligence, 97(1-2):273-324, 1997.
-
(1997)
Artificial Intelligence
, vol.97
, Issue.1-2
, pp. 273-324
-
-
Kohavi, R.1
John, G.H.2
-
13
-
-
34547852210
-
Alignment of molecular networks by integer quadratic programming
-
Li, Zhang, Wang, Zhang, and Chen. Alignment of molecular networks by integer quadratic programming. Bioinformatics, 2007.
-
(2007)
Bioinformatics
-
-
Li, Z.1
Wang, Z.2
Chen3
-
16
-
-
13444262436
-
Predicting proteinprotein interactions using signature products
-
S. Martin, D. Roe, and J.-L. Faulon. Predicting proteinprotein interactions using signature products. Bioinformatics, 21(2):218-226, 2005.
-
(2005)
Bioinformatics
, vol.21
, Issue.2
, pp. 218-226
-
-
Martin, S.1
Roe, D.2
Faulon, J.-L.3
-
17
-
-
77951165779
-
Manning, and C. D. using feature conjunctions across examples for learning pairwise classifiers
-
Oyama, Satoshi, Manning, and C. D. Using feature conjunctions across examples for learning pairwise classifiers. In 15th European Conference on Machine Learning (ECML2004), 2004.
-
(2004)
15th European Conference on Machine Learning (ECML2004)
-
-
Oyama, S.1
-
21
-
-
85030174634
-
Grouplens: An open archetecture for collaborative filtering of netnews
-
P. Resnick, N. Iacovou, M. Suchak, B. P., and J. Riedl. Grouplens: An open archetecture for collaborative filtering of netnews. In ACM Conference on Computer-Supported Cooperative Work, 1994.
-
(1994)
ACM Conference on Computer-Supported Cooperative Work
-
-
Resnick, P.1
Iacovou, N.2
Suchak, M.3
P., B.4
Riedl, J.5
-
23
-
-
0345327592
-
A simple and efficient algorithm for gene selection using sparse logistic regression
-
Shevade and Keerthi. A simple and efficient algorithm for gene selection using sparse logistic regression. Bioinformatics, 2003.
-
(2003)
Bioinformatics
-
-
Shevade1
Keerthi2
-
25
-
-
36148990993
-
Supervised tensor learning
-
D. Tao, X. Li, X. Wu, W. Hu, and S. J. Maybank. Supervised tensor learning. Journal of Knowledge and Information Systems, 13, 2007.
-
(2007)
Journal of Knowledge and Information Systems
, vol.13
-
-
Tao, D.1
Li, X.2
Wu, X.3
Hu, W.4
Maybank, S.J.5
-
27
-
-
33644876210
-
Drugbank: A comprehensive resource for in silico drug discovery and exploratin
-
D. S. Wishart, C. Knox, A. C. Guo, S. Shrivastava, M. Hassanali, P. Stothard, Z. Chang, and J. Woolsey. Drugbank: a comprehensive resource for in silico drug discovery and exploratin. Nucleic Acids Res., 2006(1).
-
(2006)
Nucleic Acids Res.
, Issue.1
-
-
Wishart, D.S.1
Knox, C.2
Guo, A.C.3
Shrivastava, S.4
Hassanali, M.5
Stothard, P.6
Chang, Z.7
Woolsey, J.8
-
28
-
-
77951155343
-
Grouped and hierarchical model selection through composite absolute penalties
-
S. Wu, H. Zou, and M. Yuan. Grouped and hierarchical model selection through composite absolute penalties. Annals of Statistics to appear, 2008.
-
(2008)
Annals of Statistics to Appear
-
-
Wu, S.1
Zou, H.2
Yuan, M.3
-
29
-
-
33645035051
-
Model selection and estimation in regression with grouped variables
-
Series B, (1)
-
M. Yuan and Y. Lin. Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society, Series B, 68(1)(1-2):4967, 2006.
-
(2006)
Journal of the Royal Statistical Society
, vol.68
, Issue.1-2
, pp. 4967
-
-
Yuan, M.1
Lin, Y.2
-
32
-
-
43049089414
-
F∞ norm support vector machine
-
H. Zou and M. Yuan. F∞ norm support vector machine. Statistica Sinica, 18:379-398, 2008.
-
(2008)
Statistica Sinica
, vol.18
, pp. 379-398
-
-
Zou, H.1
Yuan, M.2
|