메뉴 건너뛰기




Volumn , Issue , 2009, Pages 1004-1009

Feature selection in the tensor product feature space

Author keywords

[No Author keywords available]

Indexed keywords

BIOLOGICAL DATA; DIFFERENT DOMAINS; EXPERIMENTAL STUDIES; FEATURE SELECTION; FEATURE SELECTION METHODS; FEATURE SETS; FEATURE SPACE; L1 NORM; MODELING INTERACTIONS; OPTIMAL RESULTS; TENSOR PRODUCTS;

EID: 77951171264     PISSN: 15504786     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICDM.2009.101     Document Type: Conference Paper
Times cited : (13)

References (32)
  • 1
    • 24744435534 scopus 로고    scopus 로고
    • Kernel methods for predicting protein-protein interactions
    • Suppl 1
    • A. Ben-Hur and W. S. Noble. Kernel methods for predicting protein-protein interactions. Bioinformatics, 21(Suppl 1):i38- i46, 2005.
    • (2005) Bioinformatics , vol.21
    • Ben-Hur, A.1    Noble, W.S.2
  • 2
    • 0142210290 scopus 로고    scopus 로고
    • Learning to predict proteinprotein interactions from protein sequences
    • S. Gomez, W. Noble, and A. Rzhetsky. Learning to predict proteinprotein interactions from protein sequences. Bioinformatics, 19(15):1875-1881, 2003.
    • (2003) Bioinformatics , vol.19 , Issue.15 , pp. 1875-1881
    • Gomez, S.1    Noble, W.2    Rzhetsky, A.3
  • 3
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • January
    • I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classification using support vector machines. Machine Learning, 46:389-422, 2002 January.
    • (2002) Machine Learning , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 8
    • 52749085437 scopus 로고    scopus 로고
    • Protein-ligand interaction prediction: An improved chemogenomics approach
    • L. Jacob and J.-P. Vert. Protein-ligand interaction prediction: an improved chemogenomics approach. Bioinformatics, 24(19), 2008.
    • (2008) Bioinformatics , vol.24 , Issue.19
    • Jacob, L.1    Vert, J.-P.2
  • 9
    • 38349114038 scopus 로고    scopus 로고
    • Genome scale enzymemetabolite and drug-target interaction predictions using the signature molecular descriptor
    • F. JL, M. M, M. S, S. K, and S. R. Genome scale enzymemetabolite and drug-target interaction predictions using the signature molecular descriptor. Bioinformatics, 24(2):225-33, 2007.
    • (2007) Bioinformatics , vol.24 , Issue.2 , pp. 225-233
    • Jl, F.1    M., M.2    S., M.3    K., S.4    R., S.5
  • 10
    • 34547688865 scopus 로고    scopus 로고
    • An interior-point method for largescale l1-regularized logistic regression
    • Koh, Kim, and Boyd. An interior-point method for largescale l1-regularized logistic regression. J. Machine Learning Research, 2007.
    • (2007) J. Machine Learning Research
    • Koh, K.1    Boyd2
  • 11
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • R. Kohavi and G. H. John. Wrappers for feature subset selection. Artificial Intelligence, 97(1-2):273-324, 1997.
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 13
    • 34547852210 scopus 로고    scopus 로고
    • Alignment of molecular networks by integer quadratic programming
    • Li, Zhang, Wang, Zhang, and Chen. Alignment of molecular networks by integer quadratic programming. Bioinformatics, 2007.
    • (2007) Bioinformatics
    • Li, Z.1    Wang, Z.2    Chen3
  • 16
    • 13444262436 scopus 로고    scopus 로고
    • Predicting proteinprotein interactions using signature products
    • S. Martin, D. Roe, and J.-L. Faulon. Predicting proteinprotein interactions using signature products. Bioinformatics, 21(2):218-226, 2005.
    • (2005) Bioinformatics , vol.21 , Issue.2 , pp. 218-226
    • Martin, S.1    Roe, D.2    Faulon, J.-L.3
  • 17
    • 77951165779 scopus 로고    scopus 로고
    • Manning, and C. D. using feature conjunctions across examples for learning pairwise classifiers
    • Oyama, Satoshi, Manning, and C. D. Using feature conjunctions across examples for learning pairwise classifiers. In 15th European Conference on Machine Learning (ECML2004), 2004.
    • (2004) 15th European Conference on Machine Learning (ECML2004)
    • Oyama, S.1
  • 23
    • 0345327592 scopus 로고    scopus 로고
    • A simple and efficient algorithm for gene selection using sparse logistic regression
    • Shevade and Keerthi. A simple and efficient algorithm for gene selection using sparse logistic regression. Bioinformatics, 2003.
    • (2003) Bioinformatics
    • Shevade1    Keerthi2
  • 28
    • 77951155343 scopus 로고    scopus 로고
    • Grouped and hierarchical model selection through composite absolute penalties
    • S. Wu, H. Zou, and M. Yuan. Grouped and hierarchical model selection through composite absolute penalties. Annals of Statistics to appear, 2008.
    • (2008) Annals of Statistics to Appear
    • Wu, S.1    Zou, H.2    Yuan, M.3
  • 29
    • 33645035051 scopus 로고    scopus 로고
    • Model selection and estimation in regression with grouped variables
    • Series B, (1)
    • M. Yuan and Y. Lin. Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society, Series B, 68(1)(1-2):4967, 2006.
    • (2006) Journal of the Royal Statistical Society , vol.68 , Issue.1-2 , pp. 4967
    • Yuan, M.1    Lin, Y.2
  • 32
    • 43049089414 scopus 로고    scopus 로고
    • F∞ norm support vector machine
    • H. Zou and M. Yuan. F∞ norm support vector machine. Statistica Sinica, 18:379-398, 2008.
    • (2008) Statistica Sinica , vol.18 , pp. 379-398
    • Zou, H.1    Yuan, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.