메뉴 건너뛰기




Volumn , Issue , 2012, Pages 205-214

Graph classification: A diversified discriminative feature selection approach

Author keywords

diversity; feature selection; graph classification

Indexed keywords

CLASSIFICATION ACCURACY; CLASSIFICATION APPROACH; CLASSIFICATION MODELS; COMPLEX STRUCTURE; DISCRIMINATIVE FEATURES; DIVERSITY; FEATURE SELECTION AND CLASSIFICATION; FREQUENT SUBGRAPHS; GRAPH CLASSIFICATION; GRAPH DATABASE; GRAPH MODEL; PERFORMANCE STUDY; STRUCTURAL RELATIONSHIP; SUBGRAPHS;

EID: 84871039216     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2396761.2396791     Document Type: Conference Paper
Times cited : (29)

References (24)
  • 3
    • 77956304974 scopus 로고    scopus 로고
    • Mining graph patterns efficiently via randomized summaries
    • C. Chen, C. X. Lin, M. Fredrikson, M. Christodorescu, X. Yan, and J. Han. Mining graph patterns efficiently via randomized summaries. PVLDB, 2(1):742-753, 2009.
    • (2009) PVLDB , vol.2 , Issue.1 , pp. 742-753
    • Chen, C.1    Lin, C.X.2    Fredrikson, M.3    Christodorescu, M.4    Yan, X.5    Han, J.6
  • 4
    • 34548741255 scopus 로고    scopus 로고
    • Discriminative frequent pattern analysis for effective classification
    • H. Cheng, X. Yan, J. Han, and C.-W. Hsu. Discriminative frequent pattern analysis for effective classification. In ICDE, pages 716-725, 2007.
    • (2007) ICDE , pp. 716-725
    • Cheng, H.1    Yan, X.2    Han, J.3    Hsu, C.-W.4
  • 5
    • 24344484786 scopus 로고    scopus 로고
    • Frequent substructure-based approaches for classifying chemical compounds
    • M. Deshpande, M. Kuramochi, N. Wale, and G. Karypis. Frequent substructure-based approaches for classifying chemical compounds. TKDE, 17(8):1036-1050, 2005.
    • (2005) TKDE , vol.17 , Issue.8 , pp. 1036-1050
    • Deshpande, M.1    Kuramochi, M.2    Wale, N.3    Karypis, G.4
  • 6
    • 33645690579 scopus 로고    scopus 로고
    • Fast binary feature selection with conditional mutual information
    • F. Fleuret. Fast binary feature selection with conditional mutual information. JMLR, 5:1531-1555, 2004.
    • (2004) JMLR , vol.5 , pp. 1531-1555
    • Fleuret, F.1
  • 7
    • 78149328321 scopus 로고    scopus 로고
    • Mining top-k frequent closed patterns without minimum support
    • J. Han, J.Wang, Y. Lu, and P. Tzvetkov. Mining top-k frequent closed patterns without minimum support. In ICDM, pages 211-218, 2002.
    • (2002) ICDM , pp. 211-218
    • Han, J.1    Wang, J.2    Lu, Y.3    Tzvetkov, P.4
  • 8
    • 84865096110 scopus 로고    scopus 로고
    • Output space sampling for graph patterns
    • M. A. Hasan and M. J. Zaki. Output space sampling for graph patterns. PVLDB, 2(1):730-741, 2009.
    • (2009) PVLDB , vol.2 , Issue.1 , pp. 730-741
    • Hasan, M.A.1    Zaki, M.J.2
  • 9
    • 78149328300 scopus 로고    scopus 로고
    • Efficient mining of frequent subgraphs in the presence of isomorphism
    • J. Huan, W. Wang, and J. Prins. Efficient mining of frequent subgraphs in the presence of isomorphism. In ICDM, pages 549-552, 2003.
    • (2003) ICDM , pp. 549-552
    • Huan, J.1    Wang, W.2    Prins, J.3
  • 10
    • 12244294770 scopus 로고    scopus 로고
    • Spin: Mining maximal frequent subgraphs from graph databases
    • J. Huan, W. Wang, J. Prins, and J. Yang. Spin: mining maximal frequent subgraphs from graph databases. In KDD, pages 581-586, 2004.
    • (2004) KDD , pp. 581-586
    • Huan, J.1    Wang, W.2    Prins, J.3    Yang, J.4
  • 11
    • 74549206171 scopus 로고    scopus 로고
    • Graph classification based on pattern co-occurrence
    • N. Jin, C. Young, and W. Wang. Graph classification based on pattern co-occurrence. In CIKM, pages 573-582, 2009.
    • (2009) CIKM , pp. 573-582
    • Jin, N.1    Young, C.2    Wang, W.3
  • 12
    • 77954691039 scopus 로고    scopus 로고
    • Gaia: Graph classification using evolutionary computation
    • N. Jin, C. Young, and W. Wang. Gaia: graph classification using evolutionary computation. In SIGMOD, pages 879-890, 2010.
    • (2010) SIGMOD , pp. 879-890
    • Jin, N.1    Young, C.2    Wang, W.3
  • 13
    • 78149312583 scopus 로고    scopus 로고
    • Frequent subgraph discovery
    • M. Kuramochi and G. Karypis. Frequent subgraph discovery. In ICDM, pages 313-320, 2001.
    • (2001) ICDM , pp. 313-320
    • Kuramochi, M.1    Karypis, G.2
  • 14
    • 12244294066 scopus 로고    scopus 로고
    • A quickstart in frequent structure mining can make a difference
    • S. Nijssen and J. N. Kok. A quickstart in frequent structure mining can make a difference. In KDD, pages 647-652, 2004.
    • (2004) KDD , pp. 647-652
    • Nijssen, S.1    Kok, J.N.2
  • 15
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy
    • H. Peng, F. Long, and C. H. Q. Ding. Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy. TPAMI, 27(8):1226-1238, 2005.
    • (2005) TPAMI , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.H.Q.3
  • 16
    • 67649644367 scopus 로고    scopus 로고
    • Graphsig: A scalable approach to mining significant subgraphs in large graph databases
    • S. Ranu and A. K. Singh. Graphsig: A scalable approach to mining significant subgraphs in large graph databases. In ICDE, pages 844-855, 2009.
    • (2009) ICDE , pp. 844-855
    • Ranu, S.1    Singh, A.K.2
  • 17
    • 65449142148 scopus 로고    scopus 로고
    • Partial least squares regression for graph mining
    • H. Saigo, N. Krämer, and K. Tsuda. Partial least squares regression for graph mining. In KDD, pages 578-586, 2008.
    • (2008) KDD , pp. 578-586
    • Saigo, H.1    Krämer, N.2    Tsuda, K.3
  • 20
    • 57149124218 scopus 로고    scopus 로고
    • Mining significant graph patterns by leap search
    • X. Yan, H. Cheng, J. Han, and P. S. Yu. Mining significant graph patterns by leap search. In SIGMOD, pages 433-444, 2008.
    • (2008) SIGMOD , pp. 433-444
    • Yan, X.1    Cheng, H.2    Han, J.3    Yu, P.S.4
  • 21
    • 78149333073 scopus 로고    scopus 로고
    • gspan: Graph-based substructure pattern mining
    • X. Yan and J. Han. gspan: Graph-based substructure pattern mining. In ICDM, pages 721-724, 2002.
    • (2002) ICDM , pp. 721-724
    • Yan, X.1    Han, J.2
  • 22
    • 77952334885 scopus 로고    scopus 로고
    • Closegraph: Mining closed frequent graph patterns
    • X. Yan and J. Han. Closegraph: mining closed frequent graph patterns. In KDD, pages 286-295, 2003.
    • (2003) KDD , pp. 286-295
    • Yan, X.1    Han, J.2
  • 23
    • 34548728521 scopus 로고    scopus 로고
    • Monkey: Approximate graph mining based on spanning trees
    • S. Zhang, J. Yang, and V. Cheedella. Monkey: Approximate graph mining based on spanning trees. In ICDE, pages 1247-1249, 2007.
    • (2007) ICDE , pp. 1247-1249
    • Zhang, S.1    Yang, J.2    Cheedella, V.3
  • 24
    • 84871072521 scopus 로고    scopus 로고
    • Classifying graphs using theoretical metrics: A study of feasibility
    • L. Zhu, W. K. Ng, and S. Han. Classifying graphs using theoretical metrics: A study of feasibility. In DASFAA, 2011.
    • (2011) DASFAA
    • Zhu, L.1    Ng, W.K.2    Han, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.