메뉴 건너뛰기




Volumn , Issue , 2013, Pages 270-278

Unsupervised feature selection for multi-view data in social media

Author keywords

[No Author keywords available]

Indexed keywords

CLUSTERING ALGORITHMS; DATA MINING; SOCIAL NETWORKING (ONLINE);

EID: 84913530663     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1137/1.9781611972832.30     Document Type: Conference Paper
Times cited : (114)

References (34)
  • 1
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • Lowe, D.G. Distinctive image features from scale-invariant keypoints. IJCV, 2004.
    • (2004) IJCV
    • Lowe, D.G.1
  • 6
  • 7
    • 36849021609 scopus 로고    scopus 로고
    • Nonlinear adaptive distance metric learning for clustering
    • J. Chen, Z. Zhao, J. Ye, and H. Liu. Nonlinear adaptive distance metric learning for clustering. KDD, 2007.
    • (2007) KDD
    • Chen, J.1    Zhao, Z.2    Ye, J.3    Liu, H.4
  • 8
    • 85167457112 scopus 로고    scopus 로고
    • ETLDA: Joint topic modeling for aligning events and their Twitter feedback
    • Y. Hu, A. John, F. Wang,and S. Kambhampati. ETLDA: Joint Topic Modeling for Aligning Events and their Twitter Feedback. In AAAI, 2012.
    • (2012) AAAI
    • Hu, Y.1    John, A.2    Wang, F.3    Kambhampati, S.4
  • 9
    • 33645957324 scopus 로고    scopus 로고
    • Bayesian feature and model selection for Gaussian mixture models
    • C. Constantinopoulos, M. Titsias, and A. Likas. Bayesian feature and model selection for gaussian mixture models. TPAMI, 2006.
    • (2006) TPAMI
    • Constantinopoulos, C.1    Titsias, M.2    Likas, A.3
  • 10
    • 84871617105 scopus 로고    scopus 로고
    • Convex and seminonnegative matrix factorizations
    • C. Ding, T. Li, and M. Jordan. Convex and seminonnegative matrix factorizations. TPAMI, 2010.
    • (2010) TPAMI
    • Ding, C.1    Li, T.2    Jordan, M.3
  • 11
    • 33749255817 scopus 로고    scopus 로고
    • R 1-PCA: Rotational invariant l 1-norm principal component analysis for robust subspace factorization
    • C. Ding, D. Zhou, X. He, and H. Zha. R 1-pca: rotational invariant l 1-norm principal component analysis for robust subspace factorization. ICML, 2006.
    • (2006) ICML
    • Ding, C.1    Zhou, D.2    He, X.3    Zha, H.4
  • 13
    • 26444454606 scopus 로고    scopus 로고
    • Feature selection for unsupervised learning
    • J. Dy and C. Brodley. Feature selection for unsupervised learning. JMLR, 2004.
    • (2004) JMLR
    • Dy, J.1    Brodley, C.2
  • 14
    • 0002878444 scopus 로고    scopus 로고
    • Feature subset selection and order identification for unsupervised learning
    • J. G. Dy and C. E. Brodley. Feature subset selection and order identification for unsupervised learning. ICML, 2000.
    • (2000) ICML
    • Dy, J.G.1    Brodley, C.E.2
  • 15
    • 0034592759 scopus 로고    scopus 로고
    • Visualization and interactive feature selection for unsupervised data
    • J. G. Dy and C. E. Brodley. Visualization and interactive feature selection for unsupervised data. KDD, 2000.
    • (2000) KDD
    • Dy, J.G.1    Brodley, C.E.2
  • 16
    • 0037342804 scopus 로고    scopus 로고
    • Unsupervised feature selection applied to content-based retrieval of lung images
    • J. G. Dy, C. E. Brodley, A. C. Kak, L. S. Broderick, and A. M. Aisen. Unsupervised feature selection applied to content-based retrieval of lung images. TPAMI, 2003.
    • (2003) TPAMI
    • Dy, J.G.1    Brodley, C.E.2    Kak, A.C.3    Broderick, L.S.4    Aisen, A.M.5
  • 17
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classification using support vector machines. Machine learning, 2002.
    • (2002) Machine Learning
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 18
    • 84874258367 scopus 로고    scopus 로고
    • Exploiting social relations for sentiment analysis in microblogging
    • X. Hu, L. Tang, J. Tang and H. Liu, "Exploiting Social Relations for Sentiment Analysis in Microblogging," in WSDM, 2013.
    • (2013) WSDM
    • Hu, X.1    Tang, L.2    Tang, J.3    Liu, H.4
  • 19
    • 85065703189 scopus 로고    scopus 로고
    • Correlation-based feature selection for discrete and numeric class machine learning
    • M. Hall. Correlation-based feature selection for discrete and numeric class machine learning. ICML, 2000.
    • (2000) ICML
    • Hall, M.1
  • 20
    • 33845535234 scopus 로고    scopus 로고
    • Laplacian score for feature selection
    • X. He, D. Cai, and P. Niyogi. Laplacian score for feature selection. NIPS, 2006.
    • (2006) NIPS
    • He, X.1    Cai, D.2    Niyogi, P.3
  • 21
    • 0034593107 scopus 로고    scopus 로고
    • Feature selection for unsupervised learning via evolutionary search
    • Y. Kim, W. Street, and F. Menczer. Feature selection for unsupervised learning via evolutionary search. KDD, 2000.
    • (2000) KDD
    • Kim, Y.1    Street, W.2    Menczer, F.3
  • 23
    • 17044405923 scopus 로고    scopus 로고
    • Toward integrating feature selection algorithms for classification and clustering
    • H. Liu and L. Yu. Toward integrating feature selection algorithms for classification and clustering. TKDE, 2005.
    • (2005) TKDE
    • Liu, H.1    Yu, L.2
  • 24
    • 80053145416 scopus 로고    scopus 로고
    • Multi-task feature learning via efficient l 2, 1-norm minimization
    • J. Liu, S. Ji, and J. Ye. Multi-task feature learning via efficient l 2, 1-norm minimization. UAI, 2009.
    • (2009) UAI
    • Liu, J.1    Ji, S.2    Ye, J.3
  • 25
    • 84874223723 scopus 로고    scopus 로고
    • Exploiting homophily effect for trust prediction
    • J. Tang, H. Gao, X. Hu and H. Liu, "Exploiting Homophily Effect for Trust Prediction," in WSDM,2013.
    • (2013) WSDM
    • Tang, J.1    Gao, H.2    Hu, X.3    Liu, H.4
  • 27
    • 85135939782 scopus 로고    scopus 로고
    • Efficient and robust feature selection via joint l21-norms minimization
    • F. Nie, H. Huang, X. Cai, and C. Ding. Efficient and robust feature selection via joint l21-norms minimization. NIPS, 2010.
    • (2010) NIPS
    • Nie, F.1    Huang, H.2    Cai, X.3    Ding, C.4
  • 28
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy
    • H. Peng, F. Long, and C. Ding. Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. TPAMI, 2005.
    • (2005) TPAMI
    • Peng, H.1    Long, F.2    Ding, C.3
  • 29
    • 84880191846 scopus 로고    scopus 로고
    • Feature selection with linked data in social media
    • J. Tang and H. Liu. Feature selection with linked data in social media. SDM, 2012.
    • (2012) SDM
    • Tang, J.1    Liu, H.2
  • 30
    • 84866052116 scopus 로고    scopus 로고
    • Unsupervised feature selection for linked social media data
    • J. Tang and H. Liu. Unsupervised feature selection for linked social media data. KDD, 2012.
    • (2012) KDD
    • Tang, J.1    Liu, H.2
  • 31
    • 27844550205 scopus 로고    scopus 로고
    • Feature selection for unsupervised and supervised inference: The emergence of sparsity in a weighted-based approach
    • L. Wolf and A. Shashua. Feature selection for unsupervised and supervised inference: the emergence of sparsity in a weighted-based approach. JMLR, 2005.
    • (2005) JMLR
    • Wolf, L.1    Shashua, A.2
  • 32
    • 84881041271 scopus 로고    scopus 로고
    • L21-norm regularized discriminative feature selection for unsupervised learning
    • Y. Yang, H. Shen, Z. Ma, Z. Huang, and X. Zhou. L21-norm regularized discriminative feature selection for unsupervised learning. IJCAI, 2011.
    • (2011) IJCAI
    • Yang, Y.1    Shen, H.2    Ma, Z.3    Huang, Z.4    Zhou, X.5
  • 33
    • 65149104302 scopus 로고    scopus 로고
    • Spectral feature selection for supervised and unsupervised learning
    • Z. Zhao and H. Liu. Spectral feature selection for supervised and unsupervised learning. ICML, 2007.
    • (2007) ICML
    • Zhao, Z.1    Liu, H.2
  • 34
    • 77951179901 scopus 로고    scopus 로고
    • Multi-source feature selection via geometry-dependent covariance analysis
    • Z. Zhao and H. Liu. Multi-source feature selection via geometry-dependent covariance analysis. JMLR, Workshop and Conference Proceedings, 2010.
    • (2010) JMLR Workshop and Conference Proceedings
    • Zhao, Z.1    Liu, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.