메뉴 건너뛰기




Volumn , Issue , 2009, Pages 141-151

Identifying bug signatures using discriminative graph mining

Author keywords

[No Author keywords available]

Indexed keywords

DATA MINING; FLOW GRAPHS; OPTIMIZATION;

EID: 85008256270     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1572272.1572290     Document Type: Conference Paper
Times cited : (136)

References (25)
  • 2
    • 0029521539 scopus 로고
    • Fault localization using execution slices and dataflow tests
    • H. Agrawal, J. Horgan, S. London, and W. Wong. Fault localization using execution slices and dataflow tests. In ISSRE, 1995.
    • (1995) ISSRE
    • Agrawal, H.1    Horgan, J.2    London, S.3    Wong, W.4
  • 3
    • 2442483205 scopus 로고    scopus 로고
    • Mining molecular fragments: Finding relevant substructures of molecules
    • C. Borgelt and M. R. Berthold. Mining molecular fragments: Finding relevant substructures of molecules. In ICDM, 2002.
    • (2002) ICDM
    • Borgelt, C.1    Berthold, M.R.2
  • 5
    • 33244494414 scopus 로고    scopus 로고
    • Locating causes of program failures
    • H. Cleve and A. Zeller. Locating causes of program failures. In ICSE, 2005.
    • (2005) ICSE
    • Cleve, H.1    Zeller, A.2
  • 6
    • 79959913892 scopus 로고    scopus 로고
    • Critical slicing for software fault localization
    • R. DeMillo, H. Pan, and E. Spafford. Critical slicing for software fault localization. In ISSTA, 1996.
    • (1996) ISSTA
    • DeMillo, R.1    Pan, H.2    Spafford, E.3
  • 7
    • 56249100105 scopus 로고    scopus 로고
    • RAPID: Identifying bug signatures to support debugging activities
    • H. Hsu, J. A. Jones, and A. Orso. RAPID: Identifying bug signatures to support debugging activities. In ASE, 2008.
    • (2008) ASE
    • Hsu, H.1    Jones, J.A.2    Orso, A.3
  • 8
    • 78149328300 scopus 로고    scopus 로고
    • Efficient mining of frequent subgraph in the presence of isomorphism
    • J. Huan, W. Wang, and J. Prins. Efficient mining of frequent subgraph in the presence of isomorphism. In ICDM, 2003.
    • (2003) ICDM
    • Huan, J.1    Wang, W.2    Prins, J.3
  • 9
    • 0028166441 scopus 로고
    • Experiments of the effectiveness of dataflow-and controlflow-based test adequacy criteria
    • M. Hutchins, H. Foster, T. Goradia, and T. Ostrand. Experiments of the effectiveness of dataflow-and controlflow-based test adequacy criteria. In ICSE, 1994.
    • (1994) ICSE
    • Hutchins, M.1    Foster, H.2    Goradia, T.3    Ostrand, T.4
  • 10
    • 0012906024 scopus 로고    scopus 로고
    • An apriori-based algorithm for mining frequent substructures from graph data
    • A. Inokuchi, T. Washio, and H. Motoda. An apriori-based algorithm for mining frequent substructures from graph data. In PKDD, 1998.
    • (1998) PKDD
    • Inokuchi, A.1    Washio, T.2    Motoda, H.3
  • 11
    • 77949891686 scopus 로고    scopus 로고
    • Context-aware statistical debugging: From bug predictors to faulty control flow paths
    • L. Jiang and Z. Su. Context-aware statistical debugging: from bug predictors to faulty control flow paths. In ASE, 2007.
    • (2007) ASE
    • Jiang, L.1    Su, Z.2
  • 12
    • 77952348762 scopus 로고    scopus 로고
    • Empirical evaluation of the tarantula automatic fault-localization technique
    • J. Jones and M. Harrold. Empirical evaluation of the tarantula automatic fault-localization technique. In ASE, 2005.
    • (2005) ASE
    • Jones, J.1    Harrold, M.2
  • 13
    • 78149312583 scopus 로고    scopus 로고
    • Frequent subgraph discovery
    • M. Kuramochi and G. Karypis. Frequent subgraph discovery. In ICDM, 2001.
    • (2001) ICDM
    • Kuramochi, M.1    Karypis, G.2
  • 16
    • 12244294066 scopus 로고    scopus 로고
    • A quickstart in frequent structure mining can make a difference
    • S. Nijssen and J. Kok. A quickstart in frequent structure mining can make a difference. In KDD, 2004.
    • (2004) KDD
    • Nijssen, S.1    Kok, J.2
  • 17
    • 84917687527 scopus 로고    scopus 로고
    • Fault localization with nearest neighbor queries
    • M. Renieris and S. Reiss. Fault localization with nearest neighbor queries. In ASE, 2003.
    • (2003) ASE
    • Renieris, M.1    Reiss, S.2
  • 19
    • 33745454871 scopus 로고    scopus 로고
    • Mining minimal contrast subgraph patterns
    • R. M. H. Ting and J. Bailey. Mining minimal contrast subgraph patterns. In SDM, 2006.
    • (2006) SDM
    • Ting, R.M.H.1    Bailey, J.2
  • 20
    • 78149322987 scopus 로고    scopus 로고
    • Computing frequent graph patterns from semistructured data
    • N. Vanetik, E. Gudes, and S. E. Shimony. Computing frequent graph patterns from semistructured data. In ICDM, 2002.
    • (2002) ICDM
    • Vanetik, N.1    Gudes, E.2    Shimony, S.E.3
  • 21
    • 2442446148 scopus 로고    scopus 로고
    • BIDE: Efficient mining of frequent closed sequences
    • J. Wang and J. Han. BIDE: Efficient mining of frequent closed sequences. In ICDE, 2004.
    • (2004) ICDE
    • Wang, J.1    Han, J.2
  • 22
    • 70350639099 scopus 로고    scopus 로고
    • Mining significant graph patterns by scalable leap search
    • X. Yan, H. Cheng, J. Han, and P. S. Yu. Mining significant graph patterns by scalable leap search. In SIGMOD, 2008.
    • (2008) SIGMOD
    • Yan, X.1    Cheng, H.2    Han, J.3    Yu, P.S.4
  • 23
    • 78149333073 scopus 로고    scopus 로고
    • GSpan: Graph-based substructure pattern mining
    • X. Yan and J. Han. gSpan: Graph-based substructure pattern mining. In ICDM, 2002.
    • (2002) ICDM
    • Yan, X.1    Han, J.2
  • 25
    • 33746089176 scopus 로고    scopus 로고
    • Pruning dynamic slices with confidence
    • X. Zhang, N. Gupta, and R. Gupta. Pruning dynamic slices with confidence. In PLDI, 2006.
    • (2006) PLDI
    • Zhang, X.1    Gupta, N.2    Gupta, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.